搜档网
当前位置:搜档网 › 集合中参数问题的解答方法(部分答案)

集合中参数问题的解答方法(部分答案)

集合中参数问题的解答方法(部分答案)
集合中参数问题的解答方法(部分答案)

集合中参数问题的解答方法

集合中的参数问题主要包括:①集合与集合关系中的参数问题;②集合运算过程中的参数问题;每类问题又涉及到求参数的值和求参数的取值范围两种情况。那么在实际解答这类问题时,到底应该怎样展开思路,寻求解答方法呢?下面通过对典型例题的解析来回答这个问题。

【典例1】解答下列问题:

1、含有三个元素的集合可以表示为{a,

b a ,1},也可以表示为{2a ,a+b,0}. 求:20092010a b +的值。

2、设A={x|2x -3x+2=0},B={x|x+2>a },如果A ? B,求实数a 的取值范围;

3、已知集合A={x|0<ax+1≤5},B={x|-

12

<x ≤2}. ①若A ? B, 求实数a 的取值范围;

②若B ? A, 求实数a 的取值范围;

③A 、B 能否相等?若能求出实数a 的值;若不能说明理由。

4、已知集合A={x|a 2x -3x+2=0,a ∈R }.

①若A 是空集,求实数a 的取值范围;

②若A 中只有一个元素,求a 的值,并把这个元素求出来;

③若A 中至多有一个元素,求实数a 的取值 【解析】

1、【知识点】①集合相等的定义与性质;②集合元素的定义与特性;③参数值的求法;④代数式的值的意义与求法;

【解答思路】根据集合相等的定义与性质,结合结合元素的特性求出参数a ,b 的值,再把求得的值代入代数式通过计算得出结果;

【详细解答】Q {a,b a ,1}={2a ,a+b,0},0∈{a,b a ,1},a ≠0,∴b a

=0,?b=0,2a =1, ?a=±1,Q a ≠1,∴a=-1,∴20092010a b +=2009(1)-+20100=-1+0=-1。

2、【知识点】①集合的表示方法;②一元二次方程的定义与解法;③一元一次不等式的定义与解法;④数轴的定义与运用;⑤子集的定义与性质;

【解答思路】根据一元二次方程的定义与解法把集合A 用列举法表示出来,由一元一次不等式的定义与解法把集合B 用描述法表示出来,运用A B 结合数轴得到关于a 的不等式,求解不等式就可得出结果;

【详细解答】如图,Q A ?B ,∴a-2≤1,?a ≤3 0 1 2

∴当A ?B ,实数a 的取值范围是(-∞,3]。

3、【知识点】①集合的表示法;②一元一次不等式的定义与解法;③参数分类讨论的原则与方法;④子集的定义与性质;

【解答思路】根据一元一次不等式的定义与解法把集合A 用描述法表示出来,由A ?B 得

到关于参数a的不等式组,求解不等式组得出结果;

【详细解答】(1)Q{x|-1

a

<x≤

4

a

},a>0,①当a>0时,Q A={x|-

1

a

<x≤

4

a

},A ?B,

A= R,a=0,∴-1

a

≥-

1

2

,?a≥2;②当a=0时,Q A=R,

{x|4

a

≤x<-

1

a

}, a<0,

4

a

≤2,显然A ?B不成立;③当a<0时,

Q A={x|4

a

≤x<-

1

a

}, A?B,∴

4

a

>-

1

2

,?a<-8;∴综上所述,当A?B时,实数

-

1

a

≤2,a的取值范围是(- ∞,-8)U[2,+∞)。

(2)①当a>0时,Q A={x|-1

a

<x≤

4

a

},B?A,∴-

1

a

≤-

1

2

,0<a≤2;②当a=0时,

-

1

a

≥2,

4

a

≥2,Q A=R,显然B?A成立;

③当a<0时,Q A={x|4

a

≤x<-

1

a

}, B?A,

4

a

<-

1

2

,?-

1

2

≤a<0,∴综上所述,

当B?A时,实数a的取值范围是[-1

2

,2]。-

1

a

=-

1

2

(3)设A=B能成立,①当a>0时,Q A={x|-1

a

<x≤

4

a

},A=B,∴

4

a

=2,?a=2;②

当a=0时,Q A=R,显然A=B不成立;③当a<0时,Q A={x|4

a

≤x<-

1

a

}, A=B,∴

4 a =-

1

2

,??,∴综上所述,存在实数a=2,使A=B成立。

-1

a

=2,

4、【知识点】①集合的表示方法;②一元二次方程根的判别式的定义与性质;③空集的定义与性质;

【解答思路】根据空集的定义与性质,结合一元二次方程根的判别式,得到关于参数a的不等式,再求解不等式就可得出结果;

【详细解答】(1)Q集合A是空集,∴方程a2x-3x+2=0,a∈R没有实数根,①当a=0时,

a2x-3x+2=0,?-3x+2=0,?x=2

3

与题意不符合;②当a≠0时,??=9-8a<0,?a

>9

8

,∴综上所述,当集合A是空集时,实数a的取值范围是(

9

8

,+∞)。

(2)若集合A中只有一个元素,①当a=0时,a2x-3x+2=0,?-3x+2=0,?x=2

3

与题意

符合;②当a≠0时,??=9-8a=0,?a=9

8

,∴综上所述,当集合A中只有一个元素时,

实数a=0或a=9

8

(3)当集合A中至多有一个元素时,由(1),(2)可知,实数a的取值范围是[9

8

,+∞)

或{0}。

『思考问题1』

(1)【典例1】是集合与集合关系问题中的参数问题,解答这类问题需要理解子集,真子集,集合相等的定义,掌握子集,真子集和集合相等的性质;

(2)注意空集的特殊性,在具体问题中,如果没有说明集合非空,则应该考虑空集的可能性,尤其是问题中涉及到A?B时,一定要注意分A=?和A≠?两种情况来考虑;

(3)对含有参数的集合问题,应该对参数的可能取值进行分类讨论,同时还应注意分类标准的确定,作到分类合理,不重复不遗漏。

[类型1]解答下列问题:

1、设a,b∈R,集合{1,a+b,a},集合{0,b

a

,b}表示同一集合,则b-a= 。

2、有三个元素的集合可以表示为{4

a

,2,2a},也可以表示为{a,2,4}。

求实数a的值;

3、设A={7,0,2a-2a+2},B={a-3,2a-2a+4,5},如果A=B,求实数a的值;

4、设A={x|2x-4x+3=0},B={x|x+2>a},如果A ? B,求实数a的取值范围;

5、设A={x|-1<x<3},B={x||x|>a},如果A ? B,求实数a的取值范围.

【典例2】解答下列问题:

1、设A是自然数集的一个非空子集,如果k∈A,2k?A,?A,那么k是A的一个“酷元”。给定S={x∈N|y=lg(36-2x)},设M?S,且集合M中的两个元素都是“酷元”,那么

这样的集合M有()((2013湖北重点中学联考)

A 3个

B 4个

C 5个

D 6个

2、已知集合A={x|2x+(a+2)x+1=0},B=R+为正实数的集合,如果A∩B= ?,求实数a 的取值范围;

3、已知集合A={(x,y)|2x+mx-y+2=0}, B={(x,y)|x-y+1=0,0≤x≤2},如果A∩B ≠?,求实数m的取值范围.

4、设集合A={x|2x-3x+2=0},B={x|2x+2(a+1)x+(2a-5)=0}.

(1)若A∩B={2},求实数a的值;

(2)若A∪B=A,求实数a的取值范围;

(3)若U=R,A∩(

U

C B)=A,求实数a的取值范围。

【解析】

1、【知识点】①子集的定义与性质;②新定义的理解与应用;

【解答思路】根据“酷元”的定义与性质,确定集合S中的“酷元”,再由集合M的结构特

征求出满足条件的集合M 的个数;

【详细解答】Q S={x ∈N|y=lg(36-2x )}={0,1,2,3,4,5},显然0,1不是“酷元”,3,5是“酷元”,2,4不能同时属于集合M ,∴满足条件的集合M 可能有{2,3},{2,5},{4,3},{4,5},{3,5}共5个,?C 正确,∴选C 。

2、【知识点】①集合的表示方法;②空集的定义与性质;③交集的定义与性质;④一元二次方程根的判别式的定义与性质;

【解答思路】根据A ∩B=?,可分A=? 和A ≠?两种情况来考虑,①当A=?时,?2x +(a+2)x+1=0,得到关于参数a 的不等式,求解不等式可得出a 的取值范围;②当A ≠?时,?2x +(a+2)x+1=0没有正实数根,得到关于参数a 的不等式组,求解不等式组可得出a 的取值范围,两种情况的并集就是所求的结果;

【详细解答】Q ①当A=?时,显然A ∩B=?成立,∴方程2x +(a+2)x+1=0没有实数根,??=2(2)a +-4=a(a+4)<0,?-4<a <0;②当A ≠?时,Q A ∩B=?,∴方程2x +(a+2)x+1=0没有正实数根,??=2(2)a +-4=a(a+4) ≥0,?a ≥0,∴综上实数,当 a+2>0,A ∩B=?时,实数a 的取值范围是(-4,+∞)。

3、【知识点】①集合的表示方法;②交集的定义与性质;③补集的定义与性质;④参数分类讨论的基本原则与基本方法;

【解答思路】根据A ∩B=?,可知曲线2x +mx-y+2=0与直线x-y+1=0没有公共点,结合图形得到2x +mx-y+2=0,没有实数解,?方程2x +(m-1)x+1=0没有实数根,??=2(1)m --4 x-y+1=0,=(m+1)(m-3)<0,求解这个不等式就可得出结果

【详细解答】Q A ∩B=?,∴曲线2x +mx-y+2=0与直线x-y+1=0没有公共点, ? 2x +mx-y+2=0,没有实数解,?方程2x +(m-1)x+1=0没有实数根,??=2(1)m --4

x-y+1=0,=(m+1)(m-3)<0,?-1<m <3,∴当A ∩B=?时,实数m 的取值范围是(-1,3).

4、【知识点】①集合的表示方法;②空集的定义与性质;③交集的定义与性质;④数形结合法的基本方法;

【解答思路】;(1)根据A ∩B={2},可知2∈B ,?4+4(a+1)+(2a -5)=0,解这个方程就可求出a 的值;(2)根据A ∪B=A ,可知B ?A ,①当B=?时,显然B ?A 成立,得到关于参数a 的不等式,求解这个不等式,可得出实数a 的取值范围;②当B ≠?时,由B ?A 可知,B={1}或B={2}或B={1,2},若B={1},?1+2(a+1)+(2

a -5)=0,解这个方程可得出a 的值;若B={2}由(1)可得出a 的值;若B={1,2},?2(a+1)=-3且2a -5=2,??,求出①,②的并集,就可得到实数a 的取值范围;(3)根据A ∩(U C B )=A ,得到U C B ?A ,

【详细解答】(1)Q A∩B={2},∴2 ∈B,?4+4(a+1)+(2a-5)=0,∴a=-1或a=-3,

(a+1)-4(2a-5)=8a+24<0,即a<-3时,显(2)Q A∪B=A,∴B?A,①当B=?,??=42

然A∪B=A成立;②当B={2}或B={1},即a=-3或a=-1或a=-1±时,A∪B=A成立;

③当A=B时,?B={1,2},?a>-3,??,∴综上所述,当A∪B=A时,实数a

-2(a+1)=1+2=3,的取值范围是a ≤-3或a=-1或

2

C B)

a-5=1?2=2,a=-1±(3)Q U=R,A∩(

U

=A,?A?(U C B),?1?B,2?B,①当B=?即a<-3时,显然成立,②当 B≠?时,

由B={2}或B={1}时,?a=-3或a=-1或a=-1±,∴综上所述,当U=R,A∩(U C B)

=A时,实数a的取值范围是(-∞,-3)∪(-3,∪(,-1)∪(-1,)

∪(,+∞)。

『思考问题2』

(1)【典例2】是集合运算中的参数问题,解决这类问题需要理解并集,交集,全集,补集的定义,掌握集合的三种基本运算:①集,②集,③集的基本方法;

(2)解决集合运算中参数问题的基本方法是:①确定集合元素的属性,它表示的是一个怎样的集合(定性),②结合问题的条件进行分析,实施解答(定量);

(3)在处理集合的问题中,如果集合是用描述法表示的,应该按如下步骤进行:①弄清集合元素的真正含义;②化简集合,化简后能够用列举法表示的集合应尽量用列举法表示;③如果集合与不等式的解集相关,则应借助于数轴来解答;④如果集合是直线或曲线上的点集,则应利用直线或曲线的图像来解答;若集合是列举法表示的,则应注意韦恩氏图的运用;(4)注意空集的特殊性,在具体问题中,如果没有说明集合非空,则应该考虑空集的可能性,尤其问题中涉及到A∩B=?时,一定要分A或B=?和A或B≠?两种情况来考虑;(5)对含有参变量的集合问题,应该对参变量的可能取值进行分类讨论,同时还应注意分类标准的确定,作到分类合理,不重复不遗漏。

[练习2]解答下列问题:

1、设集合A={x|-1<x<2},B={x|x<a},若A∩B=?,则实数a的取值范围是()

A -1<a<2

B a>2

C a ≥-1

D a>-1

2、集合A={0,a,2},B={1,2a},若A∪B={0,1,2,4,16},则实数a的值为()

A 0

B 1

C 2

D 4

3、已知集合A={x|2x-x-12≤0},B={x|2m-1<x<m+1},且A∩B=B,则实数m的取值范围是()

A [-1,2)

B [-1,3]

C [2,+∞)

D [-1,+∞)

4、已知集合A={x|2x-3x-10≤0},B={x|m+1≤x≤2m-1},若A∪B=A,求实数m的取值范围;

5、设全集U={1,2,3,4,5},A={x∈U|2x-5x+q=0},求q和U C A。

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

非参数统计题目及答案

1.人们在研究肺病患者的生理性质时发现,患者的肺活量与他早在儿童时期是否接受过某种治疗有关,观察3组病人,第一组早在儿童时期接受过肺部辐射,第二组接受过胸外科手术,第三组没有治疗过,现观察到其肺活量占其正常值的百分比如下: 这一经验是否可靠。 解: H 0:θ2≤θ1≤θ 3 H 1 :至少有一个不等式成立 可得到 N=15 由统计量H= ) 112 +N N (∑=K i i N R 1i 2 -3(N+1)=)(1151512+(32×6.4+29×5.8+59×11.8)-3×(15+1)=5.46 查表(5,5,5)在P(H ≥4.56)=0.100 P(H ≥5.66)=0.0509 即P (H ≥5.46)﹥0.05 故取α=0.05, P ﹥α ,故接受零假设即这一检验可靠。

2.关于生产计算机公司在一年中的生产力的改进(度量为从0到100)与它们在过去三年中在智力投资(度量为:低,中等,高)之间的关系的研究结果列在下表中: 值等等及你的结果。(利用Jonkheere-Terpstra 检验) 解: H 0:M 低=M 中=M 高 H 1:M 低﹤M 中﹤M 高 U 12=0+9+2+8+10+9+10+2+10+10+8+0.5+3=82.5 U 13=10×8=80 U 23=12+9+12+12+12+11+12+11=89 J= ∑≤j ij U i =82.5+80+89=251.5 大样本近似 Z= []72 )32()324 1 2 1i 22 2∑ ∑==+-+--k i i i k i n n N N n N J ()(~N (0,1) 求得 Z=3.956 Ф(3.956)=0.9451 取α=0.05 , P >α, 故接受原假设,认为智力投资对改进生产力有帮助。

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

非参数统计部分课后习题参考答案

课后习题参考答案 第一章p23-25 2、(2)有两组学生,第一组八名学生的成绩分别为x 1:100,99,99,100,99,100,99,99;第二组三名学生的成绩分别为x 2:75,87,60。我们对这两组数据作同样水平a=0.05的t检验(假设总体均值为u ):H 0:u=100 H 1:u<100。第一组数据的检验结果为:df=7,t 值为3.4157,单边p 值为0.0056,结论为“拒绝H 0:u=100。”(注意:该组均值为99.3750);第二组数据的检验结果为:df=2,t 值为3.3290,单边p值为0.0398;结论为“接受H 0:u=100。”(注意:该组均值为74.000)。你认为该问题的结论合理吗?说出你的理由,并提出该如何解决这一类问题。 答:这个结论不合理(6分)。因为,第一组数据的结论是由于p-值太小拒绝零假设,这时可能犯第一类错误的概率较小,且我们容易把握;而第二组数据虽不能拒绝零假设,但要做出“在水平a时,接受零假设”的说法时,还必须涉及到犯第二类错误的概率。(4分)然而,在实践中,犯第二类错误的概率多不易得到,这时说接受零假设就容易产生误导。实际上不能拒绝零假设的原因很多,可能是证据不足(样本数据太少),也可能是检验效率低,换一个更有效的检验之后就可以拒绝了,当然也可能是零假设本身就是对的。本题第二组数据明显是由于证据不足,所以解决的方法只有增大样本容量。(4分) 第三章p68-71 3、在某保险种类中,一次关于1998年的索赔数额(单位:元)的随机抽样为(按升幂排列): 4632,4728,5052,5064,5484,6972,7596,9480,14760,15012,18720,21240,22836,52788,67200。已知1997年的索赔数额的中位数为5064元。 (1)是否1998年索赔的中位数比前一年有所变化?能否用单边检验来回答这个问题?(4分) (2)利用符号检验来回答(1)的问题(利用精确的和正态近似两种方法)。(10分) (3)找出基于符号检验的95%的中位数的置信区间。(8分) 解:(1)1998年的索赔数额的中位数为9480元比1997年索赔数额的中位数5064元是有变化,但这只是从中位数的点估计值看。如果要从普遍意义上比较1998年与1997年的索赔数额是否有显著变化,还得进行假设检验,而且这个问题不能用单边检验来回答。(4分) (2)符号检验(5分) 设假设组:H 0:M =M 0=5064 H 1:M ≠M 0=5064 符号检验:因为n +=11,n-=3,所以k=min(n+,n-)=3 精确检验:二项分布b(14,0.5), ∑=-=3 0287 .0)2/1,14(n b ,双边p-值为0.0576,大于a=0.05, 所以在a水平下,样本数据还不足以拒绝零假设;但假若a=0.1,则样本数据可拒绝零假设。查二项分布表得a=0.05的临界值为(3,11),同样不足以拒绝零假设。 正态近似:(5分) np=14/2=7,npq=14/4=3.5 z=(3+0.5-7)/5.3≈-1.87>Z a/2=-1.96 仍是在a=0.05的水平上无法拒绝零假设。说明两年的中位数变化不大。 (3)中位数95%的置信区间:(5064,21240)(8分) 7、一个监听装置收到如下的信号:0,1,0,1,1,1,0,0,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,0,0,1,1,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,0,1,0,0,0,1,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0。能否说该信号是纯粹随机干扰?(10分)

王静龙《非参数统计分析》课后计算题参考标准答案

王静龙《非参数统计分析》课后习题计算题参考答案习题一 1. One Sample t-test for a Mea n Sample Statistics for x N Mea n Std. Dev. Std. Error 26 1.38 8.20 1.61 Hypothesis Test Null hypothesis: Mea n of x = 0 Alternative: Mea n of x A= 0 t Statistic Df Prob > t 0.861 25 0.3976 95 % Con fide nee In terval for the Mea n Lower Limit: -1.93 Upper Limit: 4.70 则接受原假设认为一样 习题二 1.描述性统计

习题二 1.1 S+=13 n 39 H o: me 6500 H〔:me 6500 PS 13 二BINOMDIST(13,39,0.5,1) =0.026625957 另外:在excel2010中有公式BINOM.INV(n,p,a)返回一个数值,它使得累计二项式分布的函数值大于或等于临界值a的最小整数 * 1 m n m inf m ■ 2 i 0 i BINO M」N V(39,0.5,0.05)=14 * n 1 * d n d=sup d : m 1 13 2 i 0 i S+13 d 13 以上两种都拒绝原假设,即中位数低于6500 1.2

n 1 inf n * * 1 m n m inf m :- 2 i o i BINOM.INV(40,0.5,1 -0.025)=26 d=n-c=40-26=14 x 14 5800 x 26 6400 me x 20 6200 2. S + =40 n 70 H 0: me 6500 H 1: me 6500 2P S 40 2*(1-BIN0MDIST(39,70,0.5,1)) =0.281978922 则接受原假设,即房价中位数是 6500 3.1 S + =1552 n 1552 527 2079 inf m inf m=BINOM.INV(2079,0.5,0.975)=1084 则拒绝原假设,即相信孩子会过得更好的人多 3.2 P 为认为生活更好的成年人的比例,则 H 。: p 出:p n 比较大,则用正态分布近似 P S 1552 1039.5-1552+0.5 、519.75 =5.33E-112 另外:S +=1552 n 1552 527 2079

西工大计算方法作业答案

参考答案 第一章 1 *1x =1.7; * 2x =1.73; *3x =1.732 。 2. 3. (1) ≤++)(* 3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。 4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。 令3)1()1(1* 102 1 102211021)(-----?≤??=?= n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。 5. 答:(1)*x (0>x )的相对误差约是* x 的相对误差的1/2倍; (2)n x )(* 的相对误差约是* x 的相对误差的n 倍。 6. 根据******************** sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =* *****) ()()(tgc c e b b e a a e ++ 注意当20* π < >c tgc ,即1 *1 * )() (--

7.设20= y ,41.1*0 =y ,δ=?≤--2* 00102 1y y 由 δ1* 001*111010--≤-=-y y y y , δ2*111*221010--≤-=-y y y y M δ10*991*10101010--≤-=-y y y y 即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小10 10-倍。而110 10 <<-δ,故计算过程稳定。 8. 变形后的表达式为: (1))1ln(2--x x =)1ln(2-+-x x (2)arctgx x arctg -+)1(=) 1(11 ++x x arctg (3) 1ln )1ln()1(ln 1 --++=? +N N N N dx x N N =ΛΛ+-+- +3 2413121)1ln(N N N N 1ln )11ln()1(-++ +=N N N N =1)1ln()1 1ln(-+++N N N (4)x x sin cos 1-=x x cos 1sin +=2x tg

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

2020年奥鹏吉大网络教育《计算方法》大作业解答

2020年奥鹏吉大网络教育《计算方法》大作业解答 (说明:前面是题目,后面几页是答案完整解答部分,注意的顺序。) 一、解线性方程 用矩阵的LU分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用高斯消去法求解线性方程组 用高斯消去法求解线性方程组 用主元素消元法求解线性方程组 用高斯消去法求解线性方程组 利用Doolittle分解法解方程组Ax=b,即解方程组 1、用矩阵的LU分解算法求解线性方程组 X1+2X2+3X3 = 0 2X1+2X2+8X3 = -4 -3X1-10X2-2X3 = -11 2、用矩阵的Doolittle分解算法求解线性方程组 X1+2X2+3X3 = 1 2X1– X2+9X3 = 0 -3X1+ 4X2+9X3 = 1 3、用矩阵的Doolittle分解算法求解线性方程组 2X1+X2+X3 = 4 6X1+4X2+5X3 =15 4X1+3X2+6X3 = 13 4、用高斯消去法求解线性方程组

2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 5、用无回代过程消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 6、用主元素消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 7、用高斯消去法求解线性方程组 123123123234 4272266 x x x x x x x x x -+=++=-++= 8、利用Doolittle 分解法解方程组Ax=b ,即解方程组 12341231521917334319174262113x x x x -? ????? ???? ??-??????=? ? ????--?????? --???? ??

数值计算方法试题集和答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。

西安交通大学计算方法B大作业

计算方法上机报告 姓名: 学号: 班级:

目录 题目一------------------------------------------------------------------------------------------ - 4 - 1.1题目内容 ---------------------------------------------------------------------------- - 4 - 1.2算法思想 ---------------------------------------------------------------------------- - 4 - 1.3Matlab源程序----------------------------------------------------------------------- - 5 - 1.4计算结果及总结 ------------------------------------------------------------------- - 5 - 题目二------------------------------------------------------------------------------------------ - 7 - 2.1题目内容 ---------------------------------------------------------------------------- - 7 - 2.2算法思想 ---------------------------------------------------------------------------- - 7 - 2.3 Matlab源程序---------------------------------------------------------------------- - 8 - 2.4计算结果及总结 ------------------------------------------------------------------- - 9 - 题目三----------------------------------------------------------------------------------------- - 11 - 3.1题目内容 --------------------------------------------------------------------------- - 11 - 3.2算法思想 --------------------------------------------------------------------------- - 11 - 3.3Matlab源程序---------------------------------------------------------------------- - 13 - 3.4计算结果及总结 ------------------------------------------------------------------ - 14 - 题目四----------------------------------------------------------------------------------------- - 15 - 4.1题目内容 --------------------------------------------------------------------------- - 15 - 4.2算法思想 --------------------------------------------------------------------------- - 15 - 4.3Matlab源程序---------------------------------------------------------------------- - 15 - 4.4计算结果及总结 ------------------------------------------------------------------ - 16 - 题目五----------------------------------------------------------------------------------------- - 18 -

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

计算方法大作业非线性方程求根的新方法

计算方法大作业 题目:非线性方程求根的新方法 班级:xxx 学号:xxx 姓名:xxx

非线性方程求根的新方法 一、问题引入 在计算和实际问题中经常遇到如下非线性问题的求解: F(x)=0 (1) 我们经常采用的方法是经典迭代法: 经典迭代方法 不动点迭代方法是一种应用广泛的方法,其加速方法较多,如Stiffensen加速方法的局部收敛阶(以下简称为收敛阶)为2阶;牛顿迭代方法的收敛阶亦为2阶,且与其相联系的一些方法如简化牛顿法、牛顿下山法、弦截法的收敛阶阶数介于1和2之间;而密勒法的收敛阶与牛顿法接近,但计算量较大且涉及零点的选择问题,同时收敛阶也不够理想。 因此本文介绍一种新的迭代方法 从代数角度看,牛顿法和密勒法分别是将f(x)在xk附近近似为一线性函数和二次抛物插值函数,一种很自然的想法就是能否利用Taylor展开,将f(x)在xk附近近似为其他的二次函数?答案是肯定的.其中的一种方法是将f(x)在Xk处展开3项,此时收敛阶应高于牛顿法,这正是本文的出发点. 二、算法推导 设函数f(x)在xk附近具有二阶连续导数,则可将f(x)在xk处进行二阶Taylor展开,方程(1) 可近似为如下二次方程: f(xk)+f’(xk)(x-xk)+2^(-1)f’’(xk)(x-xk)^2=0,(2) 即 2^(-1)f’’(xk)x^2+(f’(xk)-xkf’’(xk))x+2^(-1)f’’(xk)xk^2-xkf’(xk)+f(xk)=0(3) 利用求根公式可得 X=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(4) 其中±符号的选取视具体问题而定,从而可构造迭代公式 X k+1=xk-(f’’(xk))^(-1)(f’(xk))-sqrt((f’(xk)^2±2f’’(xk)f(xk)))(5) 确定了根号前正负号的迭代公式(5),可称为基于牛顿法和Taylor展开的方法,简记为BNT 方法. 为描述方便起见,以下将f(xk),f’(xk),f’’(xk)分别记为f,f’,f’’.首先,二次方程(3)对应于一条抛物曲线,其开口方向由f’’(xk),x∈U(xk)的符号确定,其中U(xk)为xk的某邻域,其顶点为 P(xk-(f’’)^(-1)f’,fk-(2f’’)^(-1)(f’)^2).为使(5)式唯一确定x k+1,须讨论根式前正负号的取舍问题.下面从该方法的几何意义分析(5)式中正负号的取舍. 1)当f(xk)=o时,z。即为所求的根. 2)当f(xk)>O时,根据y=f(x)的如下4种不同情形(见图1)确定(5)式中根号前的符号. (a)当f’’(xk)o时,“±”取为“一”;(b)当f’’(xk)o,f(xk)>o时,“±”取为“一”;(d)当f’’(xk)>o,f(xk)o时,“±”取为“+”;(b)当 f’’(xk)o,f(xk)>o时,“±”取为“+”;(d)当f’’(xk)>o,f(xk)

非参数统计检验方法的应用

论文投稿领域:数理经济与计量经济学 非参数统计检验方法的应用 阮曙芬1 程娇翼 1 张振中2 (1.中国地质大学数理学院,武汉 430074;2.中南大学数学科学与计算学院,长沙 410075) 摘要:本文对非参数统计中常用的三种假设检验方法进行了简单的介绍。运用 Kruskal-Wallis 检验方法对2002年前三季度的上海股市综合指数收益率数据进行了周末效应的检验,结果表明2002年上海股市综合指数收益率不具有周末效应。 关键字:符号检验;Wilcoxon 秩和检验;Kruskal-Wallis 检验 1引言 非参数统计是统计分析的重要组成部分。非参数假设检验是在总体分布未知或者总体分布不满足参数统计对总体所做的假定的时候,分析样本特点,寻找相应的非参数检验统计量。本文就是以此为出发点,介绍了非参数统计中假设检验常用的几个检验方法:符号检验、Wilcoxon 秩和检验和Kruskal-Wallis 检验,然后结合具体的问题和数据,在统计软件SAS 中作相应的非参数检验。 2非参数假设检验介绍 2.1 配对样本的符号检验 符号检验是根据正、负符号进行假设检验的方法。这种检验方法用于配对设计数值变量资料的假设检验,常常是差值不服从正态分布或者总体分布未知的情况下不能用t 检验的时候使用。其原理是对差值进行编制并冠以符号,然后对正负秩和进行比较检验。 设随机变量12,,...,n X X X 相互独立同分布,分布为()F x ,()F x 在0x =连续。假设检验问题 2.2 两独立样本的Wilcoxon 秩和检验 Wilcoxon 秩和检验的理论背景如下:有两个总体,一个总体的样本为12,,...,n X X X ,相互独立同分布,分布为()F x ;另一个样本为12,,...,n Y Y Y ,相互独立同分布,分布为()G x ,()F x , ()G x 连续。问随机变量Y 是否随机大于随机变量X ,即检验

工程计算方法及软件应用--本科生考查大作业

工程计算方法与软件应用 本科生大作业 考核方式:考查(成绩按各软件的课外作业成绩综合给出)。 各软件讲完后1~2星期内上交作业。 一、CAD/CAE软件作业(每个学生完成下列任意一题) 题目一: 一端固定支撑,一端集中力的梁,横截面为10x10cm,长为150cm,受集中载荷作用,P=50N。弹性模量E=70GPa,泊松比r=0.2。用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 (1)二维;(2)三维 图1梁受力简图

题目二: 图中所示为一个连接件,一端焊接到设备母体上,一端在圆柱销子作用下的圆孔,圆孔下半周受到30 kN的均布载荷作用,用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 图2 连接件受力简图 题目三: 如图3所示为一薄壁圆筒,在圆筒中心受集中力F作用,对此进行受力分析,并给出应力、位移云图,并求A、B两点位移。 圆筒几何参数:长度L=0.2m;半径R=0.05m壁厚t=2.5mm。 材料参数:弹性模量E=120Gpa;泊松比0.3 载荷:F=1.5kN。

图3薄壁管受力简图 题目四: 如图4所示为一燃气输送管道截面及受力见图,试分析管道在内部压力作用下的应力场。 几何参数:外径0.6m,内径0.4m,壁厚0.2m 材料参数:弹性模量E=120Gpa;泊松比0.26 载荷P=1Mpa。 图4燃气管受力简图

题目五: 如图5为一三角桁架受力简图,途中各杆件通过铰链链接,杆件材料及几何参数见表1和表2所示,桁架受集中力F1=5kN、F2=2.5kN 作用,求桁架各点位移及反作用力。 图5 三角桁架受力简图 表1 杆件材料参数 表2 杆件几何参数

非参数统计

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述: 非参数统计是数理统计学的一个分支,它是针对参数统计而言的。所谓参数统计,简 单地说就是建立在总体具有明确分布形式,通常多为正态分布形式的假定基础之上,所建立 的统计理论和统计方法。而非参数统计是在不假定总体分布形式或在较弱条件下,例如总体 分布形式完全未知或分布形式是对称的,诸如这样一些宽泛条件下,尽量从数据本身获 得的信息,建立对总体相关统计特征进行分析和推断的理论、方法。 2.设计思路: 本课程是在已学数理统计基础上,通过非参数统计的学习,引导数学专业学生进一步增强对一般总体分析、推断的能力并加深对相关理论和方法的理解。 课程内容着重于基本知识点的理解,避免难度较大或较长定理的证明。目的是使学生对理论有一个基本的理解和在应用能力上的提高。课程内容包括以下四个方面: (1).非参数统计的基本概念:非参数统计方法的主要特点,次序统计量及其分布,U统计量, 秩统计量的概念,一些统计量的近似分布。 (2).非参数估计的方法:总体分位数的估计,对称中心的估计,位置差的估计。 (3).非参数检验的方法:总体p分位数的检验,总体均值检验,两样本的比较,随机性与 独立性检验,多总体的比较。 - 1 -

(4).总体分布类型的估计与检验:分布函数的估计与检验,概率密度估计。 3. 课程与其他课程的关系: 先修课程:《概率论》,《数理统计》,《多元统计分析》;并行课程:《应用回归分析》;后置课程:《统计软件》。 非参数统计是应用数学专业、信息与计算科学专业的选修课程,但对于今后从事统计研究和统计应用工作的学生来讲可以作为专业必修课学习。 二、课程目标 非参数统计具有应用性广,稳健性好等特点。通过本课程学习,要求学生了解或理解非参数统计的一些基本理论和方法,注重利用理论和方法、借助计算机解决问题的能力。开课学期结束时,要求学生能够做到: (1)理解非参数统计方法的主要特点及与参数统计方法的区别。掌握次序统计量及其分布;理解并掌握U统计量秩统计量的概念;理解一些常用统计量的近似分布。重点是次序统计量及其分布; U统计量构造,秩统计量; (2)掌握总体分位数估计、对称中心的估计、位置差估计的方法。 (3)理解各种检验的基本思想,掌握检验的一般步骤,掌握检验统计及其拒绝域。难点在于检验统计量的选取及概率分布。 (4)理解分布函数估计及检验的基步骤和过程。 (5)为更深入学习非参数统计学理论打下初步的基础。也为学习专业统计软件的作好准备。 三、学习要求 要完成所有的课程任务,学生必须: (1)按时上课,认真听讲,认真完成作业。其中有一些作业需要学生自编程序用机器完成。(2)按时完成并按时提交书面形式的作业。延期提交作业需要得到任课教师的许可。 (3)完成一定量的阅读文献和背景资料,可以以小组的形式讨论学习,促进同学间的心得交 - 1 -

西交计算方法A上机大作业

计算方法A 上机大作业 1. 共轭梯度法求解线性方程组 算法原理:由定理3.4.1可知系数矩阵A 是对称正定矩阵的线性方程组Ax=b 的解与求解二次函数1()2 T T f x x Ax b x =-极小点具有等价性,所以可以利用共轭梯度法求解1()2 T T f x x Ax b x = -的极小点来达到求解Ax=b 的目的。 共轭梯度法在形式上具有迭代法的特征,在给定初始值情况下,根据迭代公式: (1)()()k k k k x x d α+=+ 产生的迭代序列(1)(2)(3)x x x ,,,... 在无舍入误差假定下,最多经过n 次迭代,就可求得()f x 的最小值,也就是方程Ax=b 的解。 首先导出最佳步长k α的计算式。 假设迭代点()k x 和搜索方向()k d 已经给定,便可以通过()()()() k k f x d φαα=+的极小化 ()()min ()()k k f x d φαα=+ 来求得,根据多元复合函数的求导法则得: ()()()'()()k k T k f x d d φαα=?+ 令'()0φα=,得到: ()() ()()k T k k k T k r d d Ad α=,其中()()k k r b Ax =- 然后确定搜索方向()k d 。给定初始向量(0)x 后,由于负梯度方向是函数下降最快的方向,故第一次迭代取搜索方向(0) (0)(0)(0)()d r f x b Ax ==-?=-。令 (1)(0)00x x d α=+ 其中(0)(0)0(0)(0) T T r d d Ad α=。第二次迭代时,从(1) x 出发的搜索方向不再取(1)r ,而是选取(1) (1)(0)0d r d β=+,使得(1)d 与(0)d 是关于矩阵A 的共轭向量,由此可 求得参数0β:

相关主题