搜档网
当前位置:搜档网 › 低温阀门用LCB和LCC钢热处理方法浅析

低温阀门用LCB和LCC钢热处理方法浅析

低温阀门用LCB和LCC钢热处理方法浅析
低温阀门用LCB和LCC钢热处理方法浅析

阀门材料选用表与温度表

主要金属材料中外牌号对照表 主要金属材料中外牌号对照表 铸碳素钢合金钢 铸造不锈钢 锻造不锈钢 阀门材料选用表 以下各种介质的阀门材料选用表,是指阀门应用于各种流体介质时供选择的适用材料,表中的推荐阀门材料并非绝对的,因为碳钢、铸铁、不锈钢、蒙乃尔合金、哈氏合金、钛、钴铬合金、沉淀钢等阀门材料的耐腐蚀性与流体的浓度、温度、压力和杂质等因素有关,阀门材料选用表仅供参考。 GB/T 12229-2005 通用阀门碳素钢铸件技术条件 GB/T 12229-2005 通用阀门碳素钢铸件技术条件标准规定了通用阀门、法兰、管件等承压碳素钢铸件(以下简称铸件)的技术要求、试验方法和检验规则等。铸件用钢应用电弧炉或感应电炉熔炼;所有铸件应按设计图样的要求进行热处理;铸件应是退火、正火或正火加回火的状态供货;铸件必须冷却到低于相变温度后进行热处理。 超低温阀门用奥氏体不锈钢 奥氏体不锈钢是在使用条件下以奥氏体组织或以奥氏体组织为主的不锈钢。超低温阀门是低温工程中不可缺少的流体管路控制装置。超低温阀门的功能与普通阀门基本一致, 也是用于接通或切断管路介质、调节介质压力和流量。目前, 超低温阀门有闸阀、截止阀、止回阀、球阀、蝶阀及节流阀等类型, 主要用于气体的液化、分离、输送和贮存等设备上。使用温度可达-270 ℃以下。 金属材料的机械性能 金属材料在载荷作用下抵抗破坏的性能,称为机械性能(或称为力学性能)。金属材料的机械性能是零件的设计和选材时的主要依据。外加载荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求的机械性能也将不同。常用的机械性能包括:强度、塑性、硬度、韧性、多次冲击抗力和疲劳极限等。下面将分别讨论各种机械性能。

超低温阀门技术在LNG装置的应用与研究

超低温阀门技术在LNG装置的应用与研究 目录 一、概述 二、超低温阀门技术 2.1材料的选择 2.2深冷处理 2.3结构设计 2.4制造控制 三、超低温下开关扭矩的研究 四、瞬态模拟 五、低温材料的研究 六、试验要求

一、概述 液化天然气(LNG)是一种新兴的清洁、节能能源。其主要成分是甲烷、少量乙炔、丙烷以及其他成分,沸点:-162.5℃,熔点:-182℃,着火点:650℃。具有分子量小、粘度低、渗透性强、泄漏易于扩散等特性。 天然气液化技术已成为一项重大的先进技术,是国家“十二五”期间调整能源结构重点推广工作,并加快推进大型液化天然气的发展。LNG工厂、接收站、运输、气化站等装置所使用的超低温阀门是LNG项目的关键设备。 LNG超低温阀门使用寿命长,安全可靠,一经安装在管路上就不能卸载,要求小故障能在线维修。目前超低温阀门大部分依赖进口,国产化还存在一定技术课题需要攻关。大连大高自八十年代就开始研制乙烯等项目用低温阀门,并替代进口产品,目前正承担国家LNG重大国产化项目超低温阀门的研制任务。 LNG超低温阀门研究课题: *解决低温(-196℃)条件下阀门的密封安全、可靠性; *填料等非金属材料的低温老化及寿命问题; *解决填料上冻、滴水盘安装最佳位置等问题; *解决低温条件下阀门开启力矩变化; *研究材料低温下的性能及变化量; *解决低温阀门低泄漏及低温检测问题

二、超低温阀门技术 2.1材料的选择 随着LNG迅速发展,超低温阀的应用越来越广泛,其阀门使用特性与材料的选择和处理是保证阀门在低温状态下性能的关键。在选择低温条件下使用材料时,应考虑到以下两个方面的要求:1)材料在超低温条件下要有足够的韧性,以防止脆性断裂。 2)超低温条件下的材料要有足够组织稳定性,以保证在低温条件下不会因相变导致变形继而影响阀门的密封性。 2.1.1奥氏体不锈钢 在低温条件下,体心立方间隙杂质原子与位错和晶界相互作用的强度增加,阻碍位错运动、封锁滑移的作用加剧,使得对变形的适应能力减弱,表现出低温脆性,而面心立方结构不存在这些问题,表现出较好的低温塑韧性。体心立方和面心立方结构如下图所示: 我们选用具有面心立方结构的奥氏体不锈钢ASTM 304(CF8)、304L(CF3)、316(CF8M)、316L(CF3M)等作为超低温阀门的主承压件材料。 2.1.2 PCTFE PCTFE是三氟氯乙烯(CTFE)的聚合物,是一种热塑性树脂。PCTFE

阀门材质及标准(精华)

WCB/LCB/LCC/WC6/WC在阀门中是什么材质? W, Wrought,铸造;C-Carbon steel碳钢;A,B,C 表示钢种强度值由低到高 WCA,WCB,WCC表示的是碳钢,ABC表示强度级别,一般常用WCB。WCB对应的管道材质应为A106B,对应锻件材质为A105。 WC6是合金钢的铸件,对应管道材质约为A355 P11,锻件为A182 F11;另外还有WC9,耐高温合金钢,对应约为A355 P22,锻件对应A182 F22。 WC可焊性铸件 LCB/LCC(ASTM A352)低温碳钢 ITCS为进行冲击韧性碳钢; Impact Test C=Carbon S=Steel(A350) Split body 分体式,side entry 侧装(指执行机构)对应的是TOP entry 上装式 阀门常用ASTM材料锻、铸件对照表(ASME B16.5)

注:1)锻造阀门阀体材质组织致密,不容易有缺陷,结构尺寸不受模具限制,承压性能可靠,多用于高压、氧气工况、小口径或其他小批量的阀门制造上,一般在高温、高压或低温或特殊介质下选择锻件;铸件一般只适用于中低压,多用于标准化的成型阀门的批量生产上。 2)材料A351 CF3M跟A182 F316L区别: 两个标准对应的材质都是316不锈钢。CF3M 表示铸件,常用作阀门材料。相对应的锻钢代号是A182 F316L。ASTM A216 WCB是铸件,其锻件是A105;SS304的铸件是A351-CF8,锻件是A182-F304。 阀门材质选择 制造阀门零件材料很多,包括各种不同牌号的黑色金属和有色金属及其合金、各种非金属材料等。制造阀门零件的材料要根据下列因素来选择: 1、工作介质的压力、温度和特性。 2、该零件的受力情况以及在阀门结构中所起作用。 3、有较好的工艺性。 4、在满足以上条件情况下,要有较低的成本。 第一节阀体、阀盖和阀板(阀瓣)的材料 一、灰铸铁:灰铸铁适用于公称压力PN≤1.0MPa,温度为-10℃~200℃的水、蒸汽、空 气、煤气及油品等介质。灰铸铁常用牌号为:HT200、HT250、HT300、HT350。 二、可锻铸铁:适用于公称压力PN≤2.5MPa,温度为-30~300℃的水、蒸汽、空气及油 品介质,常用牌号有:KTH300-06、KTH330-08、KTH350-10。 三、球墨铸铁:适用于PN≤4.0MPa,温度为-30~350℃的水、蒸汽、空气及油品等介 质。常用牌号有:QT400-15、QT450-10、QT500-7。 四、碳素钢(WCA、WCB、WCC):适用于公称压力PN≤32.0MPa,适用于工作温度

【材料课件】实验九碳钢热处理基本组织观察

实验九碳钢热处理基本组织观察 目的 1.认识碳钢经不同方式热处理后的典型显微组织特征; 2.了解热处理工艺对组织的影响。 一、相关知识 1.TTT曲线 2.碳钢的退火和正火 碳钢的退火组织也就是铁碳合金的平衡组织,以前的实验已经观察过。 亚共析钢的正火组织形式上很象退火组织,这是的珠光体层片较细,整体为灰黑色,理论上讲,铁素体的含量应比平衡状态略少,相差并不明显。 过共析钢一般进行球化退火,得到球化珠光体,正火仅用于消除二次渗碳体网,得到颗粒状的碳化物和细片状珠光体,紧接着进行球化退火。 3.碳钢的等温淬火组织 上贝氏体:在500-350℃的等温转变组织,铁素体片在原奥氏体晶界向内发展,成羽毛状,片间间断分布碳化物。为了清楚看到这种组织,在生成部分上贝氏体后立即快速冷却,其它部分是马氏体。 上贝氏体:在320-250℃的等温转变组织,铁素体片在原奥氏体晶内成透镜状,或象竹叶状。片内部有非常细小分布碳化物,整体浸蚀后为暗灰色。为了清楚看到这种组织,在生成部分贝氏体后立即快速冷却,其它部分是马氏体。 4.碳钢的淬火组织 小试样奥氏体化后水冷,可以全部淬透,得到马氏体和少量残余奥氏体。 低碳马氏体(板条马氏体):在光学显微镜下,板条马氏体为一束束相互平行的细长条状,在一个奥氏体晶粒内可有几束不同取向的马氏体群。

高碳马氏体(针状马氏体):在光学显微镜下,片状马氏体呈针状或竹业状,片间互不平行呈一定角度,其立体形态为双凸透镜状。针的粗细决定于奥氏体晶粒的大小,通常其针细小,在光学显微镜下不能看清,称为隐针马氏体。T10正常加热温度为760℃,若过热(温度820℃,为能了解其形态),就可看到其针状的形貌。 5.碳钢的回火组织 回火马氏体:形状同淬火态,但内部有碳化物,浸蚀后的颜色变暗。 回火曲氏体:原马氏体形态不可见,弥散的Fe3C析出,组织一般为灰暗色。 回火索氏体:在铁素体的基体上分布小颗粒状的渗碳体。 6.低碳钢渗碳后炉冷组织 920℃渗碳后,表层的含碳量接近Acm线,逐渐降低,到心部为原始的低碳(或纯铁),炉冷后得到平衡组织,从表到里,经过过共析(珠光体+网状渗碳体)、共析(珠光体)、亚共析(铁素体+珠光体)的逐渐过渡。实用材料往往可直接淬火,或渗碳后空冷正火,表层部分的渗碳体为颗粒状。 二、实验内容 ①.观察45钢的正火组织,铁素体+索氏体。 ②.观察等温淬火组织,认识上、下贝氏体形貌特征。 ③.观察淬火组织认识马氏体形态:20钢得到的板条马氏体,由45钢得到的混合马氏 体,T10钢过热淬火得到的粗大马氏体针。 ④.正常淬火回火组织:T10钢正常淬火回火的组织为未溶颗粒状碳化物+回火隐针马 氏体。 ⑤.调质:中碳钢淬火后高温回火得到的回火索氏体。 ⑥.渗碳后炉冷组织:从组织了解渗碳后碳含量的大致分布。 三、实验报告要求 画出5个以上观察到的组织示意图,注明材料、热处理过程、所得到的组织。

常用材料热处理及热处理代号

常用金属材料及热处理代号 硬度 材料牌号 图纸热处理标注 HB HRc 热处理目的 Q235-A ─ 不热处理 16Mn─ 不热处理 渗碳淬硬S-C59 表面≥59表面耐磨,心部韧性高,去碳处可钻孔 20 20Cr 渗碳高频淬硬 S-G59 表面≥59表面耐磨,心部韧性高,不淬硬处可钻孔正火Z ≤230 组织均匀化,消除应力 调质T235 220~250提高性能,改善组织 调质T265 250~280提高性能,改善组织 淬硬C35 30~40 变形小,硬度略提高 淬硬C42 40~45 提高强度和耐磨性,有一定的韧性 淬硬C48 45~50 提高强度和耐磨性,有一定的韧性高频淬硬G48 表面45~50表面耐磨,心部韧性高,变形小 45 40Cr 高频淬硬G52 表面50~55表面耐磨,心部韧性高,变形小 调质T265 250~280提高性能,改善组织 38CrMoAlA 氮化D900 HV≥850 提高表面硬度及耐磨性,耐疲劳,耐腐蚀性能 退火Th ≤230 降低硬度 65Mn 60Si2MnA 50CrVA 淬硬C42 40~45 提高强度和弹性 退火Th ≤230 降低硬度 GCr15 淬硬C59 ≥59 提高硬度和耐磨性 退火Th ≤230 降低硬度 T8A 淬硬C58 55~60 提高硬度和耐磨性 退火Th ≤230 降低硬度 T10A T12A 淬硬C62 ≥62 提高硬度和耐磨性 退火Th ≤255 降低硬度 9SiCr Cr12MoV W18Cr4V 淬硬C62 ≥62 提高硬度和耐磨性 HT100 HT200 HT250 热时效去应力 QT400-15 QT600-3 热时效去应力 ZG200-400 ZG270-500 正火Z ZCuSn5Pb5Zn5 ─不热处理 ZAlSi7Mg ─不热处理 T2 ─不热处理 H62 ─不热处理 L2 ─不热处理

低温阀门的设计与安装要求

低温阀门,特别是超低温阀门,其工作温度极低。在设计这类阀门时,除了应遵循一般阀门的设计原则外,还有一些特殊的要求。 1低温阀门的设计要求 根据使用条件,低温阀的设计有下列要求: 1.1阀门不应成为低温系统的一个显著热源。这是因为热量的流入除降低热效率外,如流入过多,还会使内部流体急速蒸发,产生异常升压,造成危险。 1.2低温介质不应对手轮操作及填料密封性能产生有害的影响。 1.3直接与低温介质接触的阀门组合件应具有防爆和防火结构。 1.4在低温下工作的阀门组合件无法润滑,所以需要采取结构措施,以防止摩擦件擦伤。 2低温阀的材料选用 2.1低温阀主体材料 2.1.1主体材料选用应考虑的因素 从金相考虑,金属材料中除了具有面心立方晶格的奥氏体钢、铜、铝等以外,一般的钢材在低温状态下会出现低温脆性,从而降低阀门的强度和使用寿命。选择主体材料时首先要选用适合于低温下工作的材料。 铝在低温下不会出现低温脆性,但因铝及铝合金的硬度不高,铝密封面的耐磨、耐擦伤性能差,所以在低温阀门中的使用有一定的限制,仅在低压和小口径阀中选用。除此以外,低温阀门的材料选用还应考虑以下一些因素: 1)阀门的最低使用温度; 2)金属材料在低温下保持工作条件所需要的力学性能,特别是冲击韧性、相对延伸率及组织稳定性; 3)在低温及无油润滑的情况下,具有良好的耐磨性; 4)具有良好的耐蚀性; 5)采用焊接连接时还需考虑材料的焊接性能。 2.1.2阀体、阀盖、阀座、阀瓣(闸板)材料的选用 这些主体零部件材料的选用原则大致是:温度高于-100℃时选用铁素体钢;温度低于-100℃时选

用奥氏体钢;低压及小口径阀门可选用铜和铝等材料。设计时根据最低使用温度选择适当的材料。 2.1.3阀杆及紧固件的材料选用 温度高于-100℃时,阀杆和螺栓材料采用Ni、,Cr-Mo等合金钢,经适当的热处理,以提高抗拉强度和防止螺纹咬伤等。温度低于-100℃时,采用奥氏体不锈耐酸钢制造。但18-8耐酸钢硬度低,会造成阀杆与填料相互擦伤,致使填料处泄漏。所以,阀杆表面必须镀硬铬(镀层厚0.04-0.06mm),或进行氮化和镀镍磷处理,以提高表面硬度。 为防止螺母与螺栓咬死,螺母一般采用Mo钢或Ni钢,同时在螺纹表面涂二硫化钼。 2.2低温阀垫片、填料材料的选用 在低温阀门设计中,一方面由结构设计来保证使填料处于接近环境温度下工作,例如,采用长颈阀盖结构,使填料函离低温介质尽量远些,另一方面在选择填料时要考虑填料的低温特性。低温阀中一般采用浸渍聚四氟乙烯的石棉填料。柔性石墨是新近发展起来的一种优良的密封材料。低温阀门也可采用无填料的波纹管密封结构,通常情况下使用多层波纹管。低温阀门用垫片必须在常温、低温及温度变化下具有可靠的密封性和复原性。由于垫片材料在低温下会硬化和降低塑性,所以应选择性能变化小的垫片材料。使用温度为-200℃,低温最高使用压力3MPa时,采用长纤维白石棉的石棉橡胶板。使用温度为-200℃,最高使用压力5MPa时,采用耐酸钢带夹石棉缠制而成的缠绕式垫片,或聚四氟乙烯和耐酸钢带绕制而成的缠绕式垫片。柔性石墨与耐酸钢绕制而成的缠绕式垫片用于-200℃的低温阀门上比较理想。 3低温阀门的特殊结构 低温阀门主要有闸阀、截止阀、球阀、蝶阀、止回阀等型式,其主要结构与一般阀门大致相同。 3.1阀体 阀体应能充分承受温度变化而引起的膨胀、收缩。而且阀座部位的结构不会因温度变化而产生永久变形。 3.2阀盖 采用长颈阀盖结构。其目的在于能起保护填料函的功能。因为填料函的密封性是低温阀的关键之一。该处如有泄漏。将降低保冷效果,导致液化气体气化。这是因为在低温状态下随着温度的降低,填料弹性逐渐消失,防漏性能随之下降,由于介质渗漏造成填料与阀杆处结冰,影响阀杆正常操作,同时也会因阀杆上下移动而将填料划伤,引起严重泄漏。所以低温阀门必须采用长颈阀盖结构形式。此外,长颈结构还便于缠绕保冷材料,防止冷能损失。 3.3阀瓣 闸阀采用挠性闸板或开式闸板;截止阀的平阀座及针形阀,采用塞子形的阀瓣。这些结构形式不论温度如何变化,均能保持可靠的密封。

碳钢热处理及性能分析

实验五碳钢热处理及性能分析 清华大学金工教研室 一、实验目的 1.了解热处理的基本操作过程。 2.了解热处理后碳钢的性能特点。 3.了解硬度计的正确使用。 二、实验内容 1.对45钢试件进行正火、淬火(水淬和油淬)、回火(低温和高温回火)等项热处理操作。 2.测定45钢试件退火、正火、淬火和不同温度下回火后的硬度值。 三、实验设备及使用 SRJX—4—9箱式电阻炉3台,洛氏硬度计4台。 硬度的测量 硬度是金属材料力学性能的主要指标之一,常用的测量方法是压入法,包括布氏、洛氏、维氏硬度等。硬度测量设备简单、操作方便,并可近似反映材料的其它力学性能,所以硬度测量成为工业中不可缺少的力学性能试验方法之一。本试验采用最广泛的洛氏硬度测量法。 1.洛氏硬度的测量原理 洛氏硬度的测量原理是用金钢石圆锥体或硬钢球做压头,在一定负荷作用下压入试样表面,以有面的压痕深度来表示材料的硬度,如图5-1所示。 负荷分两次加,先加预负荷P1,后加主负荷P2,总负荷为P=P1+P2。图5-1中: 图5-1 洛氏硬度试验原理图 0-0 压头没接触试样的位置。 1-1 压头施加预负荷P1后压入试样的位置,压痕深夜为h0。此时压头和试样接触良好,做为测量的起点。 2-2 压头施加总负荷P后压入的位置,试样表面的变形包括塑性变形和弹性变形。 3-3 卸除主负荷P2后,试样由于弹性变形的恢复而使压头略提高后的位置,压痕深度为h1。此时由于主负荷作用压头实际压入的深度h=h1-h0(mm),用来

表示被测材料的硬度。 为适应数值越大硬度越高的习惯,引入一常数K ,并规定压入深度每0.002mm 为一个洛氏硬度单位。则洛氏硬度公式为: 对HRA 和HRC ,K=0.2mm;对HRB ,K=0.26mm 。HR 值为一个无名数。 在一种硬度计上可采用不同的压头和总负荷,组成几种不同的洛氏硬度标尺,如HRA ,HRB ,HRC 等,以测定从软到硬的不同金属材料的硬度,其试验 度(HV )相对比较。 2.洛氏硬度计的构造简图见图5-2。 图5-2 洛氏硬度计构造简图 洛氏硬度的测量过程如下: ①试样去除氧化皮并磨平擦净后放在工作台上,顺时针动手轮,使工作台上升至度样与压头接触为止。 ②加预负荷。继续上升工作台,直到表盘上短针由黑点位置转至红点位置。 ③调零点。使表盘上长针对准B —C 刻度线。 ④加主负荷。加荷手柄板至加荷位置,并停留10s 。 ⑤卸主负荷、读数。加荷手柄板回到卸荷位置,读出硬度值。然后下降载物合,取下试样。 四、钢的热处理简介 钢的热处理是通过钢在固态下的加热、保温和冷却,以改变钢的内部组织,0.002 h K HR -=

常用材料热处理

常用材料热处理

材料热处理中的特性: 淬透性(可淬性):指钢接受淬火的能力 零件尺寸越大,内部热容量也越大,淬火时冷却速度越慢,因此,淬透层越薄,性能越差,这种现象叫做“钢材的尺寸效应”。但淬透性大的钢,尺寸效应不明显。 由于碳钢的淬透性低,在设计大尺寸零件时用碳钢正火比调质更经济。 常用钢种的临界淬透直径De mm 常用材料的工作条件和热处理 渗碳钢:(含碳量0.1~0.25%) 10、15、20、 15Cr、20Cr、20Mn2、20CrMn、20CrMnVB 25MnTiB、18CrMnTi、20CrMnTi、20CrMnMo 30CrMnTi、20Cr2Ni4A、12CrNi3A、18Cr2Ni4W A

渗碳钢在高温下长时间保温,晶粒易于长大,恶化钢的性能。 表面含碳量在0.85~1.05%,表层硬度≥56~65(HRC) 心部含碳量在0.18~0.25%,HRC30~45 含碳量在0.3%时,HRC30~47 常用渗碳钢渗碳后的硬度 调质钢(含碳量0.25~0.5%) 40、45、40Cr、50Mn2、35CrMo、30CrMnSi、 40CrMnMo、40MnB、40MnVB、40CrNiMoA 38CrMoAlA 碳素调质钢淬透性低。 常用调质钢的调质硬度 调质钢对表面耐磨性要求较高时还需高频淬火,要求耐磨性更高时则需渗氮。

弹簧钢含碳量:碳素弹簧钢0.6~0.9% 合金弹簧钢0.45-0.7% 弹簧钢的选用: 钢丝直径<12~15mm 65、75 弹簧≤25mm 65Mn、55Si2Mn 60Si2Mn、70Si3MnA 钢丝直径≤30mm 50CrVA、50CrMnVA 重要弹簧 60Si2CrVA、65Si2MnVA 弹簧钢的热处理一般是淬火加中温回火 热处理的硬度一般为 HRC41-48 对于一般小弹簧(钢丝截面D<10mm)不淬火,只作250~300去应力处理。 65Mn淬硬性好,硬度≥HRC59。 轴承钢含碳量0.95~1.10% 含铬量0.5~1.65% GCr9 GCr15 GCr15SiMn GsiMnV GMnMoVRE GSiMnMoV GSiMnVRE GSiMnMoVRE GMnMoV 轴承承受高压集中周期性交变载荷,由转动和滑动产生极大的摩擦。 轴承钢一般首先进行球化退火—淬火—低温回火,硬度为HRC61-65。

常用材料热处理工艺

常用材料热处理工艺 Prepared on 22 November 2020

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级) 三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002 1.正火(N):900±10℃保温,空冷

2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃保温,水冷 T:≥620℃保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火: Q:880~900℃,保温,水冷

超低温阀门用奥氏体不锈钢深冷处理

超低温阀门用奥氏体不锈钢深冷处理 大部分Cr - Ni 奥氏体不锈钢在常温下处于亚稳定状态, 而在超低温范围内会因晶格畸变而发生马氏体转变。马氏体开始转变时的温度即为马氏体转变点(亦称相变点) , 用符号Ms 来表示。Ms 点的温度主要取决于固溶在奥氏体内合金元素的量。 当奥氏体不锈钢的工作温度等于或低于其马氏体转变点Ms 时, 就会发生马氏体转变。因马氏体的比容比奥氏体的大, 由此而引起的体积膨胀和组织应力会使零件尺寸发生变化, 最终导致阀门泄漏。为防止材料在使用过程中发生马氏体转变, 需对其进行深冷处理。 深冷处理是将奥氏体不锈钢材料浸在冷却剂中进行冷却、保冷, 使之发生马氏体转变的一种工艺方法。深冷处理可使材料预先进行马氏体转变, 以保证在使用中的组织稳定性。深冷处理一般在零件的精加工之前进行。深冷处理的温度应以材料的Ms 点为依据。材料不同, M s 点各异。即使是同一牌号的材料, 由于批次(或炉号) 的不同, 其Ms 点也各不相同, 而且差别很大。有的在超低温范围的上限附近即可产生马氏体转变。马氏体的转变量随温度的降低而增加, 为确保工件在使用过程中的组织稳定性, 深冷处理所用介质的温度需等于或低于阀门工作温度。深冷处理的冷却介质多采用液氮或液氦等溶液。可根据阀门使用温度来确定。浸在深冷介质中的零件达到介质温度(介质表面所冒气泡完全消失) 时, 即可计算保冷时间。根据实践经验, 保冷1~2h 即能达到处理目的。时间过长, 对马氏体的转变无明显影响。保冷结束即可将零件取出在空气中放冷至常温。 经过一次深冷处理后, 奥氏体不锈钢的马氏体转变基本完成, 一般情况下可以满足使用要求。对于密封性要求较严或靠介质压力密封的超低温止回阀, 可增加深冷处理的次数。

碳钢的热处理及非平衡组织观察

实验二碳钢的热处理及非平衡组织观察 一、实验目的 1. 了解退火、正火、淬火及回火等普通热处理的基本工艺与生产。 2. 认识碳钢典型的热处理组织,了解不同加热温度、不同冷却速度及不同回火温度对所得组织的影响。 二、实验内容 实验一中我们研究了铁碳合金的平衡组织,即缓冷后的组织。它完全符合铁碳状态图所得出的结果,而非平衡组织,通俗的理解就是在较快的冷速下所得到的组织,除退火外,正火、淬火或回火所得的组织都为不平衡组织。 1. 状态图可决定热处理的加热温度和可以进行哪一类热处理。但热处理后的产物尚需视冷却速度而定,这样就需要运用过冷奥氏体等温转变曲线(C曲线)来决定。而钢的回火后组织又必须结合钢的回火相变原理去理解。图1为共析钢由TTT曲线推测过冷奥氏体连续冷却所获转变产物。 A1为临界线(727℃),Ms为马氏体转变开始温度。以不同冷却速度进行冷却。根据冷却曲线和“C”曲线相交的位置可以判断出奥氏体转变产物是什么组织。 V k——表示转变为马氏体的最小冷速。

V1——相当于退火冷速(炉冷),产物为片状珠光体。 V2——相当于正火冷速(空冷),产物为索氏体,索氏体也是α+Fe3C的机械混合物,与珠光体不同的是其片状较细,在放大倍数较高的显微镜观察时可以分辨清楚(一般800~1000倍) V3——相当于在油中冷却,产物为屈氏体+马氏体。屈氏体也是α+Fe3C的机械混合物只是片状更细,故要在更高放大倍数下才能分辨。普通金相显微镜分辨不清,呈黑色团块状。 V4——相当于在水中冷却(淬火),产物为马氏体+残余奥氏体。马氏体(M)是碳在α—Fe中的过饱和固溶体,其组织特征呈亮白色针状。针与针之间的夹角一般为60°或120°,针的粗细与原来γ的晶粒度有密切的关系。若选取热处理加热温度过高,则由于γ晶粒很粗大,淬火后的M针也粗大。这种情况下钢的韧性很低。正常淬火温度下,M针应很细,呈隐针状。钢在淬火后常保留某些未转变的奥氏体,称为残余奥氏体,它与一般的奥氏体没有什么区别。 下面是一些钢种热处理后的显微组织。 45钢退火处理(100×):基体组织为珠光体及铁素体。铁素体沿奥氏体晶界呈网络状分布。片状珠光体的体积分数约占基体总体积分数的55%,由此可以推算出钢中W(C)为45%。同时,从网络状分布的铁素体可以看出,此钢退火温度不高;故其晶粒细小。这种钢在退火状态下强度是偏低的,为了充分发挥材料的潜力,通常于采用调质或正火处理。 45钢860℃加热保温后淬火(500×)。针状淬火马氏体,其针叶大小中等。

碳钢热处理后的组织(金相分析)

碳钢热处理后的组织(金相分析) 发布时间:2009-5-30 13:46:34 关闭该页 一、概述 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是非平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 铁碳相图能说明慢冷时合金的结晶过程和室温下的组织以及相的相对量,C曲线则能说明一定成分的钢在不同冷却条件下所得到的组织。C曲线适用于等温冷却条件;而CCT曲线(奥氏体连续冷却曲线)适用于连续冷却条件。在一定的程度上可用C曲线,也能够估计连续冷却时的组织变化。 1、共析钢等温冷却时的显微组织 共析钢过冷奥氏体在不同温度等温转变的组织及性能列于表1中。

2、共析钢连续冷却时的显微组织 为了简便起见,不用CCT曲线,而用C曲线(图1)来分析。例如共析钢奥氏体,在慢冷时(相当于炉冷,见图1中的υ1)应得到100%的珠光体;当冷却速度增大到υ2时(相当于空冷),得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到υ3时(相当于油冷),得到的为屈氏体和马氏体;当冷却速度增大至υ4、υ5(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后,瞬时转变成马氏体,其中与C曲线鼻尖相切的冷却速度(υ4)称为淬火的临界冷却速度。 图1 图2 3、亚共析钢和过共析钢连续冷却时的显微组织 亚共析钢的C曲线与共析钢相比,只是在其上部多了一条铁素体先

析出线,如图2所示。 当奥氏体缓慢冷却时(相当于炉冷,如图2中υ1),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即υ3>υ2>υ1时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。 因此,v1的组织为铁素体+珠光体;v2的组织为铁素体+索氏体;v3的组织为铁素体+屈氏体。 当冷却速度为v4时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3);当冷却速度v5超过临界冷却速度时,钢全部转变为马氏体组织(如图6,图7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 4、各组织的显微特征 (1)索氏体(s):是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨。 (2)托氏体(T)也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3); 图3 托氏体+马氏体

各种材料热处理硬度

常用金属材料热处理硬度 常用金属材料热处理规范 ┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃ ┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃ ┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃ ┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 880- 930 ┃空冷┃HB≤156┃ ┃20┃Ac3 855 ┃渗碳┃ 920- 950 ┃┃┃ ┃┃Ar3 835 ┃渗碳淬火┃ 860- 880 ┃水或油冷┃HRC>56 ┃ ┃┃Ar1 680 ┃高温回火┃ 650- 680 ┃空冷┃芯部HB150 ┃ ┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃正火┃ 850- 890 ┃空冷┃HB≤185┃ ┃35┃Ac3 802 ┃退火┃ 840- 890 ┃炉冷┃┃ ┃┃Ar3 774 ┃高温回火┃ 650- 680 ┃空冷┃┃ ┃┃Ar1 680 ┃淬火┃ 850- 890 ┃水冷┃HRC≥47┃ ┃┃┃回火┃ 500- 540 ┃空冷┃HB241-286 ┃ ┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 724 ┃退火┃ 820- 840 ┃炉冷┃HB≤207┃ ┃45┃Ac3 780 ┃正火┃ 830- 870 ┃空冷┃HB≤229┃ ┃┃Ar3 751 ┃高温回火┃ 650- 680 ┃空冷┃┃ ┃┃Ar1 682 ┃淬火┃ 820- 860 ┃水冷┃HRC50-60 ┃ ┃┃┃回火┃ 520- 560 ┃空冷┃HB228-286 ┃ ┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 735 ┃正火┃ 900- 930 ┃空冷┃HB≤179┃ ┃┃Ac3 854 ┃高温回火┃ 659- 680 ┃空冷┃┃ ┃20Mn ┃Ar3 835 ┃┃┃┃┃ ┃┃Ar1 682 ┃┃┃┃┃ ┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃AC1 734 ┃退火┃ 830- 880 ┃炉冷┃┃ ┃35Mn ┃AC3 812 ┃正火┃ 850- 880 ┃空冷┃HB≤187┃ ┃┃Ar3 796 ┃高温回火┃ 650- 680 ┃空冷┃┃ ┃┃Ar1 675 ┃淬火┃ 850- 880 ┃水或油冷┃HRC50-55 ┃ ┃┃┃回火┃ 400- 500 ┃空冷┃HB302-332 ┃ ┗━━━┻━━━━┻━━━━┻━━━━━━━┻━━━━┻━━━━━┛┏━━━┳━━━━┳━━━━━━━━━━━━━━━━━┳━━━━━┓┃┃临界点┃热处理规范┃硬度┃ ┃钢号┃┣━━━━┳━━━━━━━┳━━━━┫┃ ┃┃(℃)┃工序名称┃加热温度(℃)┃冷却方式┃HB HRC ┃ ┣━━━╋━━━━╋━━━━╋━━━━━━━╋━━━━╋━━━━━┫┃┃Ac1 726 ┃退火┃ 820- 850 ┃炉冷┃HB≤217┃ ┃45Mn ┃Ac3 790 ┃正火┃ 830- 860 ┃空冷┃┃ ┃┃Ar3 768 ┃高温回火┃ 650- 680 ┃空冷┃┃

超低温球阀的结构设计特点及安装要求

超低温球阀的结构设计特点及安装要求 近几年,随着石油化工的发展,特别是液化天然气(LNG)的广泛应用,对超低温工况下应用的阀门的要求也越来越高。根据相关工程设计及工艺操作安全的要求,国内外各阀门供应商一直在进行对超低温球阀在不同部位的结构设 近几年,随着石油化工的发展,特别是液化天然气(LNG)的广泛应用,对超低温工况下应用的阀门的要求也越来越高。根据相关工程设计及工艺操作安全的要求,国内外各阀门供应商一直在进行对超低温球阀在不同部位的结构设计方面的研究,并对结构设计进行相应的改进。笔者结合在液化天然气生产的工程设计实践经验,介绍超低温球阀的主要结构设计特点、低温试验及安装的注意事项,以便为工程设计中类似介质的超低温阀门的选用提供参考。 1 超低温球阀简述 石化行业中对低温阀门的定义是按照输送介质的设计温度来定义的,一般将应用在介质温度-40℃以下的阀门称作低温阀,应用在介质温度-101℃以下的阀门称作超低温阀门。 超低温球阀主要应用于液化天然气、液化石油气以及空分行业的装置上,输出的液态低温介质有:液氧、液氢、液化天然气、液化石油产品等。这些介质不但易燃易爆,而且在升温或者闪蒸时会发生气化,气化时体积急剧膨胀,如果输送这些流体的阀门中有密闭阀腔且结构设计不合理,则会造成阀腔超压,从而导致介质泄漏,甚至阀门开裂造成事故。 2 超低温球阀主要结构的设计特点 超低温球阀因其使用介质和使用环境的特殊性,在结构设计上有着与其他种类阀门显著不同的特点。 2.1 加长阀盖设计及滴水板设计 低温阀门的阀盖均采用加长阀盖的设计。加长阀盖的设计要使阀门操作手柄和填料安装位置远离低温区,既可以避免介质的低温导致阀门操作者的冷灼伤,也可以使阀门的填料在正常的温度下工作,保证填料不会受到霜冻的侵害而导致填料断裂失效。另外,由于一般超低温阀门保冷层会比较厚,加长的阀盖也保证了保冷施工的空间,并使填料压盖位于保冷层外,添加填料及紧固压盖螺栓时,无须损坏保冷层。

LNG超低温阀门新技术(威兰)

LNG超低温阀门新技术(威兰) Summary of presentation 1.Brief introduction of VELAN 2.Cryogenic range 3.Cryogenic butterfly valves VELFLEX for LNG ships and terminals 4.Cryogenic butterfly valves TORQSEAL for LNG liquefaction plants 5.Cryogenic valves for extremely low temperatures: liquefied He,H2 6.Improvement of safety of cryogenic tests 7.Conclusion 1-Key Figures of VELAN group Founded in 1949 by Mr.A.K.VELAN 2000 employees worldwide Tumover: 500 M$ 14 manufacturing sites: Canada,USA,France,P.R.of China,Germany,UK,Italy,Portugal,South Korea Specialized in High Performance valves for Power,Nuclear,Oil&gas,Mining,Navy and Special Applications 1-VELAN-France Located in Lyon-France, in a recent 20,000 m2 plant Plant extended in 2010 to double capacity 250 employees Tumover: 80,000,000 法币 Qualifications: ISO 9001, ISO 14001,OSHAS 18001,HAF604 威兰中国工厂-威兰阀门(苏州)有限公司 威兰和中国:“长期的合作” 1972年A.K.VELAN先生和周恩来总理在北京 1-VELAN-France main acticities VELAN S.A.S is one of the world’s leading suppliers of quality valves and services for: Nuclear Projects Cryogenics Special applications Maintenance&Services 2-Development of cryogenic valves 40 years of continuous improvements: Velan developped first Cryogenic butterfly valves in 1974 2-Cryogenic range

碳钢的热处理实验报告-(恢复)

碳钢的热处理实验报告-(恢复)

金属热处理实验报告 张金垚 41030165 材控102班

热处理实验报告(T8钢300℃回火) 一、实验目的 1、了解碳钢的基本热处理(退火、正火、淬火及回火)工艺方法。 2、研究含碳量、加热温度、冷却速度、回火温度对钢热处理后性能的影响。 3、掌握洛氏硬度机的使用方法。观察热处理后钢的组织特征。 二、实验原理 1、钢的淬火 所谓淬火就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放入各种不同的冷却介质中( V冷应大于V临),以获得马氏体组织。碳钢经淬火后的组织由马氏体及一定数量的残余奥氏体所组成。 为了正确地进行钢的淬火,必须考虑下列三个重要因素:淬火加热的温度、保温时间和冷却速度。

(1)淬火温度的选择 选定正确的加热温度是保 证淬火质量的重要环节。淬火 时的具体加热温度主要取决于 钢的含碳量,可根据相 图确定(如图4所示)。对亚 共析钢,其加热温度为+ 30~50℃,若加热温度不足(低 于),则淬火组织中将出现铁 素体而造成强度及硬度的降 低。对过共析钢,加热温度为 +30~50℃,淬火后可得到细 小的马氏体与粒状渗碳体。后 者的存在可提高钢的硬度和耐 磨性。 (2)保温时间的确定 淬火加热时间是将试样加热到淬火温度所需的时间及在淬火温度停留保温所需时间的总和。加热时间与钢的成分、工件的形状尺寸、所需的加热介质及加热方法等因素有关,一般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所示。

表1 碳钢在箱式电炉中加热时间的确定 加 热 温度(℃) 工件形状 圆柱形方形板形 保温时间 分钟/每毫 米直径 分钟/每毫 米厚度 分钟/每毫 米厚度 700 1.5 2.2 3 800 1.0 1.5 2 900 0.8 1.2 1.6 1000 0.4 0.6 0.8 (3)冷却速度的影响 冷却是淬火的关键工序, 它直接影响到钢淬火后的组 织和性能。冷却时应使冷却速 度大于临界冷却速度,以保证 获得马氏体组织;在这个前提 下又应尽量缓慢冷却,以减少 钢中的内应力,防止变形和开 裂。为此,可根据C曲线图(如

碳钢的热处理及性能分析

碳钢的热处理及性能分析 时的具体加热温度主要取决于钢的含碳量,可根据 相图确定(如图所示)。对亚共析钢,其加热 温度为℃,若加热温度不足(低于),则 +淬火后可得到细小的

它直接影响到钢淬火后的组织 以保证 以减 使淬火工作在过冷奥氏体最不稳定 鼻不同的冷却介质在不同的温度范围内的

实验二金相试样的制备与观察 一、实验目的 1.学习金相试样的制备方法。 二、实验设备、仪器及材料用品 抛光机、各型号砂纸、抛光磨料、试样、浸蚀剂、吹风等。 三、实验步骤 金相试样的制备包括取样、磨制、抛光、浸蚀四个步骤。制备好的试样应能观察到真实组织、无磨痕、水迹。 1.取样取样的部位和磨面应根据检验目的选取具有代表性的部位。例如,检验表面脱碳层的厚度应取横向截面、观察纵裂纹就要取纵向截面。试样的截取方法很多,例如用手锯、机床截取、线切割等,但必须注意的是在取样过程中要防止试样受热或变形而引起的组织变化,破坏了其组织的真实性。为防止受热可在截取过程中用冷却液冷却试样。 金相试样的尺寸要便于手握持和易于磨制,常用的试样尺寸为:Φ12×10或12×12×10,如果不是观察表面组织,可以倒角便于磨制。 根据需要,例如观察表面渗碳层的厚度,为防止在磨制过程中发生倒角,应采用镶嵌法,把试样镶嵌在热塑性塑料或热固性塑料中。 我们所用试样为车削好的Φ10×20的45钢试样。 2.磨制这是最关键的步骤,磨制质量的好坏直接决定了试样的好坏。 ①粗磨将试样在砂轮上或用粗砂纸之成平面。磨制时使试样受 力均匀,压力不要太大。 ②精磨粗磨好的试样用清水冲干后,依次用01、02、03、04号 金相砂纸把磨面磨光。磨制时应把砂纸放在玻璃板或平整的桌面 上,左手按住砂纸,右手握住试样,用力均匀、平稳,沿一个方 向反复进行,直到旧的磨痕被去掉,不要来回磨制。 注意:在调换更细一号砂纸时,应将试样上的磨屑和砂粒清除干净,并转动90o角,使新、旧磨痕垂直。

常用材料热处理工艺

常用材料热处理工艺二、ASTM A182 F22 1.退火(A)≥90±10℃炉冷; 2.回火(T)≥675℃ 3.HB≤170(一级)156~207(三级) 三、ASTM A694 F60,F52 1.N+T或Q+T N(Q):920±10℃保温,空冷(水淬) T:≥540±10℃保温,空冷 2.HB实测 四、16MnJB4726-2000 或N+T N:930±10℃保温,空冷 T:≥600±10℃保温空冷 2.HB:121~178 五、16MnDJB4727-2000 1.Q+T Q:930±10℃保温,水冷 T:≥600±10℃保温空冷 2.HB实测 六、A105ASTM A105-2002 1.正火(N):900±10℃保温,空冷

2:HB:137~187 七、20# JB4726-2000 1.正火(N):910±10℃保温,空冷 2.HB:106~159 八、LF2ASTM A350 LF2 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 九、LF3ASTM A350-2002b 1.淬火+回火(Q+T) Q:870~940℃保温,水冷 T:540~665℃保温,空冷 2.HB≤197 十、15CrMo JB4726-2000 1.淬火+回火(Q+T) Q:900±10℃保温,水冷 T:≥620℃保温,空冷 2.HB:118~180 十一、1Cr5Mo JB4726-2000 1.淬火+回火: Q:880~900℃,保温,水冷

T:≥680℃保温,空冷 2.HB:174~229 十二、不锈钢:304、304L、321 ASTM A182 1.固溶处理(S):1040±10℃保温,水冷 2.HB:实测 十三、0Cr18Ni9JB4728-2000 1.固溶处理(S):1010~1150℃保温,水冷 2.HB:131~187

相关主题