搜档网
当前位置:搜档网 › 数控车床上快速车削蜗杆的方法

数控车床上快速车削蜗杆的方法

数控车床上快速车削蜗杆的方法
数控车床上快速车削蜗杆的方法

在数控车床上快速车削蜗杆的方法在数控车床上

快速车削蜗杆的方法

摘要:在数控车床上车削较大导程的蜗杆、梯形螺纹和锯齿螺纹,由于工件的齿形深,需要切除的毛坯余量多,一般是选择较低的切削速度和高速钢成形刀,使用G32和G76等指令车削,加工精度特别是表面粗糙度很难达到图纸要求,加工难度较大。针对出现的加工精度低、生产效率低等特点,说明如何有效地发挥数控车床的高精度,高速度、定位精度高、生产效率高的优势。我们以沈阳CAK3675v华中数控系统的车床来论述快速车削蜗杆的方法。如图1

关键词:蜗杆数控车床成形刀硬质合金宏程序

蜗杆和大导程螺纹车削的进刀方法有多种,如直进法、左右切削法、斜进法和切槽法等。以前车削蜗杆等大导程零件的方法是:选用较低主轴转速(数控车床最低速为100转/分时转动无力)和高速钢成形车刀,车削蜗杆时的生产效率低。为解决上述问题,我认为应从

刀具材料、几何形状及角度和车削方法来谈谈快速车削蜗杆和大导程螺纹的方法。

一、突破传统选择刀具的习惯,合理选择车削蜗杆的刀具角度,使刀具的刀尖角小于齿形角

车削蜗杆刀具的刀尖角如果等于蜗杆的齿形角。这种刀具在车削时两侧刀刃与工件侧面容易发生摩擦,甚至三个刀刃同时参加切削,易产生较大的切削力而损坏刀具。如果选择车刀的刀尖角35 小于蜗杆的齿形角40 ,(如图2)这种车刀在车削时,可防止三个刀刃同时参加切削,减少了摩擦、切削力,能很好地避免“闷车”、“扎刀”和打刀的情况发生。

二、在数控车床上使用硬质合金车刀高转速车削蜗杆成为现实

以前,车削加工蜗杆和大导程螺纹,只能用高速钢车刀低速车削加工,生产效率非常低。如果将车刀的刀尖角磨小,使车刀的刀尖角35 小于蜗杆的齿形角40 ,可避免三个刀刃同时参加切削,切削刀显剧下降,这时可使用较高的切削速度和硬质合金车刀对蜗杆进行车削。当工件直径、导程越大时,可获得的线速度越高,加工出的工件表面质量越好,而且生产效率明显提高。彻底解决在数控车床不能用硬质合金刀具车削蜗杆和大导程螺纹零件。(只要数控车床能承受,尽可能选择较高的线速度,在车削模数Ms=4时,选用350转/分钟。如图3)

图2 刀尖角35 小于齿形角40 图3 硬质合金车刀

三、利用数控车床的精度高、定位准,用车削斜面的方法代替成形刀车削蜗杆,能保证蜗杆的齿形角

如果蜗杆车刀的刀尖角直接决定被加工螺纹牙形角的大小,这显然是用成形刀来车削蜗杆。当使用成形刀车削较大导程蜗杆工件时,有可能整过刀刃甚至是三个刀刃同时参加切削,切削力陡增。由于数控车床在低转速转动时无力,用成形刀在数控车床上车削蜗杆或大导程螺纹会出现“闷车”和“扎刀”。为解决以上问题,可用左右分层车削斜面的方法取代成形刀法来车削蜗杆和大导程螺纹,可彻底避免在车削中经常出现三个刀刃同时参加切削而导致切削力增大、排屑不畅、“闷车”和“扎刀”等现象。(车削斜面的方法是:车螺纹时,车刀在第一次往复车削后,刀尖在通过轴线剖面的牙侧上车削出了A 点,经过多次往复循环车削,刀尖在通过轴线剖面的牙侧上分别车削出了B、C、D、E、F……N个点,将ACEN和BDF等多个点分别连接起来成为两条倾斜的直线,形成了蜗杆两侧的齿面和齿形角。)如图4

图4 蜗杆齿侧的形成

四、使用宏程序能满足加工加工要求

粗车如图1模数Ms=4的蜗杆,大约只需10分钟左右。粗车蜗杆的加工宏程序如下:

%0001

T0303

M03S350F100

#1=8.8 (蜗杆全齿高)

#2=2.788 (齿根槽宽W=2.788mm)

#3=2.4 (刀头宽t=2.4mm)

WHLIE #1GE0

#4=#1*2+30.4 (计算X轴尺寸。齿根圆为30.4mm)

#5=#1*TAN[20*PI/180]*2+#2 (计算Z轴尺寸)

WHLIE #5GE#3

G00 X50 Z8 M08 (循环起点)

G00 Z[8+[#5-#3]/2] (Z轴向右边移动)

G82 X[#4] Z-87 F12.56 (车蜗杆)

G00 Z[8-[#5-#3]/2] (Z轴向右边移动)

G82 X[#4] Z-87 F12.56 (车蜗杆)

#5=#5-#3 (每次循环的切削宽度2.3mm)ENDW

#1=#1-0.25 (每次循环的切削深度0.25mm)ENDW

G0X150Z8M09

M30

精车时必须修改粗车的宏程序如下:

1、测量粗车后的法向齿厚Sn/Cos20 =Sx轴向齿厚。

2、将宏程序的程序段#2=2.788

修改为#2=2.788+ Sx/2(轴向齿厚/2)

3、将宏程序的程序段#1=#1-0.25

修改为#1=#1-0.10

4、将宏程序的WHLIE #5GE#3、#5=#5-#3、ENDW删除。

5、将修改后的宏程序重新调用加工一次,精车蜗杆大约只需10分钟左右。

修改后,精车蜗杆宏程序如下:

%0001

T0303

M03S350F100

#1=8.8 (蜗杆全齿高)

#2=2.788+ Sx/2 (齿根槽宽2.788+轴向齿厚Sx/2)#3=2.4 (刀头宽t=2.4mm)

WHLIE #1GE0

#4=#1*2+30.4 (计算X轴尺寸。齿根圆为30.4mm)#5=#1*TAN[20*PI/180]*2+#2 (计算Z轴尺寸)

G00 X50 Z8 M08 (循环起点)

G00 Z[8+[#5-#3]/2] (Z轴向右边移动)

G82 X[#4] Z-87 F12.56 (车蜗杆)

G00 Z[8-[#5-#3]/2] (Z轴向右边移动)

G82 X[#4] Z-87 F12.56 (车蜗杆)

#1=#1-0.1 (每次循环的切削深度0.1mm)ENDW

G0X150Z8M09

M30

五、结束语

在数控车床上快速车削蜗杆和大导程螺纹的方法有三个特点:一是摆脱了在普通车床上车削蜗杆要求工人有较高的操作技能和技巧。二是解决了数控车床不能车削大导程的蜗杆和螺纹。三是充分利用了数控车床的精度高、定位准的特点,突破了传统的选择蜗杆车刀的习惯,将刀具的刀尖角选得小于齿形角,车削时防止了三个刀刃同时参

加切削,排屑顺利,减小了切削力,使用硬质合金车刀,高速切削蜗杆和大导程螺纹成为现实(在数控车床上加工较大直径和较大导程的蜗杆优势更大)。粗车和精车如图1的蜗杆大约需要20分钟左右的时间,生产效率有了较大的提高,是普通车床的10倍左右。

在数控车床上车削蜗杆和大导程螺纹注意三点:一是要求有编辑和修改宏程序、准备车刀和安装工件的能力。二是用硬质合金车刀车削梯形螺纹,不能选用过高的主轴转速,应考虑车床的承受能力。如车削模数Ms=4的蜗杆,主轴转速可选350转/分左右,否则,会由于大滑板换向太快而影响车床丝杆和螺母的精度。三是如果被切削的工件直径较小,车削时的线速度较低,车削出齿侧的表面粗糙度只能达到Ra3.2左右。当车削较小直径的工件时,可在数控车床上粗车,留下较小的精车余量,然后选用高速钢车刀低速精车来解决工件的表面粗糙度。

三头蜗杆车削技术

利用普通车床加工多头蜗杆,有其一定的技术难度,现以三头蜗杆的车削加工为例,说明车削加工技术特点。三头蜗杆的零件图如图1所示,轴向模数为3mm,材料为45钢。在车削时,由于齿形深、切削面大、导程角大、车刀走刀速度快,增加了切削难度。 一、三头蜗杆结构分析 1.分线精度高 图1所示的三头蜗杆,在车削时要对蜗杆进行分线,如果分线出现误差,使车的蜗杆周节不相等,则会直接影响蜗杆与涡轮的啮合精度,增加不必要的磨损,降低使用寿命。 2.齿槽深 由于全齿高h=2.2mm,m=2.2×3=6.6mm,所以车削时要求车刀反复单边多次插入6.6mm,容易在车削中“扎刀”,因此,对刀具的刚性和强度、韧性有较高的要求。 3.导程大、刀具强度低 由tanγ=l/πda=(3.14×3×3)/(3.14×4×36),可得γ=14°。因此刀具顺走刀方向的后角=14°+3°=17°,导致刀具强度急剧降低。 4.刀具速度快 图1所示的蜗杆导程l=zmπ=28.275mm,蜗杆长度仅为60mm,刀具走刀速度快,极易造成车刀与卡盘和尾座相撞。 5.切屑排出困难 由于导程大、齿槽深,在加工时又受导程角的影响,螺纹的待加工表面旋转时挡住了切屑,使切屑排出困难。 二、刀具材料和刀具角度选取原则 1.刀具材料选取原则 2.刀具角度选取原则 为了提高蜗杆的加工质量,车削时应采用粗车和精车两阶段,采用4把刀加工,即蜗杆粗车刀、齿根槽精车刀、左及右两侧面精车刀各一把。 (1)蜗杆粗车刀(右旋),如图2所示。 因此,按下列原则选择蜗杆粗车刀:①车刀左右切削刃之间的夹角要大于齿形角,主要是为了控制精车余量,因车削此蜗杆的齿形角为40º,所以车刀左右切削刃之间的夹角可选择40º30′。 ②切削钢件时,应磨有10º~15º的径向前角。③径向后角应为6º~8º。④进给方向的后角为(3º~5º)+γ,背着进给方向后角为(3º~5º)-γ,因为此蜗杆的导程角为14°,所以进给方向的后角可取17°~19°,背着进给方向的后角可取-12°~-9°。⑤为了便于左右切削,并留有精加工余量,刀头宽度应小于齿根槽宽。⑥刀尖适当倒圆。 (2)齿根槽精车刀,如图3所示。 按下列原则选择齿根槽精车刀:①车刀的刀头宽度与齿根槽宽度必须相等。②为了避免刀具刮伤已车好的表面,左右切削刃之间的夹角要小于40°,可取39°左右。 (3)左右两侧刃分别精车刀(右侧刃),如图4所示。 按下列原则选择精车刀(右侧刃):①车刀左侧刃与刀柄中心线夹角等于齿形半角,车刀的右侧刃不参与切削,又为了避免刀刃与齿面接触,车刀右侧刃与刀柄中心线夹角可小于齿形半角。切削刃的直线度要好,表面粗糙度值要小。②为了保证齿形角的正确,一般径向前角取0º~4º。③为了保证切削顺利,都应磨有较大纵向前角(γ0=15º~20º)。 左侧刃精车刀的刀具角度与右侧刃相似。特别指出的是:这种车刀的前端刀刃不能进行

数控车床对刀原理及方法步骤实用详细

数控车床对刀原理及方法 步骤实用详细 Last revision date: 13 December 2020.

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。 所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下:

广数GSK980TDA车削蜗杆的通用宏程序

李正泽 (福建省宁德技师学院,福建 宁德 352100) 摘 要:在广数 G S K 980T D A 数控系统上加工蜗杆不仅要求正确的刀具几何形状和加工工艺,而且要用安全可靠的加工方法,以 下介绍一种蜗杆车削加工用宏程序的编制方法,对提高数控机床的使用性能有很大的帮助,对其它非标螺纹的编程也具有一定的 借鉴意义,该程序应用宏程序调用螺纹加工命令 G33 已达到分层斜进法加工蜗杆的目的,利用本程序加工蜗杆时只需输入相关 的参数即可加工不同参数的各种型号的蜗杆。更重要的是在蜗杆加工时既能够保证零件的加工精度,又可以减少刀具重磨和重 定位次数,缩短辅助时间,提高生产效率。 关键词:蜗杆;宏程序;数控车削;分层切削;数控编程 1 选择合理的蜗杆加工方法 在数控车床上加工蜗杆时,在三爪卡盘上采用一夹一顶装夹。为 了方便对刀和编制程序,将程序原点设定在工件的右侧端面中心上。 车削蜗杆时,为防止“扎刀”和“崩刃”,要求在加工蜗杆时,切削力不 能太大,刀具不能同时三面切削,故不能直接使用螺纹切削指令 G33 进行直进法车削蜗杆,在广数 G S K 980T D A 通过宏程序以达到分层斜 进加工蜗杆。蜗杆加工过程示意图如下 分头车螺纹槽, 从第一条螺纹槽到最后 计算分头度数 对每条螺纹槽分层车削 /W H I L E #20L E #2D O 1 /#23=360000×#20/#2 /W H I L E #21L E #13D O 2 分 层 车 削 /W H I L E #22×#6L E #11-#4-#21×2×T A N20×#5D O 3 时从右到左车车削 X 方向进刀量(相对坐标,直径值) /#24=-#21×2×#5 Z 方向进刀量(相对坐标) /#25=-#21×T A N15×#5-#6×#22 /G0 X#14 Z#7 /G0 X#3 /G1 U#24 W#25 F200 /G32 Z#8 J0 K0 F#10 Q#23 /G0 X#18 /Z#7 /#22=#22+1 /END3 X 方向进刀量(相对坐标,直径值) /#24=-#21×2×#5 Z 方向进刀量(相对坐 /#26=-#11+#4+#21×T A N20×#5-#9 2 刀具参数的确定 选用高速钢或者硬质合金刀具,根据车削蜗杆的条件,首先计算 出螺旋角以便能正确刃磨刀具的几何角度。所以选择左侧后角为> (15°~20°)-r ,右侧后角约为(3°-5°)+r °据长期的实践经验只使用一把 刀具不会发生“乱扣”现象,故粗精车共用一把刀。 3 编程原理 标) /G0 X#3 Z#7 /G1 U#24 W#26 F200 /G32 Z#8 J0 K0 F#10 Q#23 /G0 X#18 /Z#7 /#22=0 /#21=#21+1 /END2 /#21=1 /#22=0 /#20=#20+1 /END1 /G0X100 4 G S K 980T D A 车削蜗杆的通用宏程序 主轴停,测量蜗杆加工余量 完成蜗杆的粗车,并测量两齿侧的精车余量,并修 /M5 /M30 蜗杆法向模数 MX(>0) 蜗杆头数(>0) 蜗杆大径(>0) 蜗杆车刀刀尖宽度(>0) 分层切削时设定 X 方向的背吃刀量 (半径值 >0), #1= #2= #3= #4= #5= 改 #9 参数,重新执行程序并跳段精车两侧面。 蜗杆头数变量,=1~#3 #20=1 分头车螺纹槽,从第一条螺纹槽到最后 计算分头度数 X 方向进刀量(相对坐标,直径值) W H I L E #20L E #2D O 1 #23=360000×#20/#2 #24=-#13×2×#5 该值的设定需能保证 #13 参数为整数 分层切削时设定 Z 方向的进刀量 #25=-#13×T A N15×#5+0.1 Z 方向进刀量(相对坐标) G0 X#3 Z#7 G1 U#24 W#25 F200 #6= #7= #8= #9= 轴余量 (>0) 蜗杆 Z 轴起始坐标,须加上导入空程量,有正负号 蜗杆 Z 轴终点坐标,须加上导出空程量,有正负号 蜗杆精车余量(>0),即粗车后用三针测量所得的 Z 精车右边牙面 G32 Z#8 J0 K0 F#10 Q#23 G0 X#18 Z#7 蜗杆导程,=3.14159×M X 蜗杆牙槽顶部宽度,即 2.2986×M X 蜗杆牙型高度 计算 X 方向车削次数(整数) 起刀点直径 蜗杆头数变量,=1~#3 蜗杆 X 方向切削次数变量,=1~#25 蜗杆 Z 方向切削次数变量,=1~经过计 #10=3.1416×#1 #11=2.2986×#1 #12=2.2×#1 #13=#12/#5 #14=#3+2 #20=1 #21=1 #22=0 算,每层都不同 G97 M3 S 300 T0101 X 方向进刀量(相对坐标,直径值) #24=-#13×2×#5 #25=-#11+#13×T A N15×#5+#4-#9-0.1 Z 方向进刀量 (相对坐 标) G0 X#3 Z#7 G1 U#24 W#25 F200 G32 Z#8 J0 K0 F#10 Q#23 G0 X#18 Z#7 #20=#20+1 END1 精车左边牙面 依照不同参数的蜗杆设定主轴转速 蜗杆车刀(车刀角度=40) - - 2

数控机床常用对刀方法与机内对刀仪

数控机床常用对刀方法与机内对刀仪 基本的坐标关系一般来讲,通常使用的有两个坐标系:一个是机床坐标系,另外一个是工件坐标系。机床坐标系是机床固有的坐标系,机床坐标系的原点称为机床原点或机床零点。 为了计算和编程方便,我们需要在机床坐标系中建立工件坐标系。将工件上的某一点作为坐标系原点(也称为程序原点)建立坐标系,这个坐标系就是工件坐标系。日常工作中,我们要尽量使编程基准与设计、装配基准重合。 通常情况下,一台机床的机床坐标系是固定的,而工件坐标系可以根据加工工艺的实际需求分别建立若干个,例如由G54、G55等来选择不同的工件坐标系。 对刀的目的进行数控加工时,数控程序所走的路径均是主轴上刀具的刀尖的运动轨迹。刀具刀位点的运动轨迹自始至终需要在机床坐标系下进行精确控制,这是因为机床坐标系是机床唯一的基准。编程人员在进行程序编制时不可能知道各种规格刀具的具体尺寸,为了简化编程,这就需要在进行程序编制时采用统一的基准,然后在使用刀具进行加工时,将刀具准确的长度和半径尺寸相对于该基准进行相应的偏置,从而得到刀具刀尖的准确位置。所以对刀的目的就是确定刀具长度和半径值,从而在加工时确定刀尖在工件坐标系中的准确位置。 常用对刀方法机外对刀 刀具预调仪是一种可预先调整和测量刀尖长度、直径的测量仪器,该仪器若和数控机床组成DNC网络后,还可以将刀具长度、直径数据远程输入加工中心NC中的刀具参数中。此种方法的优点是预先将刀具在机床外校对好,装上机床即可以使用,大大节省辅助时间。但是主要缺点是测量结果为静态值,实际加工过程中不能实时地对刀具磨损或破损状态进行更新,并且不能实时对由机床热变形引起的刀具伸缩进行测量。 试切法对刀 试切法对刀就是在工件正式加工前,先由操作者以手动模式操作机床,对工件进行一个微小量的切削,操作者以眼观、耳听为判断依据,确定当前刀尖的位置,然后进行正式加工。该方法的优点是不需要额外投资添置工具设备,经济实惠。主要缺点是效率低,对操作者技术水平要求高,并且容易产生人为误差。在实际生产中,试切法还有许多衍生方法,如量块法、涂色法等。

数控车削加工基础

项目一数控车削加工基础 1.1学习目标 通过本课题学习,掌握数控车床的基本结构及其各轴移动方向对应的坐标轴;理解坐标系的确立原则,并结合加工前的对刀动作掌握机床上几种坐标系的联系与区别;掌握数控车床编程指令的基本格式; 1.2 知识点 本课题主要讲解以下知识点: 1、机床结构及其对应坐标轴; 2、坐标系的确立原则; 3、机床坐标系、编程坐标系、加工坐标系的联系与区别; 4、对刀的方法与原理; 5、数控车床编程格式的确定。 1.3 学习容 1.3.1机床结构及其坐标轴 如图1.1示,操作机床面板,了解各坐标轴位置规定并弄清楚正、负方向等。(可拓展讲解其他类型结构) 附记机床操作安全规程。

图1.1数控车床 1.3.2坐标系的确立原则 1.刀具相对于静止工件而运动的原则 这一原则使编程人员能在不知道是刀具移近工件还是工件移近刀具的情况下,就可依据零件图样,确定机床的加工过程。附记机床操作安全规程。2.标准坐标(机床坐标)系的规定 在数控机床上,机床的动作是由数控装置来控制的,为了确定机床上的成形运动和辅助运动,必须先确定机床上运动的方向和运动的距离,这就需要一个坐标系才能实现,这个坐标系就称为机床坐标系。标准的机床坐标系是一个右手笛卡尔直角坐标系,图1.2中规定了X轴为大拇指指向,Y轴为食指指向,Z轴为中指指向。这个坐标系的各个坐标轴与机床的主要导轨相平行,它与安装在机床上的主要直线导轨找正的工件相关。 3.运动的方向 数控机床的某一部件运动的正方向,是增大工件和刀具之间距离的方向。

图1.2 坐标系 根据实际情况,结合具体机床,依次确定Z、X、Y轴 1.3.3三点联系与区别 1.机床原点 机床原点是指在机床上设置的一个固定的点,即机床坐标系的原点。它在机床装配、调试时就已确定下来了,是数控机床进行加工运动的基准参考点。在数控车床上,一般取在卡盘端面与主轴中心线的交点处,如图1.3(a)中O1即为机床原点。

广州数控车床对刀操作要点

一、对刀:(切平端面为0点) 1、X 值比实际测量的直径值要小(X<实测值),输入“U-xxx ”(xxx 代表X 值与实测直径值的差值) 2、X 值比实际测量的直径值要大(X>实测值),输入“U+xxx ”(xxx 代表X 值与实测直径值的差值) 补完后按“位置”,看X 是不是等于实际的直径值。不是的话就是补错了,那就用回现在的(当前页面的)的X 值和实际直径值再比较,再补了。 3、Z 值是“-xxx ”(负数),就输入“W-xxx ” (xxx 代表Z 坐标的数字) 4、Z 值是“+xxx ”(正数),就输入“W+xxx ” (xxx 代表Z 坐标的数字) 补完后按“位置”,看Z 是不是等于0。不是的话就是补错了,那就用回现在的(当前页面的)的Z 值中的数字再补了。 5、如果X 或Z 的值跟实际的值一样就不用补了 注意!!改刀补:一定要在“序号”那个页面里改。按“上下翻页”可以切换的。 000 001 002 ….. 否则!重新对刀! 刚开机: 主轴转 MDI (录入方式)>>程序>> “ ”上下翻页 >> M03 >> 输入 >> S1000 >> 输入 >> 循环启动(绿色的) 对刀时换刀: MDI (录入方式) >>程序>> “ ”上下翻页 >> 输入 >>循环启动(绿 色的)

对刀时尽量保留多些用于对刀的面(是基准刀<1号刀>车出来的),不要都车掉,不然未对的刀(2、3、4号刀)对的就不是刚开始切的面了,误差就增大了。因为用于对刀的面是基准刀<1号刀>车出来的,所以第一把刀随便怎么切都行,只要不要车小于工件(滑轮)所需要的材料就行了,不然对刀的那段材料就废掉了。 对完刀后,车第一个工件后测量合格后再车第二个,直到合格为止。 如果测量不合格的在刀补上改,哪把刀车出来的就在哪把刀上面改,同时要注意分清楚是补“U”(X轴)还是“W”(Z轴),是正“+”还是负“-” 不合格的可能是以下4种情况: 1、车出来的外圆大了(即X轴方向),就输入“U-xxx”;车出来的外圆小了就输入“U+xxx” (xxx代表大了或小了的数值) 2、车出来的内孔大了(即X轴方向),就输入“U-xxx”;车出来的内孔小了就输入“U+xxx” (xxx代表大了或小了的数值) 3、车出来长度A尺寸小(短)了,同时B尺寸也小了,就是切断刀(2号刀)要往Z轴 的负方向补“W-xxx”;如果是A尺寸大(长)了,同时B尺寸也大了,就是切断刀(2号刀)要往Z轴的正方向补“W+xxx”(xxx代表长了或短了的数值) 4、其它情况的就是程序问题或刀磨损了。

弧面蜗杆加工专用数控机床设计

弧面蜗杆加工专用数控机床设计 目 录 设计说明书中英文摘要 第一章 弧面蜗杆蜗轮的特点 (1) 1-1 蜗杆蜗轮的形成、类型及其结构 (1) 1-2 蜗杆传动的特点及其应用 (3) 1-3 弧面蜗杆的加工 (4) 1-4 弧面蜗轮的加工 (5) 第二章 弧面蜗杆数控专用机床总体结构方案设计 (12) 2-1 加工机床运动的基本要求 (12) 2-2 弧面蜗杆数控专用机床总体方案 (13) 2-3 专用球面蜗杆数控车床的基本结构 (14) 第三章 弧面蜗杆数控专用机床的主传动系统设计 (15) 3-1 传动结构式和结构选择 (15) (1)主传动的确定 n max , n min 和公比Ф的确定 (15) (2)确定变速组和传动副数目 (15) (3)确定传动顺序方案 (16) 3-2 传动方案的拟订 (18) 3-3 齿轮传动部分的设计 (19) 3-4 轴的设计计算 (25) (1)轴Ⅱ的设计计算 (25) (2)轴Ⅶ的设计计算 (26) (3)主轴的设计计算 (32) 第四章 弧面蜗杆数控专用机床的进给系统设计 (32) 5-1 进给系统传动方案拟订 (32) 5-2 纵向进给系统的设计计算 (33) (1) 纵向进给系统的设计 (33) (2) 纵向进给系统的设计计算 (33) 5-3 横向进给系统的设计计算 (39) 5-4 齿轮传动间隙的消除 (46) 第五章 弧面蜗杆数控专用机床回转工作台设计 (52) 第六章 弧面蜗杆数控专用机床控制系统总体方案拟定 (54) 第七章 润滑油的选用 (54) 结 束 语

第一章 弧面蜗杆蜗轮的特点 1-1 蜗杆蜗轮的形成、类型及其结构 1、蜗轮蜗杆的形成 蜗杆蜗轮传动是由交错轴斜齿圆柱齿轮传动演变而来的。小齿轮的轮齿分度圆柱面上缠 绕一周以上,这样的小齿轮外形像一根螺杆,称为蜗杆。大齿轮称为蜗轮。为了改善啮合状 况,将蜗轮分度圆柱面的母线改为圆弧形,使之将蜗杆部分地包住,并用与蜗杆形状和参数 相同的滚刀范成加工蜗轮,这样齿廓间为线接触,可传递较大的动力。 蜗杆蜗轮传动的特征: 其一,它是一种特殊的交错轴斜齿轮传动,交错角为∑=90°,z1很少,一般z1=1~4; 其二,它具有螺旋传动的某些特点,蜗杆相当于螺杆,蜗轮相当于螺母,蜗轮部分地包容 蜗杆。 2、蜗杆传动的类型 杆形状的不同可分: ① 圆柱蜗杆传动-普通圆柱蜗杆(阿基米德蜗杆、渐开线蜗杆、法向直廓蜗杆、锥面包络 蜗杆)和圆弧蜗杆。 普通圆柱蜗杆

多头蜗杆车削

多头蜗杆的车削 周文伟 四川长征机床制造有限公司 【摘要】多头蜗杆的车削加工在机械制造领域中占有非常重要的位置。在车床上车削多头蜗杆是目前常用的加工方法之一。蜗杆的齿形与梯形螺纹很相似,齿形比较大,但由于蜗杆的齿深比较深,切削面积大,在切削时很难把握;多头蜗杆各螺旋线的分头也比较困难,如果误差大,就会使所车的多头螺纹螺距不等,降低螺杆使用寿命。针对以上情况,优化切削参数和切削工艺,限定误差在图纸要求的范围内,从而保证多头蜗杆的质量。 【关键词】多头蜗杆;螺旋升角;表面粗糙度;分头法;检测

一,多头蜗杆的定义 沿两条或两条以上,在轴向等距分布的螺旋线所形成的蜗杆叫多头蜗杆。多头蜗杆分为轴向直廓(阿基米德螺线)蜗杆和法向直廓蜗杆两种,前者的齿形在轴平面内为直线,在法平面内为曲线,后者的齿形与前者正好相反。多头蜗杆有着特殊的技术要求,加工过程中必须限制蜗杆螺纹轴向齿距偏差、轴向齿距的累积误差、蜗杆齿形误差应在公差之内,否则将影响蜗轮副的传动精度。蜗杆的螺纹齿面粗糙,将影响工作表面的耐磨性和使用寿命。下面从加工方面加以说明,以保证蜗杆的生产加工质量。 二.多头蜗杆的分头方法 车多头蜗杆,主要是解决分头方法。根据多头蜗杆形成原理,分头方法有轴向分头法和圆周分头法两类。 1.轴向分头法第一条螺旋槽车好后,把车刀沿着工件轴向方向移动一个齿距,再车第二条螺旋槽。 1.1小滑板刻度分头法即第一条螺旋槽车好后,利用小滑板刻 度,使车刀移动一个齿距。小滑板刻度盘转过格数可用下式计算 K=p/a 式中 K---刻度盘转过格数 p---工件齿距(mm) a---小滑板刻度盘每格移动的距离(mm). 1.2百分表分头法第一条螺旋槽车好后,把百分表磁力座固

数控车床对刀操作方法

数控车床对刀操作方滕 一、FANUC绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键。 5、选择手轮方式,选择合适的位移速度。 6、选择X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 键进入刀补界面,接着再按下 ―→ ,此 时CRT显示如下:(滨意:第一竖列中显示应为G001,而不是WOO1) 9、用游标卡帺测量试切过的外圆直径,帆光标移到G001行中的X列,并帆测量值Φ输入为XΦ后 按下 ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。 11、帆光标移到G001行中的Z列,输入Z0后按下 ,完成Z方向对刀设置。 12、帆刀具移至安全位置。

二、SIEMENS绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键 。 5、选择手轮方式,选择合适的位移速度。 6、按下JOG键,再按 键,按 键选X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 ―→ ,此时CRT显示如下: 9、用游标卡帺测量试切过的外圆直径,帆光标移到Φ后,输入测量值Φ如 后按 下 ―→ ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。

圆弧面蜗杆数控车削加工的宏程序实现

圆弧面蜗杆数控车削加工的宏程序实现 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

圆弧面蜗杆数控车削加工的宏程序实现 欧阳德祥詹华西(武汉职业技术学院,湖北武汉430073) 摘要: 圆弧面蜗杆作为一种特殊的蜗杆类型,无法用一般蜗杆螺纹的车削方式,通常需要专用机床加工。对具有宏指令功能的数控车床而言,可将圆弧转化为小线段,然后对小线段实施螺纹切削,采用宏程序循环控制即可实现圆弧面蜗杆的车削加工。实践证明,该方法控制方便、适应性强,为圆弧面蜗杆加工的实现提供了一种新的思路。 关键词: 圆弧面蜗杆宏程序螺纹车削 中图分类号:TH16;TP391文献标识码:B 圆弧面蜗杆也称球面蜗杆,它具有结构紧凑、承载能力大、工作寿命长等优点,其传动效率可以达到0.85~0.95,承载能力约比普通蜗轮副提高3~4倍,适用于冶金、矿山、起重、运输、石油、化工和建筑等行业机械设备的减速传动。但圆弧面蜗杆的加工通常需要专用机床,或对一般机床进行改造后方可进行加工,因此,往往因生产成本高而制约了其应用。本文利用HNC系统数控车床的宏程序功能对圆弧面蜗杆中的直廓环面蜗杆进行了加工实践的尝试,为圆弧面蜗杆加工的实现提供了一种新的思路。 1圆弧面蜗杆的结构及其加工机制 如图1所示直廓环面蜗杆是圆弧面蜗杆常见形式之一,其节面为环面,齿廓形状为一直线,直线的延长线切于直径为d的形成圆。环面蜗杆的加工通常在专用机床上进行。图1所示专机加工的实现方式是采用左右两把切刀,无论粗切还是精切,其圆周进给分两次进行,第一次用一把切刀,在某一圆周进给方向加工蜗杆螺旋槽的一个侧面,然后再换另一把切刀并采用相反方向的圆周进给加工蜗杆螺旋槽的另一个侧面,其调整控制通过分度交换齿轮和速度交换齿轮实现。采用专用机床加工弧面蜗杆时通常要对工件旋转运动和刀具旋转运动按一定的运动配合关系进行控制,这就需要较复杂的机构来实现。

车蜗杆

项目三车蜗杆 一、学习要求: 1.掌握蜗杆有关车削的计算方法和齿厚测量法。 2.掌握蜗杆车刀的刃磨及装夹方法。 3.掌握蜗杆的车削方法。 二、使用工、量具 90°车刀45°车刀车槽刀梯形螺纹刀角度样板 三、学习过程 学习过程:观察不同种类的滚花刀,认识不同滚花刀的滚花花纹效果,最后练习滚花的方法。用锉刀、砂布进行圆球面修整抛光操作练习,掌握成形面的抛光方法,教师应重点示范锉刀的握法及锉销姿势,手捏砂布的姿势,注意防范学生的操作安全。 四、相关工艺知识 蜗杆与蜗轮啮合原理如图6-17。蜗杆的齿形与梯形螺纹相似。蜗杆一般分米制蜗杆(齿形角为20°)和英制蜗杆(齿形角为20°)两种。我国常用米制蜗杆。由于蜗杆的齿型较深,切削面积较大,因此车削时比一般梯形螺纹要困难些。 1.蜗杆各部分尺寸计算 米制蜗杆的工作图及各部分尺寸计算见表6-1

2.蜗杆车刀 蜗杆车刀与梯形螺纹车刀相似,但蜗杆车刀两侧切削刃之间的夹角应磨成两倍齿形角。蜗杆

车刀一般选用高速钢材料车刀,在刃磨时,其纵进给方向一侧的后角必须相应加上螺纹升角。由于蜗杆的导程角较大,车削时会产生一定的困难,为此常采用可按导程调节的刀柄(图6-18)进行车削、由于具有弹性,不易产生扎刀现象。 (1) 蜗杆粗车刀(见图6-19) 粗车刀的要求是: 1) 为给精车留有加工余量,刀头宽度应小于齿根槽宽。 2) 车刀左右两侧切削刃之间的夹角要小于两倍齿形角。 3) 纵向前角γp =10°~15°。 4) p α=6°~8°。 5) 左后角L f α=(3°~5°)+γ;右后角R f α=(3°~5°)-γ。 (2)蜗杆精车刀 (见图6-20) 精车刀的要求是: 1) 切削刃直线度好,刀面光洁。 2) 车刀左右两侧切削刃之间的夹角要等于两倍齿形角。

数控机床对刀知识点整理

作为一名设计者,在设计零件图时,要保证设计的零件能在机床上加工出来,这就要求我们对工艺和机加工有一定基础。这个月重点学习了数控机床加工方面的知识。 1、机床原点与参考点 机床原点是指机床坐标系的原点,即X=0,Y=0,Z=0。机床原点是机床的基本点,它是其他所有坐标,如工件坐标系、编程坐标系,以及机床参考点的基准点。机床原点一般设置在机床移动部件沿其坐标轴正向的极限位置。 机床参考点是用于对机床工作台、滑板以及刀具相对运动的测量系统进行定标和控制的点,有时也称机床零点。机床参考点的位置是由机床制造厂家在每个进给轴上用限位开关精确调整好的,坐标值已输入数控系统中,因此参考点对机床原点的坐标是一个已知数。数控机床在工作时,移动部件必须首先返回参考点,测量系统置零之后即可以参考点作为基准,随时测量运动部件的位置,刀具(或工作台)移动才有基准。一般来说,加工中心的参考点为机床的自动换刀位置。 2、工作原点 编程坐标系是编程人员根据零件图样及加工工艺等建立的坐标系。编程人员以工件图样上某点为工作坐标系的原点,称工作原点。工作原点一般设在工件的设计工艺基准处,便于尺寸计算。 3、对刀点 对刀点就是在数控加工时,刀具相对于工件运动的起点,程序就是从这一点开始的。对刀点也可以称为“程序起点”或“起刀点”。编制程序时应首先考虑对刀点的位置选择。选定的原则如下:①选定的对刀点位置应使程序编制简单。 ②对刀点在机床上找正容易。③加工过程中检查方便。④引起的加工误差小。 对刀点可以设在被加工零件上,也可以设在夹具上,但是必须与零件的定位基准有一定的坐标尺寸联系,这样才能确定机床坐标系与零件坐标系的相互关系。对刀点最好能与工作原点重合。对刀点不仅是程序的起点而且往往又是程序的终点。 4、对刀方法 4.1 试切对刀法 在X、Y、Z三个方向上,让刀具慢慢靠近工件,是刀具恰好接触到工件表面

FANUC数控铣床对刀操作步骤

FANUC数控洗床对刀操作 步骤 数控铳床法兰克系统试切对刀详细步骤 通常,建立工件的零点偏置,使工件在加工时有一明确的参考点。建立工件的零点偏置的过 程,我们通常称之为“对刀”。在大多数精度要求不高、条件不十分优越的情况下,一般采用试切法 进行对刀,其详细步骤如下: 1. 先将机床各轴回零 (1)方法一 可以按“机床回零件”键,选择“ Z轴” "+”进给倍率打开机床Z轴移动回机械原点;选 择“X轴” "+”进给倍率打开机床X轴移动回机械原点;选择“Y轴” "+” 进给倍率打开 机床Y轴移动回机械原点; (2)方法二“程序” “MDI” 输入“ G91 G28 X0Y0ZQ ” "循环启动” 进给倍率打开机床X、Y、Z轴均移动回机械原点; 2. X、Y、Z向试切对刀(1) X轴方向对刀 ①将工件、刀具分别装在机床工作台和刀具主轴上。 ②转动主轴,快速移动工作台和主轴,让刀具靠近工件的左侧; ③改用手轮操作模式,让刀具慢慢接触到工件左侧,直到发现有少许切屑为止,然后进行以下操 作: 选择翻到“相对坐标” 输入“ X”选择“起源”此时相对坐标中的X值会变成“ X0”。 ④抬起刀具至工件上表面之上,快速移动,让刀具靠近工件右侧;⑤改用手轮操作模式, 让测头慢慢接触到工件左侧,直到发现有少许切屑为止,记下此时机械坐标系中的X坐标值,如120.300 ,然后进行以下操作: 选择翻到“相对坐标” 输入“ X60.15”选择“预定” 此时相对坐标中的X值会变成“ X60.15”。(2) Y轴方向对刀操作与X轴同。假设按上面同样的操作步骤后得出“Y55.63”。(3) Z轴方向对刀 ①转动刀具,快速移动到工件上表面附近; ②改用手轮操作模式,让刀具慢慢接触到工件上表面,直到发现有少许切屑为止,然后进行 以下操作: 选择翻到“相对坐标” 输入“ Z'选择"起源”此 时相对坐标中的Z值会变成“ Z0”。此时此刻,相对坐标值不再作改动。将刀具移到某一安全位置, 假设移到相对坐标值显示为 “X0、Y10.5、Z105.2”的位置处。(4)设偏置补偿 选择 "坐标系"光标移动到G54的位置上,输入相对坐标当前 值进行测量,具体操作如下: 输入“ X0” “测量”输入“ Y10.5” “测量”输入“ Z105.2” “测量” 此时刀具偏置的补偿已经建立,等待操作者的调用后即生效。(5)调用坐标补偿 “MDI'

在数控车床上快速车削蜗杆的方法

在数控车床上快速车削蜗 杆的方法 Newly compiled on November 23, 2020

在数控车床上快速车削蜗杆的方法 在数控车床上车削较大导程的蜗杆、梯形螺纹和锯齿螺纹,由于工件的齿形深,需要切除的毛坯余量多,一般是选择较低的切削速度和高速钢成形刀,使用G32和G76等指令车削,加工精度特别是表面粗糙度很难达到图纸要求,加工难度较大。针对出现的加工精度低、生产效率低等特点,说明如何有效地发挥数控车床的高精度,高速度、定位精度高、生产效率高的优势。我们以沈阳CAK3675v华中数控系统的车床来论述快速车削蜗杆的方法。如图1 蜗杆数控车床成形刀硬质合金宏程序 蜗杆和大导程螺纹车削的进刀方法有多种,如直进法、左右切削法、斜进法和切槽法等。以前车削蜗杆等大导程零件的方法是:选用较低主轴转速(数控车床最低速为100转/分时转动无力)和高速钢成形车刀,车削蜗杆时的生产效率低。为解决上述问题,我认为应从刀具材料、几何形状及角度和车削方法来谈谈快速车削蜗杆和大导程螺纹的方法。 一、突破传统选择刀具的习惯,合理选择车削蜗杆的刀具角度,使刀具的刀尖角小于齿形角 车削蜗杆刀具的刀尖角如果等于蜗杆的齿形角。这种刀具在车削时两侧刀刃与工件侧面容易发生摩擦,甚至三个刀刃同时参加切削,易产生较大的切削力而损坏刀具。如果选择车刀的刀尖角35小于蜗杆的齿形角40,(如图2)这种车刀在车削时,可防止三个刀刃同时参加切削,减少了摩擦、切削力,能很好地避免“闷车”、“扎刀”和打刀的情况发生。

二、在数控车床上使用硬质合金车刀高转速车削蜗杆成为现实 以前,车削加工蜗杆和大导程螺纹,只能用高速钢车刀低速车削加工,生产效率非常低。如果将车刀的刀尖角磨小,使车刀的刀尖角35小于蜗杆的齿形角40,可避免三个刀刃同时参加切削,切削刀显剧下降,这时可使用较高的切削速度和硬质合金车刀对蜗杆进行车削。当工件直径、导程越大时,可获得的线速度越高,加工出的工件表面质量越好,而且生产效率明显提高。彻底解决在数控车床不能用硬质合金刀具车削蜗杆和大导程螺纹零件。(只要数控车床能承受,尽可能选择较高的线速度,在车削模数Ms=4时,选用350转/分钟。如图3) 图2 刀尖角35小于齿形角40 图3 硬质合金车刀 三、利用数控车床的精度高、定位准,用车削斜面的方法代替成形刀车削蜗杆,能保证蜗杆的齿形角 如果蜗杆车刀的刀尖角直接决定被加工螺纹牙形角的大小,这显然是用成形刀来车削蜗杆。当使用成形刀车削较大导程蜗杆工件时,有可能整过刀刃甚至是三个刀刃同时参加切削,切削力陡增。由于数控车床在低转速转动时无力,用成形刀在数控车床上车削蜗杆或大导程螺纹会出现“闷车”和“扎刀”。为解决以上问题,可用左右分层车削斜面的方法取代成形刀法来车削蜗杆和大导程螺纹,可彻底避免在车削中经常出现三个刀刃同时参加切削而导致切削力增大、排屑不畅、“闷车”和“扎刀”等现象。(车削斜面的方法是:车螺纹时,车刀在第一次往复车削后,刀尖在通过轴线剖面的牙侧上车削出了A点,经过多次往复循环车削,刀尖在通过轴线剖面的牙侧上分别车削出了B、C、D、E、F……N个点,将ACEN和BDF等多个点

数控车床如何对刀

数控车床如何对刀? 答:车床分有对刀器和没有对刀器,但是对刀原理都一样,先说没有对刀器。 车床本身有个机械原点,你对刀时一般要试切的啊,比如车外径一刀后Z向退出,测量车件的外径是多少,然后在G画面里找到你所用刀号把光标移到X输入X...按测量机床就知道这个刀位上 的刀尖位置了,内径一样,Z向就简单了,把每把刀都在Z向碰一个地方然后测量Z0就可以了. 这样所有刀都有了记录,确定加工零点在工件移里面(offshift),可以任意一把刀决定工件原点。 这样对刀要记住对刀前要先读刀. 有个比较方便的方法,就是用夹头对刀,我们知道夹头外径,刀具去碰了输入外径就可以,对内径时可以拿一量块用手压在夹头上对,同样输入夹头外径就可以了. 如果有对刀器就方便多了,对刀器就相当于一个固定的对刀试切工件,刀具碰了就记录进去位置了. 所以如果是多种类小批量加工最好买带对刀器的.节约时间. 数控车床基本坐标关系及几种对刀方法比较 在数控车床的操作与编程过程中,弄清楚基本坐标关系和对刀原理是两个非常重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程中修改尺寸偏差有很大的帮助。 一、基本坐标关系 一般来讲,通常使用的有两个坐标系:一个是机械坐标系;另外一个是工件坐标系,也叫做程序坐标系。 在机床的机械坐标系中设有一个固定的参考点(假设为(X,Z))。这个参考点的作用主要是用来给机床本身一个定位。因为每次开机后无论刀架停留在哪个位置,系统都把当前位置设定为(0,0),这样势必造成基准的不统一,所以每次开机的第一步操作为参考点回归(有的称为回零点),也就是通过确定(X,Z)来确定原点(0,0)。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成。 二、对刀方法 1. 试切法对刀 试切法对刀是实际中应用的最多的一种对刀方法。下面以采用MITSUBISHI 50L数控系统的RFCZ12车床为例,来介绍具体操作方法。 工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持X坐标不变移动Z轴刀具离开工件,测量出该段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前X坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得工件坐标系Z原点的位置。 例如,2#刀刀架在X为150.0车出的外圆直径为25.0,那么使用该把刀具切削时的程序原点X值为150.0-25.0=125.0;刀架在Z为180.0时切的端面为0,那么使用该把刀具切削时的程序原点Z值为180.0-0=180.0。分别将(125.0,180.0)存入到2#刀具参数刀长中的X与Z中,在程序中使用T0202就可以成功建立出工件坐标系。 事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找刀尖点到达(0,0)时刀架的位置。采用这种方法对刀一般不使用标准刀,在加工之前需要将所要用刀的刀具全部都对好。

圆弧轴数控车削加工工艺的汇编范本

圆弧轴数控车削加工工艺的编制 摘要:随着科技的不断进展,数控技术在企业中发挥越来越重要的作用。数控加工制造技术正逐渐得到广泛的应用,对零件进行编程加工之前,工艺分析具有特不重要的作用。本设计通过对典型的数控车床轴类零件工艺特点、数控加工工艺的分析,给出了关于一般零件数控加工工艺分析的方法,设计合理的加工工艺过程,充分发挥数控加工的优质、高效、低成本的特点。设计讲明书以典型的数控车床轴类零件为例,依照被加工工件的材料、轮廓形状、加工精度等选用合适的机床,制定加工方案,确定零件的加工顺序,各工序所用刀具,夹具和切削用量等,编写加工零件的程序。按照讲明书要求将加工出零件,并对零件自检数据进行分析,讲明在加工过程中应注意的事项。关于提高制造质量、实际生产具有一定的指导意义。 关键词:轴类零件;数控加工;工艺设计;工艺分析;刀具;切削用量;加工程序;加工注意事项

目录 目录 (3) 1机床的选用及简介 (5) 1.1机床的选择 (5) 1.2机床的组成 (6) 1.2.1 数控机床的组成 (6) 1.2.2 数控系统与数控机床的组成 (7) 1.3机床的工作原理 (7) 1.3.1 数控机床的工作原理与工作方式 (7) 1.4机床的工作特点 (7) 2 零件的工艺分析 (10)

2.1零件工艺分析 (10) 2.1.1零件图的分析 (10) 2.2确定加工方案 (11) 2.3加工路线和加工顺序的确定 (12) 2.3.1加工工艺路线 (13) 2.4切削用量的选择 (14) 2.5刀具的选择 (18) 3加工工序的编排 (21) 3.1工序与工步的划分 (21) 3.2加工工序的编排 (22) 3.3加工工序卡片 (23) 3.4加工程序 (24) 3.5零件加工中的难点与解决方案 (30) 4 数控车床操作注意事项 (32) 5 结论 (34) 6参考文献 (36)

在数控车床上快速车削蜗杆的方法

在数控车床上快速车削蜗杆的方法 在数控车床上车削较大导程的蜗杆、梯形螺纹和锯齿螺纹,由于工件的齿形深,需要切除的毛坯余量多,一般是选择较低的切削速度和高速钢成形刀,使用G32和G76等指令车削,加工精度特别是表面粗糙度很难达到图纸要求,加工难度较大。针对出现的加工精度低、生产效率低等特点,说明如何有效地发挥数控车床的高精度,高速度、定位精度高、生产效率高的优势。我们以沈阳CAK3675v华中数控系统的车床来论述快速车削蜗杆的方法。如图1 蜗杆数控车床成形刀硬质合金宏程序 蜗杆和大导程螺纹车削的进刀方法有多种,如直进法、左右切削法、斜进法和切槽法等。以前车削蜗杆等大导程零件的方法是:选用较低主轴转速(数控车床最低速为100转/分时转动无力)和高速钢成形车刀,车削蜗杆时的生产效率低。为解决上述问题,我认为应从刀具材料、几何形状及角度和车削方法来谈谈快速车削蜗杆和大导程螺纹的方法。 一、突破传统选择刀具的习惯,合理选择车削蜗杆的刀具角度,使刀具的刀尖角小于齿形角 车削蜗杆刀具的刀尖角如果等于蜗杆的齿形角。这种刀具在车削时两侧刀刃与工件侧面容易发生摩擦,甚至三个刀刃同时参加切削,易产生较大的切削力而损坏刀具。如果选择车刀的刀尖角35小于蜗杆的齿形角40,(如图2)这种车刀在车削时,可防止三个刀刃

同时参加切削,减少了摩擦、切削力,能很好地避免“闷车”、“扎刀”和打刀的情况发生。 二、在数控车床上使用硬质合金车刀高转速车削蜗杆成为现实 以前,车削加工蜗杆和大导程螺纹,只能用高速钢车刀低速车削加工,生产效率非常低。如果将车刀的刀尖角磨小,使车刀的刀尖角35小于蜗杆的齿形角40,可避免三个刀刃同时参加切削,切削刀显剧下降,这时可使用较高的切削速度和硬质合金车刀对蜗杆进行车削。当工件直径、导程越大时,可获得的线速度越高,加工出的工件表面质量越好,而且生产效率明显提高。彻底解决在数控车床不能用硬质合金刀具车削蜗杆和大导程螺纹零件。(只要数控车床能承受,尽可能选择较高的线速度,在车削模数Ms=4时,选用350转/分钟。如图3) 图2 刀尖角35小于齿形角40 图3 硬质合金车刀 三、利用数控车床的精度高、定位准,用车削斜面的方法代替成形刀车削蜗杆,能保证蜗杆的齿形角 如果蜗杆车刀的刀尖角直接决定被加工螺纹牙形角的大小,这显然是用成形刀来车削蜗杆。当使用成形刀车削较大导程蜗杆工件时,有可能整过刀刃甚至是三个刀刃同时参加切削,切削力陡增。由于数控车床在低转速转动时无力,用成形刀在数控车床上车削蜗杆或大导程螺纹会出现“闷车”和“扎刀”。为解决以上问题,可用左右分层车削斜面的方法取代成形刀法来车削蜗杆和大导程螺纹,可彻底避免在车削中经常出现三个刀刃同时参加切削而导致切削力增大、排屑不

数控车床上快速车削蜗杆的方法

在数控车床上快速车削蜗杆的方法在数控车床上 快速车削蜗杆的方法 摘要:在数控车床上车削较大导程的蜗杆、梯形螺纹和锯齿螺纹,由于工件的齿形深,需要切除的毛坯余量多,一般是选择较低的切削速度和高速钢成形刀,使用G32和G76等指令车削,加工精度特别是表面粗糙度很难达到图纸要求,加工难度较大。针对出现的加工精度低、生产效率低等特点,说明如何有效地发挥数控车床的高精度,高速度、定位精度高、生产效率高的优势。我们以沈阳CAK3675v华中数控系统的车床来论述快速车削蜗杆的方法。如图1 关键词:蜗杆数控车床成形刀硬质合金宏程序 蜗杆和大导程螺纹车削的进刀方法有多种,如直进法、左右切削法、斜进法和切槽法等。以前车削蜗杆等大导程零件的方法是:选用较低主轴转速(数控车床最低速为100转/分时转动无力)和高速钢成形车刀,车削蜗杆时的生产效率低。为解决上述问题,我认为应从

刀具材料、几何形状及角度和车削方法来谈谈快速车削蜗杆和大导程螺纹的方法。 一、突破传统选择刀具的习惯,合理选择车削蜗杆的刀具角度,使刀具的刀尖角小于齿形角 车削蜗杆刀具的刀尖角如果等于蜗杆的齿形角。这种刀具在车削时两侧刀刃与工件侧面容易发生摩擦,甚至三个刀刃同时参加切削,易产生较大的切削力而损坏刀具。如果选择车刀的刀尖角35 小于蜗杆的齿形角40 ,(如图2)这种车刀在车削时,可防止三个刀刃同时参加切削,减少了摩擦、切削力,能很好地避免“闷车”、“扎刀”和打刀的情况发生。 二、在数控车床上使用硬质合金车刀高转速车削蜗杆成为现实 以前,车削加工蜗杆和大导程螺纹,只能用高速钢车刀低速车削加工,生产效率非常低。如果将车刀的刀尖角磨小,使车刀的刀尖角35 小于蜗杆的齿形角40 ,可避免三个刀刃同时参加切削,切削刀显剧下降,这时可使用较高的切削速度和硬质合金车刀对蜗杆进行车削。当工件直径、导程越大时,可获得的线速度越高,加工出的工件表面质量越好,而且生产效率明显提高。彻底解决在数控车床不能用硬质合金刀具车削蜗杆和大导程螺纹零件。(只要数控车床能承受,尽可能选择较高的线速度,在车削模数Ms=4时,选用350转/分钟。如图3)

相关主题