搜档网
当前位置:搜档网 › 中科院中文分词系统的java接口+笔记

中科院中文分词系统的java接口+笔记

中科院中文分词系统的java接口+笔记
中科院中文分词系统的java接口+笔记

中科院中文分词系统的java接口笔记

2007-05-03 15:58

一。新建java工程名为SplitWord。

二。右击WordSplit项目选择Import弹出窗口选择File system

三.选择你工程放的目录选classes,data,lib,src,ictclas再在option中选creat selected folders only按finish结束。

完成后目录结构如图:

现在就可运行“ICTCLAS.java”文件

public class ICTCLAS {

private static ICTCLAS instance=null;

private ICTCLAS() {

init(0,0);//如果参数是(0,0)输出的字符就没有标记集如:梁 X 是一个程序员 / init(0,2)//输出的字符就有标记集如:梁/nr X/nr 是/v 一个/m 程序员/n //nx 你用不同的参数就有不同的效果。nr表人名 v表示动词

}

public synchronized static ICTCLAS getInstance(){

if (instance==null){

instance = new ICTCLAS();

}

return instance;

}

public synchronized native boolean init(int i, int j);

public synchronized native String paragraphProcess(String sParagraph);

public synchronized native boolean fileProcess(String source,String target);

这个文件里面定义了DLL的三个接口函数,特别要注意的是在导入的时候要注意dll的目录。如果报这个错误

https://www.sodocs.net/doc/3611301454.html,ng.UnsatisfiedLinkError: no ICTCLAS in java.library.path

at https://www.sodocs.net/doc/3611301454.html,ng.ClassLoader.loadLibrary(Unknown Source)

at https://www.sodocs.net/doc/3611301454.html,ng.Runtime.loadLibrary0(Unknown Source)

at https://www.sodocs.net/doc/3611301454.html,ng.System.loadLibrary(Unknown Source)

at com.xjt.nlp.word.ICTCLAS.(ICTCLAS.java:37)

Exception in thread "main"

说明dll路径不对,一般情况下DLL放在工程的根目录下,Data目录和DLL文件平级.

public static void main(String[] args) {

ICTCLAS split1 = new ICTCLAS();

System.out.println(split1.paragraphProcess("梁X是一个程序员/"));

}

static{

System.loadLibrary("ICTCLAS");

}

}

https://www.sodocs.net/doc/3611301454.html,/lioliang/blog/item/b746bf641db8f9f1f63654c7.html

ICTCLAS 中科院分词系统代码注释中文分词词性标注

2006-11-09 11:01

ICTCLAS 中科院分词系统代码注释中文分词词性标注

风暴红QxRed @ 2006-04-20 20:38

中科院分词系统概述

这几天看完了中科院分词程序的代码,现在来做一个概述,并对一些关键的数据结构作出解释

〇、总体流程

考虑输入的一句话,sSentence="张华平欢迎您"

总体流程:

一、分词 "张/华/平/欢迎/您"

二、posTagging "张/q 华/j 平/j 欢迎/v 您/r"

三、NE识别:人名识别,音译名识别,地名识别 "张/q 华/j 平/j 欢迎/v 您/r" "张华平/nr"

四、重新分词:"张华平/欢迎/您"

五、重新posTagging: "张华平/nr 欢迎/v 您/r"

技术细节

一、分词

分词程序首先在其头末添加开始符和结束符

sSentence="始##始张华平欢迎您末##末"

然后是分词,基本思想就是分词的得到的词的联合概率最大

假设 "张华平欢迎您" 分为 "w_1/w_2/.../w_k" 则

w_1/w_2/.../w_k=argmax_{w_1'/w_2'/.../w_k'}P(w_1',w_2',...,w_k')=argm ax_{w_1'/w_2'/.../w_k'}P(w_1')P(w_2')...P(w_k')

细节:

首先给原句按字划分,所有汉字一个一段,连续的字母,数字一段,比如"始##始张华平2006欢迎您asdf末##末"被划为"始##始/张/华/平/2006/欢/迎/您/asdf/末##末"

接着找出这个句子中所有可能出现的词,比如"始##始张华平欢迎您末##末",出现的词有"始##始","张","华","平","欢","迎","您","末##末","欢迎"

并查找这些词所有可能的词性和这些词出现的频率。

将这些词保存在一个结构中,具体实现如下:

m_segGraph中有一个(PARRAY_CHAIN)m_pHead,是一个链

(PARRAY_CHAIN)p->row//记录该词的头位置

(PARRAY_CHAIN)p->col//记录该词的末位置

(PARRAY_CHAIN)p->value//记录该词的-log(出现的概率),出现的频率指所有该词的所有词性下出现的概率的总和。

(PARRAY_CHAIN)p->nPos//记录该词的词性,比如人名标记为'nr',则对应的nPos='n'*256+'r',如果该词有很多词性,则nPos=0

(PARRAY_CHAIN)p->sWord//记录该词

(PARRAY_CHAIN)p->nWordLen//记录该词的长度

举个例子:

"0 始##始 1 张 2 华 3 平 4 欢 5 迎 6 您 7 末##末 8"

对于"张"来说,

row=1

col=2

value=-log[("张"出现的频率+1)/(MAX_FREQUENCE)]

nPos=0//"张"有5种词性

sWord="张"

nWordLen=2

保存的顺序是按col升序row升序的次序排列

m_segGraph.m_pHead "始##始"

"张"

"华"

"平"

"欢"

"欢迎"

"迎"

"您"

"末##末"

m_segGraph.m_nRow=7

m_segGraph.m_nCol=8

然后是生成一幅给予各种组合情况的图,并按照出现的概率大小保存概率最大的前m_nValueKind个结果。

细节:

初始化,

(CNShortPath)sp.m_apCost=m_segGraph;

(CNShortPath)sp.m_nVertex=m_segGraph.m_nCol+1

(CNShortPath)sp.m_pParent=CQueue[m_segGraph.m_nCol][m_nValueKind] (CNShortPath)sp.m_pWeight=ELEMENT_TYPE[m_segGraph.m_nCol][m_nValueKin d]//m_pWeight[0][0]表示1处的weight

sp.ShortPath()函数中,

for(nCurNode=1;nCurNode

{

CQueue queWork;//零时的CQueue

eWeight=m_apCost->GetElement(-1,nCurNode,0,&pEdgeList);//取出

col=nCurNode的第一个PARRAY_CHAIN的value,比如nCurNode=6,则pEdgeList 指向"欢迎",eWeight="pEdgeList->value

while(pEdgeList&&pEdgeList->col==nCurNode)//对每一个col=nCurNode的pEdgeList

{

for(i=0;i

{

queWork.Push(pEdgeList->row,0,eWeight+m_pWeight[pEdgeList->row-1][ i]);

//将所有col=nCurNode的pEdgeList按照其weight升序放到queWork中

}

}//比如

/*

"欢迎

" m_pWeight[3][0]=0.2 eWight=0.2 =>queWork.Push(4,0,0 .4);

"0 始##始 1 张 2 华 3 平 4 欢 5 迎 6 您 7 末##末 8"

"欢" m_pWeight[4][0]=0.5

eWight=0.1 =>queWork.Push(5,0,0.6);

m_pWeight[4][1]=0.6 eWight=0.1 =>queWork.Push(5,0,0.7);

queWork "欢迎" 0.4

"迎" 0.6

"迎" 0.7

*/

for(i=0;i

while(i

m_nValueKind-1,eWeight=pEdgeList->value

{

m_pWeight[nCurNode-1][i]=eWeight;//取前m_nValueKind个结果

m_pParent[nCurNode-1][i].Push(nPreNode,nIndex);//按照

pEdgeList->value的升序,也就是P的降序放入m_pParent

}

}

得到m_pParent之后,按照m_pWeight[m_segGraph.m_nCol-1]的升序,生成path CNShortPath::GetPaths(unsigned int nNode,unsigned int nIndex,int

**nResult,bool bBest)

//nNode=m_segGraph.m_nCol,nIndex从0取到m_nValueKind-1,nResult输出结

果,bBest=true只输出最佳结果

比如"始##始张华平欢迎您末##末"的结果为

nResult[0]={0,1,2,3,4,6,7,8,-1} "始##始/张/华/平/欢迎/您/末##末" nResult[1]={0,1,2,3,4,5,6,7,8,-1} "始##始/张/华/平/欢/迎/您/末##末" 没有第三种结果

取出所有nResult[i]作为分词结果,结果保存在m_graphOptimum

中,m_graphOptimum和m_segGraph结构一样,只不过只存nResult[i]中的结果:

如果m_nValueKind=1则

m_graphOptimum.m_pHead "始##始"

"张"

"华"

"平"

"欢迎"

"您"

"末##末"

m_graphOptimum.m_nRow=7

m_graphOptimum.m_nCol=8

如果m_nValueKind=2则

m_graphOptimum.m_pHead "始##始"

"张"

"华"

"平"

"欢"

"欢迎"

"迎"

"您"

"末##末"

m_graphOptimum.m_nRow=7

m_graphOptimum.m_nCol=8

见 bool CSegment::GenerateWord(int **nSegRoute, int nIndex)这里的nSegRoute=上面的nResult,是输入参数;nIndex表示第nIndex个分词结果

同时,CResult.m_Seg.m_pWordSeg[nIndex][k]中保存了第nIndex个结果的第k 个词的信息:

CResult.m_Seg.m_pWordSeg[nIndex][k].sWord//词

CResult.m_Seg.m_pWordSeg[nIndex][k].nHandle//词性

CResult.m_Seg.m_pWordSeg[nIndex][k].dValue//-logP

至此,分词部分结束

二、posTagging

m_POSTagger.POSTagging(m_Seg.m_pWordSeg[nIndex],m_dictCore,m_dictCore );//对第nIndex个分词结果用标准的字典标注

方便起见,下面假设m_nValueKind=1

m_POSTagger用HMM对分词进行标注,这里输出概率为P(w_i|c_i),c_i为词性,w_i为词;转移概率为P(c_i|c_{i-1}),初始状态为P(c_0)即P("始##始"的词性)

用维特比算法求出一个

c_1/c_2/.../c_k=argmax_{c_1'/c_2'/.../c_k'}P(w_1',w_2',...,w_k')

将句子分成若干段,每段以有唯一pos的w结尾,也就是分词中

CResult.m_Seg.m_pWordSeg[0][k].nHandle>0的那些词

比如,举个例子

"0 始##始 1 张 2 华 3 平 4 欢迎 5 您 6 末##末 7"

pos1 pos1 pos1 pos1 pos1 pos1 pos1

pos2 pos2 pos2 pos2

pos3 pos3 pos3

pos4

pos5

则该句被划分为

"0 始##始"

"1 张 2 华 3 平 4 欢迎 5 您"

"6 末##末"

对每一段用维特比算法确定一个唯一的postag

细节:

首先P(w,c)的输出概率存储在dict中,比如dictCore,dictUnknow,通过

dict.GetFrequency(char *sWord, int nHandle)函数获取 sWord pos为nHandle 的函数

概率P(c)存储在context中,比如m_context,通过context.GetFrequency(int nKey, int nSymbol)函数获取 pos为nSymbol的函数,nKey=0

转移概率P(c|c')存储在context中,比如m_context,通过

context.GetContextPossibility(int nKey, int nPrev, int nCur)函数获取c'=nPrev,c=nCur的转移概率,nKey=0

重要的数据结构

m_nTags[i][k]表示第i个w的第k个pos

在GetFrom函数中表示 -log(第i个w的第k个pos的输出概率)

在CSpan::Disamb()函数中

m_dFrequency[i][k]表示 -log(从第0个w到第i个w的第k个pos的联合最大输出概率),比如

w_j w_{j+1}

m_dFrequency[j][0]-- m_dFrequency[j+1][0]

m_dFrequency[j][1] -- m_dFrequency[j+1][1]

--m_dFrequency[j+1][2]

则图中的路径的权为

W([j,0]->[j+1,2])=m_dFrequency[j][0]-log(m_context.GetContextPossibil ity(0,m_nTags[j][0],m_nTags[j+1][2]))

这样,选择

m_dFrequency[j+1][2]=min{W([j,0]->[j+1,2]),W([j,1]->[j+1,2])}

m_nCurLength表示当前段的w个数+1

在m_POSTagger.POSTagging中,以上面的例子为例

while(i>-1&&pWordItems[i].sWord[0]!=0)//将执行段的个数次,比如上例中将执行3次

{

i=GetFrom(pWordItems,nStartPos,dictCore,dictUnknown);//i=GetFrom(pWo rdItems,0,dictCore,dictUnknown)=1

//i=GetFrom(pWordItems,1,dictCore,dictUnknown)=6

//i=GetFrom(pWordItems,6,dictCore,dictUnknown)=7

//从nStartPos向前取w,一直取到一个有唯一pos的w为止,该过程中记录每个w的pos,保存在m_nTags中,记录log(w|c)输出概率保存在m_dFrequency中 GetBestPOS();//调用Disamb()函数,用维特比算法找出该段的最佳(联合输出概率最大)的标注,最佳路径保存在m_nBestTag中

通过读取m_nBestTag对pWordItems.nHandle进行赋值

}

三、NE识别:人名识别,音译名识别,地名识别

其基本思路和PosTagging一样,只不过词性c换成了role r,以人名识别为例,首先识别出人名的tag(即pos),见

"Chinese Named Entity Recognition Using Role Model"

在函数CUnknowWord::Recognition(PWORD_RESULT pWordSegResult, CDynamicArray &graphOptimum,CSegGraph &graphSeg,CDictionary &dictCore)中

每个被切开的段被识别完之后,用

m_roleTag.POSTagging(pWordSegResult,dictCore,m_dict);对第一步分词的结果进行一次标记。

首先用dictUnknown.GetHandle(m_sWords[i],&nCount,aPOS,aFreq);获得

m_sWords[i]在NE词典中的role,

接着用dictCore.GetHandle(m_sWords[i],&nCount,aPOS,aFreq);获得

m_sWords[i]在标准词典中的tag,这里只要m_sWords[i]在标准词典中有tag,那么tag一律标记为0,该tag下的输出概率为P(w|c)=P(sum_{aFreq}|c=0) 接下来用SplitPersonPOS(dictUnknown)函数将其中tag为LH和TR的w拆成两个

比如"张/SS 华/GH 平欢/TR 迎/RC 您/RC"中"平欢"被拆成"平/GT" "欢/12"

接着在PersonRecognize(dictUnknown);函数中,用一些模板进行匹

配,"SS/GH/TR"将匹配到"张华平"。匹配得到的片断保存在m_nUnknownWords中,其nHandle被设置为人名,地名,音译名中的一个

对第一步中的graphOptimum,加入m_nUnknownWords的边:

graphOptimum.GetElement(nAtomStart,nAtomEnd,&dValue,&nPOSOriginal);

if(dValue>m_roleTag.m_dWordsPossibility[i])//Set the element with less frequency

graphOptimum.SetElement(nAtomStart,nAtomEnd,m_roleTag.m_dWordsPossib ility[i],m_nPOS);

四、重新分词

对上一步的graphOptimum,用第一步中对m_segGraph分词的方法,找出一个联合概率最大的分词结果:

m_Seg.OptimumSegmet(nCount);

五、重新标注

对于四中分好的结果,用标准词典对其进行posTagging:

for(nIndex=0;nIndex

{

m_POSTagger.POSTagging(m_Seg.m_pWordSeg[nIndex],m_dictCore,m_dictCor e);

}

最后,用Sort();对标注结果按照联合输出概率的大小降序排序,并按照用户的需求输出前几个

Tags: 分词中文分词笔记注释代码中科院分词系统 ictclas 词性标注postagging

中文分词切词超详细分析

前面我们讲个搜索引擎如何搜集网页,今天说下第二个过程网页预处理,其中中文分词就显得尤其重要,下面就详细讲解一下搜索引擎是怎么进行网页预处理的: 网页预处理的第一步就是为原始网页建立索引,有了索引就可以为搜索引擎提供网页快照功能;接下来针对索引网页库进行网页切分,将每一篇网页转化为一组词的集合;最后将网页到索引词的映射转化为索引词到网页的映射,形成倒排文件(包括倒排表和索引词表),同时将网页中包含的不重复的索引词汇聚成索引词表。如下图所示: 一个原始网页库由若干个记录组成,每个记录包括记录头部信息(HEAD)和数据(DATA),每个数据由网页头信息(header),网页内容信息(content)组成。索引网页库的任务就是完成给定一个URL,在原始网页库中定位到该URL所指向的记录。 如下图所示:

对索引网页库信息进行预处理包括网页分析和建立倒排文件索引两个部分。中文自动分词是网页分析的前提。文档由被称作特征项的索引词(词或者字)组成,网页分析是将一个文档表示为特征项的过程。在对中文文本进行自动分析前,先将整句切割成小的词汇单元,即中文分词(或中文切词)。切词软件中使用的基本词典包括词条及其对应词频。 自动分词的基本方法有两种:基于字符串匹配的分词方法和基于统计的分词方法。 1) 基于字符串匹配的分词方法 这种方法又称为机械分词方法,它是按照一定的策略将待分析的汉字串与一个充分大的词典中的词条进行匹配,若在词典中找到某个字符串,则匹配成功(识别出一个词)。 按照扫描方向的不同,串匹配分词方法可以分为正向匹配和逆向匹配;按照不同长度优先匹配的情况,可以分为最大或最长匹配,和最小或最短匹配;按照是否与词性标注过程相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。常用的几种机械分词方法如下:

中文分词基础件(基础版)使用说明书

索源网https://www.sodocs.net/doc/3611301454.html,/ 中文分词基础件(基础版) 使用说明书 北京索源无限科技有限公司 2009年1月

目录 1 产品简介 (3) 2 使用方法 (3) 2.1 词库文件 (3) 2.2 使用流程 (3) 2.3 试用和注册 (3) 3 接口简介 (4) 4 API接口详解 (4) 4.1初始化和释放接口 (4) 4.1.1 初始化分词模块 (4) 4.1.2 释放分词模块 (4) 4.2 切分接口 (5) 4.2.1 机械分词算法 (5) 4.3 注册接口 (8) 5 限制条件 (9) 6 附录 (9) 6.1 切分方法定义 (9) 6.2 返回值定义 (9) 6.3 切分单元类型定义 (9)

1 产品简介 索源中文智能分词产品是索源网(北京索源无限科技有限公司)在中文信息处理领域以及搜索领域多年研究和技术积累的基础上推出的智能分词基础件。该产品不仅包含了本公司结合多种分词研发理念研制的、拥有极高切分精度的智能分词算法,而且为了适应不同需求,还包含多种极高效的基本分词算法供用户比较和选用。同时,本产品还提供了在线自定义扩展词库以及一系列便于处理海量数据的接口。该产品适合在中文信息处理领域从事产品开发、技术研究的公司、机构和研究单位使用,用户可在该产品基础上进行方便的二次开发。 为满足用户不同的需求,本产品包括了基础版、增强版、专业版和行业应用版等不同版本。其中基础版仅包含基本分词算法,适用于对切分速度要求较高而对切分精度要求略低的环境(正、逆向最大匹配)或需要所有切分结果的环境(全切分)。增强版在基础版的基础上包含了我公司自主开发的复合分词算法,可以有效消除切分歧义。专业版提供智能复合分词算法,较之增强版增加了未登录词识别功能,进一步提高了切分精度。行业应用版提供我公司多年积累的包含大量各行业关键词的扩展词库,非常适合面向行业应用的用户选用。 2 使用方法 2.1 词库文件 本产品提供了配套词库文件,使用时必须把词库文件放在指定路径中的“DictFolder”文件夹下。产品发布时默认配置在产品路径下。 2.2 使用流程 产品使用流程如下: 1)初始化 首先调用初始化函数,通过初始化函数的参数配置词库路径、切分方法、是否使用扩展词库以及使用扩展词库时扩展词的保存方式等。经初始化后获得模块句柄。 2)使用分词函数 初始化后可反复调用各分词函数。在调用任何函数时必要把模块句柄传入到待调用函数中。 3)退出系统 在退出系统前需调用释放函数释放模块句柄。 2.3 试用和注册 本产品初始提供的系统是试用版。在试用版中,调用分词函数的次数受到限制。用户必须向索源购买本产品,获取注册码进行注册后,方可正常使用本产品。 注册流程为: 1)调用序列号获取接口函数获取产品序列号; 2)购买产品,并将产品序列号发给索源。索源确认购买后,生成注册码发给用户; 3)用户使用注册码,调用注册接口对产品进行注册; 4)注册成功后,正常使用本产品。

中文分词实验

中文分词实验 一、实验目的: 目的:了解并掌握基于匹配的分词方法,以及分词效果的评价方法。 实验要求: 1、从互联网上查找并构建不低于10万词的词典,构建词典的存储结构; 2、选择实现一种机械分词方法(双向最大匹配、双向最小匹配、正向减字最大匹配法等)。 3、在不低于1000个文本文件,每个文件大于1000字的文档中进行中文分词测试,记录并分析所选分词算法的准确率、分词速度。 预期效果: 1、平均准确率达到85%以上 二、实验方案: 1.实验平台 系统:win10 软件平台:spyder 语言:python 2.算法选择 选择正向减字最大匹配法,参照《搜索引擎-原理、技术与系统》教材第62页的描述,使用python语言在spyder软件环境下完成代码的编辑。 算法流程图:

Figure Error! No sequence specified.. 正向减字最大匹配算法流程

Figure Error! No sequence specified.. 切词算法流程算法伪代码描述:

3.实验步骤 1)在网上查找语料和词典文本文件; 2)思考并编写代码构建词典存储结构; 3)编写代码将语料分割为1500个文本文件,每个文件的字数大于1000字; 4)编写分词代码; 5)思考并编写代码将语料标注为可计算准确率的文本; 6)对测试集和分词结果集进行合并; 7)对分词结果进行统计,计算准确率,召回率及F值(正确率和召回率的 调和平均值); 8)思考总结,分析结论。 4.实验实施 我进行了两轮实验,第一轮实验效果比较差,于是仔细思考了原因,进行了第二轮实验,修改参数,代码,重新分词以及计算准确率,效果一下子提升了很多。 实验过程:

百度中文分词技巧

百度中文分词技巧 什么是中文分词?我们都知道,英文句子都是由一个一个单词按空格分开组成,所以在分词方面就方便多了,但我们中文是一个一个汉字连接而成,所以相对来说是比较复杂的。中文分词指的是将一个汉语句子切分成一个一个单独的词,按照一定的规则重新组合成词序列的过程。这个也称做“中文切词”。 分词对于搜索引擎有着很大的作用,是文本挖掘的基础,可以帮助程序自动识别语句的含义,以达到搜索结果的高度匹配,分词的质量直接影响了搜索结果的精确度。目前搜索引擎分词的方法主要通过字典匹配和统计学两种方法。 一、基于字典匹配的分词方法 这种方法首先得有一个超大的字典,也就是分词索引库,然后按照一定的规则将待分词的字符串与分词库中的词进行匹配,若找到某个词语,则匹配成功,这种匹配有分以下四种方式: 1、正向最大匹配法(由左到右的方向); 2、逆向最大匹配法(由右到左的方向); 3、最少切分(使每一句中切出的词数最小); 4、双向最大匹配法(进行由左到右、由右到左两次扫描) 通常,搜索引擎会采用多种方式组合使用。但这种方式也同样给搜索引擎带来了难道,比如对于歧义的处理(关键是我们汉语的博大精深啊),为了提高匹配的准确率,搜索引擎还会模拟人对句子的理解,达到识别词语的效果。基本思想就是在分词的同时进行句法、语义分析,利用句法信息和语义信息来处理歧义现象。通常包括三个部分:分词子系统、句法语义子系统、总控部分。在总控部分的协调下,分词子系统可以获得有关词、句子等的句法和语义信息来对分词歧义进行判断,即它模拟了人对句子的理解过程。这种分词方法需要使用大量的语言知识和信息,当然我们的搜索引擎也在不断进步。 二、基于统计的分词方法 虽然分词字典解决了很多问题,但还是远远不够的,搜索引擎还要具备不断的发现新的词语的能力,通过计算词语相邻出现的概率来确定是否是一个单独的词语。所以,掌握的上下文越多,对句子的理解就越准确,分词也越精确。举个例子说,“搜索引擎优化”,在字典中匹配出来可能是:搜索/引擎/优化、搜/索引/擎/优化,但经过后期的概率计算,发现“搜索引擎优化”在上下文相邻出现的次数非常多,那么基于统计就会将这个词语也加入进分词索引库。关于这点我在《关于电商与圈的分词测试》就是同样的一个例子。 中文分词的应用分词准确性对搜索引擎来说十分重要,但如果分词速度太慢,即使准确性再高,对于搜索引擎来说也是不可用的,因为搜索引擎需要处理数以亿计的网页,如果分词耗用的时间过长,会严重影响搜索引擎内容更新的速度。因此对于搜索引擎来说,分词的准确性和速度,二者都需要达到很高的要求。 参考文档及网站: https://www.sodocs.net/doc/3611301454.html, https://www.sodocs.net/doc/3611301454.html, https://www.sodocs.net/doc/3611301454.html, https://www.sodocs.net/doc/3611301454.html,

分词工具比较

IKAnalyzer IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本。最初,它是以开源项目Luence为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer3.0则发展为面向Java的公用分词组件,独立于Lucene 项目,同时提供了对Lucene的默认优化实现。 语言和平台:基于java 语言开发,最初,它是以开源项目Luence 为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer 3.0 则发展为面向 Java 的公用分词组件,独立于 Lucene 项目,同时提供了对Lucene 的默认优化实现。 算法:采用了特有的“正向迭代最细粒度切分算法”。采用了多子处理器分析模式,支持:英文字母( IP 地址、 Email 、 URL )、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。优化的词典存储,更小的内存占用。支持用户词典扩展定义。针对 Lucene 全文检索优化的查询分析器 IKQueryParser ;采用歧义分析算法优化查询关键字的搜索排列组合,能极大的提高 Lucene 检索的命中率。 性能:60 万字 / 秒 IKAnalyzer基于lucene2.0版本API开发,实现了以词典分词为基础的正反向全切分算法,是LuceneAnalyzer接口的实现。该算法适合与互联网用户的搜索习惯和企业知识库检索,用户可以用句子中涵盖的中文词汇搜索,如用"人民"搜索含"人民币"的文章,这是大部分用户的搜索思维;不适合用于知识挖掘和网络爬虫技术,全切分法容易造成知识歧义,因为在语义学上"人民"和"人民币"是完全搭不上关系的。 je-anlysis的分词(基于java实现) 1. 分词效率:每秒30万字(测试环境迅驰1.6,第一次分词需要1-2秒加载词典) 2. 运行环境: Lucene 2.0 3. 免费安装使用传播,无限制商业应用,但暂不开源,也不提供任何保证 4. 优点:全面支持Lucene 2.0;增强了词典维护的API;增加了商品编码的匹配;增加了Mail地址的匹配;实现了词尾消歧算法第二层的过滤;整理优化了词库; 支持词典的动态扩展;支持中文数字的匹配(如:二零零六);数量词采用“n”;作为数字通配符优化词典结构以便修改调整;支持英文、数字、中文(简体)混合分词;常用的数量和人名的匹配;超过22万词的词库整理;实现正向最大匹配算法;支持分词粒度控制 ictclas4j ictclas4j中文分词系统是sinboy在中科院张华平和刘群老师的研制的FreeICTCLAS的基础上完成的一个java开源分词项目,简化了原分词程序的复

中科院中文分词系统调研报告

自然语言处理调研报告(课程论文、课程设计) 题目:最大正向匹配中文分词系统 作者:陈炳宏吕荣昌靳蒲 王聪祯孙长智 所在学院:信息科学与工程学院 专业年级:信息安全14-1 指导教师:努尔布力 职称:副教授 2016年10月29日

目录 一、研究背景、目的及意义 (3) 二、研究内容和目标 (4) 三、算法实现 (5) 四、源代码 (7) 1.seg.java 主函数 (7) 2. dict.txt 程序调用的字典 (10) 3.实验案例 (11) 五、小结 (12)

一、研究背景、目的及意义 中文分词一直都是中文自然语言处理领域的基础研究。目前,网络上流行的很多中文分词软件都可以在付出较少的代价的同时,具备较高的正确率。而且不少中文分词软件支持Lucene扩展。但不过如何实现,目前而言的分词系统绝大多数都是基于中文词典的匹配算法。 在这里我想介绍一下中文分词的一个最基础算法:最大匹配算法(Maximum Matching,以下简称MM算法) 。MM算法有两种:一种正向最大匹配,一种逆向最大匹配。

二、研究内容和目标 1、了解、熟悉中科院中文分词系统。 2、设计程序实现正向最大匹配算法。 3、利用正向最大匹配算法输入例句进行分词,输出分词后的结果。

三、算法实现 图一:算法实现 正向最大匹配算法:从左到右将待分词文本中的几个连续字符与词表匹配,如果匹配上,则切分出一个词。但这里有一个问题:要做到最大匹配,并不是第一次匹配到就可以切分的。 算法示例: 待分词文本: content[]={"中","华","民","族","从","此","站","起","来","了","。"} 词表: dict[]={"中华", "中华民族" , "从此","站起来"} (1) 从content[1]开始,当扫描到content[2]的时候,发现"中华"已经在

中文分词技术

一、为什么要进行中文分词? 词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,因此,中文词语分析是中文信息处理的基础与关键。 Lucene中对中文的处理是基于自动切分的单字切分,或者二元切分。除此之外,还有最大切分(包括向前、向后、以及前后相结合)、最少切分、全切分等等。 二、中文分词技术的分类 我们讨论的分词算法可分为三大类:基于字典、词库匹配的分词方法;基于词频度统计的分词方法和基于知识理解的分词方法。 第一类方法应用词典匹配、汉语词法或其它汉语语言知识进行分词,如:最大匹配法、最小分词方法等。这类方法简单、分词效率较高,但汉语语言现象复杂丰富,词典的完备性、规则的一致性等问题使其难以适应开放的大规模文本的分词处理。第二类基于统计的分词方法则基于字和词的统计信息,如把相邻字间的信息、词频及相应的共现信息等应用于分词,由于这些信息是通过调查真实语料而取得的,因而基于统计的分词方法具有较好的实用性。 下面简要介绍几种常用方法: 1).逐词遍历法。 逐词遍历法将词典中的所有词按由长到短的顺序在文章中逐字搜索,直至文章结束。也就是说,不管文章有多短,词典有多大,都要将词典遍历一遍。这种方法效率比较低,大一点的系统一般都不使用。 2).基于字典、词库匹配的分词方法(机械分词法) 这种方法按照一定策略将待分析的汉字串与一个“充分大的”机器词典中的词条进行匹配,若在词典中找到某个字符串,则匹配成功。识别出一个词,根据扫描方向的不同分为正向匹配和逆向匹配。根据不同长度优先匹配的情况,分为最大(最长)匹配和最小(最短)匹配。根据与词性标注过程是否相结合,又可以分为单纯分词方法和分词与标注相结合的一体化方法。常用的方法如下: (一)最大正向匹配法 (MaximumMatchingMethod)通常简称为MM法。其基本思想为:假定分词词典中的最长词有i个汉字字符,则用被处理文档的当前字串中的前i个字作为匹配字段,查找字典。若字典中存在这样的一个i字词,则匹配成功,匹配字段被作为一个词切分出来。如果词典中找不到这样的一个i字词,则匹配失败,将匹配字段中的最后一个字去掉,对剩下的字串重新进行匹配处理……如此进行下去,直到匹配成功,即切分出一个词或剩余字串的长度为零为止。这样就完成了一轮匹配,然后取下一个i字字串进行匹配处理,直到文档被扫描完为止。

中文自动分词技术

中文自动分词技术是以“词”为基础,但汉语书面语不是像西方文字那样有天然的分隔符(空格),而是在语句中以汉字为单位,词与词之间没有明显的界限。因此,对于一段汉字,人可以通过自己的知识来明白哪些是词,哪些不是词,但如何让计算机也能理解?其处理过程词,就要应用到中文自动分词技术。下面依次介绍三种中文自动分词算法:基于词典的机械匹配的分词方法、基于统计的分词方法和基于人工智能的分词方法。 1、基于词典的机械匹配的分词方法: 该算法的思想是,事先建立词库,让它它是按照一定的策略将待分析的汉字串与一个充分大的词典中的词条进行匹配,若在词典中找到该字符串,则识别出一个词。按照扫描方向的不同,串匹配分词的方法可以分为正向匹配和逆向匹配;按照不同长度优先匹配的情况,又可以分为最大匹配和最小匹配。按这种分类方法,可以产生正向最大匹配、逆向最大匹配,甚至是将他们结合起来形成双向匹配。由于汉字是单字成词的,所以很少使用最小匹配法。一般来说,逆向匹配的切分精度略高于正向匹配,这可能和汉语习惯将词的重心放在后面的缘故。可见,这里的“机械”是因为该算法仅仅依靠分词词表进行匹配分词 a)、正向减字最大匹配法(MM) 这种方法的基本思想是:对于每一个汉字串s,先从正向取出maxLength 个字,拿这几个字到字典中查找,如果字典中有此字,则说明该字串是一个词,放入该T的分词表中,并从s中切除这几个字,然后继续此操作;如果在字典中找不到,说明这个字串不是一个词,将字串最右边的那个字删除,继续与字典比较,直到该字串为一个词或者是单独一个字时结束。 b)、逆向减字最大匹配法(RMM ) 与正向减字最大匹配法相比,这种方法就是从逆向开始遍历。过程与正向减字最大匹配法基本相同,可以对文本和字典先做些处理,把他们都倒过来排列,然后使用正向减字最大匹法。 机械匹配算法简洁、易于实现.其中,最大匹配法体现了长词优先的原则,在实际工程中应用最为广泛。机械匹配算法实现比较简单,但其局限也是很明显的:效率和准确性受到词库

百度_baidu_搜索分词算法

Baidu查询分词算法 查询处理以及分词技术 如何设计一个高效的搜索引擎?我们可以以百度所采取的技术手段来探讨如何设计一个实用的搜索引擎.搜索引擎涉及到许多技术点,比如查询处理,排序算法,页面抓取算法,CACHE机制,ANTI-SPAM等等.这些技术细节,作为商业公司的搜索引擎服务提供商比如百度,GOOGLE等是不会公之于众的.我们可以将现有的搜索引擎看作一个黑盒,通过向黑盒提交输入,判断黑盒返回的输出大致判断黑盒里面不为人知的技术细节. 查询处理与分词是一个中文搜索引擎必不可少的工作,而百度作为一个典型的中文搜索引擎一直强调其”中文处理”方面具有其它搜索引擎所不具有的关键技术和优势.那么我们就来看看百度到底采用了哪些所谓的核心技术. 我们分两个部分来讲述:查询处理/中文分词. 一. 查询处理 用户向搜索引擎提交查询,搜索引擎一般在接受到用户查询后要做一些处理,然后在索引数据库里面提取相关的信息.那么百度在接受到用户查询后做了些什么工作呢? 1. 假设用户提交了不只一个查询串,比如”信息检索理论工具”.那么搜 索引擎首先做的是根据分隔符比如空格,标点符号,将查询串分割成若干子查询串,比如上面的查询就会被解析为:<信息检索,理论,工具>三个子字符串;这个道理 简单,我们接着往下看. 2. 假设提交的查询有重复的内容,搜索引擎怎么处理呢?比如查询”理论 工具理论”,百度是将重复的字符串当作只出现过一次,也就是处理成等价的”理论工具”,而GOOGLE显然是没有进行归并,而是将重复查询子串的权重增大进行处理.那么是如何得出这个结论的呢?我们可以将”理论工具”提交给百度,返回341,000篇文档,大致看看第一页的返回内容.OK.继续,我们提交查询”理论工具理论”,在看看返回结果,仍然是那么多返回文档,当然这个不能说明太多问题,那 看看第一页返回结果的排序,看出来了吗?顺序完全没有变化,而GOOGLE则排序有些变动,这说明百度是将重复的查询归并成一个处理的,而且字符串之间的先后出现顺序基本不予考虑(GOOGLE是考虑了这个顺序关系的). 3. 假设提交的中文查询包含英文单词,搜索引擎是怎么处理的?比如查询”电影BT下载”,百度的方法是将中文字符串中的英文当作一个整体保留,并以此为断点将中文切分开,这样上述的查询就切为<电影,BT,下载>,不论中间的英文是否一个字典里能查到的单词也好,还是随机的字符也好,都会当作一个整体来对待.

hanlp中文分词器解读

中文分词器解析hanlp分词器接口设计:

提供外部接口: 分词器封装为静态工具类,并提供了简单的接口

标准分词是最常用的分词器,基于HMM-Viterbi实现,开启了中国人名识别和音译人名识别,调用方法如下: HanLP.segment其实是对StandardTokenizer.segment的包装。 /** * 分词 * * @param text 文本 * @return切分后的单词 */ publicstatic Listsegment(String text) { return StandardTokenizer.segment(text.toCharArray()); } /** * 创建一个分词器
* 这是一个工厂方法
* 与直接new一个分词器相比,使用本方法的好处是,以后HanLP升级了,总能用上最合适的分词器 * @return一个分词器 */ publicstatic Segment newSegment() }

publicclass StandardTokenizer { /** * 预置分词器 */ publicstaticfinalSegment SEGMENT = HanLP.newSegment(); /** * 分词 * @param text 文本 * @return分词结果 */ publicstatic Listsegment(String text) { return SEGMENT.seg(text.toCharArray()); } /** * 分词 * @param text 文本 * @return分词结果 */ publicstatic Listsegment(char[]text) { return SEGMENT.seg(text); } /** * 切分为句子形式 * @param text 文本

中文分词方法

分词算法设计中的几个基本原则: 1、颗粒度越大越好:用于进行语义分析的文本分词,要求分词结果的颗粒度越大,即单词的字数越多,所能表示的含义越确切,如:“公安局长”可以分为“公安局长”、“公安局长”、“公安局长”都算对,但是要用于语义分析,则“公安局长”的分词结果最好(当然前提是所使用的词典中有这个词) 2、切分结果中非词典词越少越好,单字字典词数越少越好,这里的“非词典词”就是不包含在词典中的单字,而“单字字典词”指的是可以独立运用的单字,如“的”、“了”、“和”、“你”、“我”、“他”。例如:“技术和服务”,可以分为“技术和服务”以及“技术和服务”,但“务”字无法独立成词(即词典中没有),但“和”字可以单独成词(词典中要包含),因此“技术和服务”有1个非词典词,而“技术和服务”有0个非词典词,因此选用后者。 3、总体词数越少越好,在相同字数的情况下,总词数越少,说明语义单元越少,那么相对的单个语义单元的权重会越大,因此准确性会越高。 下面详细说说正向最大匹配法、逆向最大匹配法和双向最大匹配法具体是如何进行的: 先说说什么是最大匹配法:最大匹配是指以词典为依据,取词典中最长单词为第一个次取字数量的扫描串,在词典中进行扫描(为提升扫描效率,还可以跟据字数多少设计多个字典,然后根据字数分别从不同字典中进行扫描)。例如:词典中最长词为“中华人民共和国”共7个汉字,则最大匹配起始字数为7个汉字。然后逐字递减,在对应的词典中进行查找。 下面以“我们在野生动物园玩”详细说明一下这几种匹配方法: 1、正向最大匹配法: 正向即从前往后取词,从7->1,每次减一个字,直到词典命中或剩下1个单字。 第1次:“我们在野生动物”,扫描7字词典,无

关于百度中文分词系统研究

关于百度中文分词系统研究

所谓分词就是把字与字连在一起的汉语句子分成若干个相互独立、完整、正确的单词。词是最小的、能独立活动的、有意义的语言成分。计算机的所有语言知识都来自机器词典(给出词的各项信息) 、句法规则(以词类的各种组合方式来描述词的聚合现象) 以及有关词和句子的语义、语境、语用知识库。中文信息处理系统只要涉及句法、语义(如检索、翻译、文摘、校对等应用) ,就需要以词为基本单位。当汉字由句转化为词之后,才能使得句法分析、语句理解、自动文摘、自动分类和机器翻译等文本处理具有可行性。可以说,分词是机器语言学的基础。 分词准确性对搜索引擎来说十分重要,但如果分词速度太慢,即使准确性再高,对于搜索引擎来说也是不可用的,因为搜索引擎需要处理数以亿计的网页, 如果分词耗用的时间过长,会严重影响搜索引擎内容更新的速度。因此对于搜索引擎来说,分词的准确性和速度,二者都需要达到很高的要求。 分词算法的三种主要类型 现有的分词算法可分为三大类:基于字符串匹配的分词方法、基于理解的分词方法和基于统计的分词方法。 》基于字符串匹配的分词方法。 这种方法又叫做机械分词方法,它是按照一定的策略将待分析的汉字串与一个“充分大的”机器词典中的词条进行匹配,若在词典中找到某个字符串,则匹配成功 (识别出一个词) 。按照扫描方向的不同,串匹配分词方法可以分为正向匹配和逆向匹配;按照不同长度优先匹配的情况,可以分为最大(最长) 匹配 和最小(最短) 匹配;按照是否与词性标注过程相结合,又可以分为单纯分词方 法和分词与标注相结合的一体化方法。常用的几种机械分词方法如下: 1) 正向最大匹配法(由左到右的方向) 。 通常简称为MM(Maximum Matching Method) 法。其基本思想为:设D 为词典,MAX 表示D 中的最大词长,STR 为待切分的字串。MM 法是每次从STR 中取长度为MAX 的子串与D 中的词进行匹配。若成功,则该子串为词,指针后移MAX 个汉字后继续匹配,否则子串逐次减一进行匹配。 2) 逆向最大匹配法(由右到左的方向) 。 通常简称为RMM ( Reverse Maximum MatchingMethod) 法。RMM 法的基本原理与MM 法相同,不同的是分词的扫描方向,它是从右至左取子串进行匹配。 3) 最少切分法(使每一句中切出的词数最小) 。 还可以将上述各种方法相互组合,例如,可以将正向最大匹配方法和逆向 最大匹配方法结合起来构成双向匹配法。由于汉语单字成词的特点,正向最小匹配和逆向最小匹配一般很少使用。一般说来,逆向匹配的切分精度略高于正向匹配,遇到的歧义现象也较少。统计结果表明,单纯使用正向最大匹配的错误率为1/169 ,单纯使用逆向最大匹配的错误率为1/ 245 。但这种精度还远远不能满足实际的需要。实际使用的分词系统,都是把机械分词作为一种初分手段,还需通过利用各种其它的语言信息来进一步提高切分的准确率。一种方法是改进

中文分词入门之最大匹配法

中文分词入门之最大匹配法 发表于2009年01月12号由52nlp 中文分词在中文信息处理中是最最基础的,无论机器翻译亦或信息检索还是其他相关应用,如果涉及中文,都离不开中文分词,因此中文分词具有极高的地位。中文分词入门最简单应该是最大匹配法了,当年师兄布置给我的第一个学习任务就是实现最大匹配法的分词算法(正向、逆向)。记得当时对自己参考学习最有帮助的是北大詹卫东老师“中文信息处理基础”的课件和源程序,不过他实现的是mfc程序,词表存储在数据库里。自己实现时用纯c++实现,利用hash_map 存储词表。这里我介绍一下相关的知识和一个简单的程序示例,部分参考自詹老师的讲义。 正向最大匹配法算法如下所示: (注:以上最大匹配算法图来自于詹老师讲义) 逆向匹配法思想与正向一样,只是从右向左切分,这里举一个例子: 输入例句:S1=”计算语言学课程有意思” ; 定义:最大词长MaxLen = 5;S2= ” “;分隔符= “/”;

假设存在词表:…,计算语言学,课程,意思,…; 最大逆向匹配分词算法过程如下: (1)S2=”";S1不为空,从S1右边取出候选子串W=”课程有意思”; (2)查词表,W不在词表中,将W最左边一个字去掉,得到W=”程有意思”; (3)查词表,W不在词表中,将W最左边一个字去掉,得到W=”有意思”; (4)查词表,W不在词表中,将W最左边一个字去掉,得到W=”意思” (5)查词表,“意思”在词表中,将W加入到S2中,S2=” 意思/”,并将W从S1中去掉,此时S1=”计算语言学课程有”; (6)S1不为空,于是从S1左边取出候选子串W=”言学课程有”; (7)查词表,W不在词表中,将W最左边一个字去掉,得到W=”学课程有”; (8)查词表,W不在词表中,将W最左边一个字去掉,得到W=”课程有”; (9)查词表,W不在词表中,将W最左边一个字去掉,得到W=”程有”; (10)查词表,W不在词表中,将W最左边一个字去掉,得到W=”有”,这W是单字,将W 加入到S2中,S2=“ /有/意思”,并将W从S1中去掉,此时S1=”计算语言学课程”; (11)S1不为空,于是从S1左边取出候选子串W=”语言学课程”; (12)查词表,W不在词表中,将W最左边一个字去掉,得到W=”言学课程”; (13)查词表,W不在词表中,将W最左边一个字去掉,得到W=”学课程”; (14)查词表,W不在词表中,将W最左边一个字去掉,得到W=”课程”; (15)查词表,“意思”在词表中,将W加入到S2中,S2=“课程/ 有/ 意思/”,并将W从S1中去掉,此时S1=”计算语言学”; (16)S1不为空,于是从S1左边取出候选子串W=”计算语言学”; (17)查词表,“计算语言学”在词表中,将W加入到S2中,S2=“计算语言学/ 课程/ 有/ 意思/”,并将W从S1中去掉,此时S1=”"; (18)S1为空,输出S2作为分词结果,分词过程结束。 相应程序示例: 准备文件:建立一个词表文件wordlexicon,格式如下 计算语言学 课程 意思 输入文件:test,格式如下 计算语言学课程有意思 编译后执行如下:SegWord.exe test 输出分词结果文件:SegmentResult.txt 源代码如下: // Dictionary.h #include #include #include #include #include using namespace std; using namespace stdext;

搜索引擎中文分词原理与实现

搜索引擎中文分词原理与实现 因为中文文本中,词和词之间不像英文一样存在边界,所以中文分词是一个专业处理中文信息的搜索引擎首先面对的问题,需要靠程序来切分出词。 一、Lucene中的中文分词 Lucene在中处理中文的常用方法有三种,以“咬死猎人的狗”为例说明之:单字:【咬】【死】【猎】【人】【的】【狗】 二元覆盖:【咬死】【死猎】【猎人】【人的】【的狗】 分词:【咬】【死】【猎人】【的】【狗】 Lucene中的StandardTokenizer采用单子分词方式,CJKTokenizer采用二元覆盖方式。1、Lucene切分原理 Lucene中负责语言处理的部分在org.apache.lucene.analysis包,其中,TokenStream类用来进行基本的分词工作,Analyzer类是TokenStream的包装类,负责整个解析工作,Analyzer 类接收整段文本,解析出有意义的词语。 通常不需要直接调用分词的处理类analysis,而是由Lucene内存内部来调用,其中:(1)在索引阶段,调用addDocument(doc)时,Lucene内部使用Analyzer来处理每个需要索引的列,具体如下图: 图1 Lucene对索引文本的处理 IndexWriter index = new IndexWriter(indexDirectory, new CnAnalyzer(), //用于支持分词的分析器 !incremental, IndexWriter.MaxFieldLength.UNLIMITED); (2)在搜索阶段,调用QueryParser.parse(queryText)来解析查询串时,QueryParser 会调用Analyzer来拆分查询字符串,但是对于通配符等查询不会调用Analyzer。 Analyzer analyzer = new CnAnalyzer(); //支持中文的分词 QueryParser parser = new QueryParser(Version.LUCENE_CURRENT, "title", analyzer); 因为在索引和搜索阶段都调用了分词过程,索引和搜索的切分处理要尽量一致,所以分词效果改变后需要重建索引。 为了测试Lucene的切分效果,下面是直接调用Analysis的例子: Analyzer analyzer = new CnAnalyzer(); //创建一个中文分析器 TokenStream ts = analyzer.tokenStream("myfield", new StringReader("待切分文本")); //取得Token流 while (ts.incrementToken()) { //取得下一个词

中文分词实验报告

实验:中文分词实验 小组成员:黄婷苏亮肖方定山 一、实验目的: 1.实验目的 (1)了解并掌握基于匹配的分词方法、改进方法、分词效果的评价方法等 2.实验要求 (1)从互联网上查找并构建不低于10万词的词典,构建词典的存储结构;(2)选择实现一种机械分词方法(双向最大匹配、双向最小匹配、正向减字最大匹配法等),同时实现至少一种改进算法。 (3)在不低于1000个文本文件(可以使用附件提供的语料),每个文件大于1000字的文档中进行中文分词测试,记录并分析所选分词算法的准确率、召回率、F-值、分词速度。 二、实验方案: 1. 实验环境 系统:win10 软件平台:spyder 语言:python 2. 算法选择 (1)选择正向减字最大匹配法

(2)算法伪代码描述: 3. 实验步骤 ● 在网上查找语料和词典文本文件; ● 思考并编写代码构建词典存储结构;

●编写代码将语料分割为1500 个文本文件,每个文件的字数大于1000 字; ●编写分词代码; ●思考并编写代码将语料标注为可计算准确率的文本; ●对测试集和分词结果集进行合并; ●对分词结果进行统计,计算准确率,召回率及 F 值(正确率和召回率的调 和平均值); ●思考总结,分析结论。 4. 实验实施 实验过程: (1)语料来源:语料来自SIGHAN 的官方主页(https://www.sodocs.net/doc/3611301454.html,/ ),SIGHAN 是国际计算语言学会(ACL )中文语言处理小组的简称,其英文全称为“Special Interest Group for Chinese Language Processing of the Association for Computational Linguistics”,又可以理解为“SIG 汉“或“SIG 漢“。SIGHAN 为我们提供了一个非商业使用(non-commercial )的免费分词语料库获取途径。我下载的是Bakeoff 2005 的中文语料。有86925 行,2368390 个词语。语料形式:“没有孩子的世界是寂寞的,没有老人的世界是寒冷的。” (2)词典:词典用的是来自网络的有373 万多个词语的词典,采用的数据结构为python 的一种数据结构——集合。

中文分词工具介绍

中文分词工具介绍 分词工具支持语言原理分词速度文档 完整 性 词典及扩展性 NLPIR(ICTCLAS)中文、英文隐马尔科夫模型(HHMM)50万字/秒 (996Kb/s)详细支持单条导入用户 词典,也可以批量导 入用户词典 IKAnalyzer英文字母、数 字、中文词汇 等分词处理, 兼容韩文、日 文字符正向迭代最细粒度切分算法83 万字/秒 (1600Kb/s) 详细收录27万中文词汇, 支持用户词典扩展 定义、支持自定义停 止词 Paoding-Analysis中文100万字/秒 (1900Kb/s)极少支持不限制个数的 用户自定义词库 MMSeg4j 中文,包括一 些字符的处 理英文、俄 文、希腊、数 字用Chih-Hao Tsai 的 MMSeg 算法。MMSeg 算法 有两种分词方法:Simple和 Complex,都是基于正向最 大匹配。在complex基础上 实现了最多分词 (max-word) Complex 60万字/秒 (1200Kb/s) Simple 97万字/秒 1900Kb/s 极少使用sougou词库, 也可自定义覆盖 Imdict-Chinese-Analyzer中文、英文、 数字隐马尔科夫模型(HHMM)25万字/秒 (480Kb/s) 极少算法和语料库词典 来自于ictclas1.0项 目 JE-Analysis中文、英文、 数字 极少

中文分词工具分词测试 Paoding 运行时间:7s 分词数:160841 IK 运行时间:6s 分词数:149244 imdict运行时间: 12.426 s 分词数:235548 je运行时间: 7.834 s 分词数:220199 Mmseg4j运行时间: 9.612 s 分词数为:200504

R语言中文分词+词云实例

R语言中文分词+词云实例程序 一、程序源码 #调入分词的库 library("rJava") library("Rwordseg") #调入绘制词云的库 library("RColorBrewer") library("wordcloud") #读入数据(特别注意,read.csv竟然可以读取txt的文本) myfile<-read.csv(file.choose(),header=FALSE) #预处理,这步可以将读入的文本转换为可以分词的字符,没有这步不能分词 myfile.res <- myfile[myfile!=" "] #装载分词词典(如果需要的话,我这里没有装载,下面有说明) #分词,并将分词结果转换为向量 myfile.words<- unlist(lapply(X = myfile.res,FUN = segmentCN)) #剔除URL等各种不需要的字符,还需要删除什么特殊的字符可以依样画葫芦在下面增加gsub的语句 myfile.words<- gsub(pattern="http:[a-zA-Z\\/\\.0-9]+","",myfile.words) myfile.words<- gsub("\n","",myfile.words) myfile.words<- gsub("","",myfile.words) #去掉停用词 data_stw=read.table(file=file.choose(),colClasses="character") stopwords_CN=c(NULL) for(i in 1:dim(data_stw)[1]){ stopwords_CN=c(stopwords_CN,data_stw[i,1]) } for(j in 1:length(stopwords_CN)){ myfile.words<- subset(myfile.words,myfile.words!=stopwords_CN[j]) } #过滤掉1个字的词 myfile.words<- subset(myfile.words, nchar(as.character(myfile.words))>1)

百度算法中的中文切词分词系统

百度作为中文搜索引擎地先驱,它地核心地位可以说在短时期是没有任何搜索引擎可以超越地,百度地卓越成就在于它对博大精深地中国文化地领悟和对中文分词地地超强功底.百度受欢迎地主要原因除了用户习惯地原因,在较大程度上得益于百度算法地精准率,搜索结果值更贴近用户地想获得地资讯.用一句广告词“正是我想要地”来形容百度最恰当不过了. 正因为百度对中国搜索引擎市场地统治地位,企业想在网上赚取大量地钞票,就不得不依靠百度.所以做搜索引擎地优化实际上就是百度优化.但百度强大地反优化能力和人工干预机制,使得众多地优化者以失败以失败告终.对于大多数优化者来说,百度成了洪水猛兽.果真如此吗?网络行销大师邓友成认为不尽然.只要是搜索引擎就离不开算法,任何算法都是有规律可循地.下面我们深入浅出地探讨一下百度地算法吧. 一. 搜索信息响应 当用户向百度提出搜索请求后百度会迅速根据用户地请求提供比较精准地结果值. . 比喻当用户提交“搜索引擎优化技术”这个查询文字串.百度会将文字串分割成若干子文字串,用空格,标点符等做细分处理.那么这个文字串就可以分成“搜索引擎,优化,技术”. . 如果用户提交地请求有重复地文字符,例如”优化技术优化”,百度会将重复地文字符看成一个.而字符地出现顺序就忽略. . 当用户提交请求中出现英文字符,百度一般会将英文字符当作一个整体来看,并和中文词分割开来,如果中文出现数字也是这样处理地. 百度通过切割、重组、归并、减负等手段对用户请求进行精准响应,使搜索结果符合用户地想法,以节省用户地查询时间,提高查询效率. 二. 中文核心分词 中文分词是百度算法地核心要素.按中文语法习惯,三个字(含三个字)以下地文字符是独立精准地词汇,没有重组地必要,所以百度对三个字(含三个字)以下地文字符不考虑细分.这也是百度核心算法地第一层,也是响应数量最多地部分.一般这些文字符更新地时间比较慢一些,一周或两周地时间.属于大更新地范畴. 四个字符地百度就会毫不客气地大卸十八块比如,网络工具这个文字串,当用户发出搜索请求后,会发现在搜索结果里面出现了红色地标记,已经把这个文字符分成了“网络,工具”.当然如果是四个字以上地文字串就更不用说了.会分成更多地分词. 三、字词匹配 大概了解了百度地分词原理后,我们要了解地一个重要方面就是字词地匹配问题.如果不知道字词地匹配,做优化就是空谈了. 最大匹配法

相关主题