搜档网
当前位置:搜档网 › DBE溶剂

DBE溶剂

DBE溶剂
DBE溶剂

高沸点环保型强溶剂

■产品优异特点

1.极强溶解力、相溶性。

2. 增加烤漆之平坦性、密着性、可解决常见漆膜缺陷。

3. 改善流平性、增加光泽。

4. 沸点宽、馏程长、可调节溶剂挥发速率。

5. 无毒低味、使用安全。

■应用范围

卷钢涂料、木器涂料、容器/罐头涂料、汽车涂料、漆包线涂料、烤漆工业、油墨工业、树脂工业、清洗剂等。

■技术指标:

■应用领域:

本品作为溶剂,可用于制造油漆、粘合剂和除漆剂等。可全部或部分替代环己酮、异佛尔酮、乙二醇乙醚醋酸酯(CAC)、丙二醇甲醚醋酸酯(PMA)、乙二醇单丁醚(BCS)等高沸点溶剂,具有改善流平、调节漆膜干燥速度的特点。

本产品主要用于烤漆,硝基喷漆,硝基漆,印刷油墨,卷材卷钢涂料,纤维素酯,荧光涂料。能溶解松香、醋酸纤维酯、硝化纤维素、醇酸树脂、丙烯酸树脂、聚酯树酯等。

■包装规格:220kg/铁桶

高沸点溶剂混合二元酸酯(杜邦称DBE)为二元酸酯混合物,亦称二价酸酯。是一种低毒、低味,能生物降解的环保型高沸点溶剂(涂料万能溶剂),目前已广泛应用于油漆、涂料、油墨工业及其它领域中。

产品包括丁二酸二甲酯、戊二酸二甲酯、己二酸二甲酯以及它们不同比例的混合物。生产时,先由甲醇同混合的二元酸反应,然后水洗精馏分离提取产品。特殊的工艺,合理的操作控制,严格的酯化过程和分离过程使混合二元酸酯中的水份含量、甲醇含量、色度和酸值都极低

高沸点溶剂 DBE

高沸点溶剂混合二元酸酯(杜邦称DBE)为二元酸酯混合物。是一种低毒、低味,能生物降解的环保型高沸点溶剂(涂料万能溶剂),目前已广泛应用于油漆、涂料、油墨工业及其它领域中。产品包括丁二酸二甲酯、戊二酸二甲酯、己二酸二甲酯以及它们不同比例的混合物。

一﹑优点:

1﹑极好的溶解力,与聚氨酯树脂、丙烯酸树脂、聚酯树脂、醇酸树脂、环氧树脂等相溶性良好。

2﹑具有良好的流平性,提高光泽。

3﹑能增加烤漆平坦性,密着性,减少针孔、鱼眼、火山口等缺陷。

4﹑促进改善柔韧性和附着力。

5﹑对颜填料润湿性能好。

6﹑沸点高,馏程长,可帮助调节整个溶剂系统的挥发速率。7﹑低毒、低味、使用安全。

8﹑价格低。

二﹑主要用途

1﹑溶剂

2﹑卷钢涂料

3﹑木器涂料

4﹑容器、罐头涂料

5﹑烤漆

6﹑汽车涂料

7﹑漆包线涂料

8﹑清洗剂、脱漆剂,工业清洗剂

9﹑油墨工业

10﹑树脂工业

11﹑聚合物,化学品中间体

三﹑技术指标:

1.外观无色透明液体

2.酯含量(wt%)≥99.0

3.甲醇(wt%) <0.05

4.水含量(wt%)≤0.05

5.酸值(mg KOH/g) ≤0.2

6.比重(20℃) 1.082~1.092

7.馏程 195~228

8.粘度(20 mm2/s) 2.3~2.6

9.闪点(P-Mi法) 100℃

四﹑包装和储存:

220公斤/铁桶,属于非危险品。

nmr常见溶剂峰和水峰()

注:JHD为溶剂本身的其他1H对与之相对应的1H之间的耦合常数,JCD为溶剂本身1H对13C的耦合常数,H2O和交换了D的HOD上的1H产生的即水峰的化学位移 氯仿:小、中小、中等极性 DMSO:芳香系统(日光下自然显色、紫外荧光)。对于酚羟基能够出峰。芳香化合物还是芳香甙,都为首选。 吡啶:极性大的,特别是皂甙 对低、中极性的样品,最常采用氘代氯仿作溶剂,因其价格远低于其它氘代试剂。极性大的化合物可采用氘代丙酮、重水等。 ??? 针对一些特殊的样品,可采用相应的氘代试剂:如氘代苯(用于芳香化合物、芳香高聚物)、氘代二甲基亚砜(用于某些在一般溶剂中难溶的物质)、氘代吡啶(用于难溶的酸性或芳香化合物)等。 丙酮:中等极性 甲醇:极性大 氯仿—甲醇: 石:乙 5;1小极性 石:丙 2:1——1:1中等极性 氯仿:甲醇6:1极性以上含有一个糖 2:1 含有两个糖 含有糖的三萜皂甙:一般用吡啶

常见溶剂的化学位移 常见溶剂的1H在不同氘代溶剂中的化学位移值 常见溶剂的化学位移 常见溶剂的13C在不同氘代溶剂中的化学位移值

核磁知识(NMR) 一:样品量的选择 氢谱,氟谱,碳谱至少需要5mg. 1H-1H COSY, 1H-1H NOESY, 1H-13C HMBC, 1H-13C HSQC需要10-15mg. 碳谱需要30mg. 二:如何选择氘代溶剂 常用氘代溶剂: CDCl3, DMSO, D2O, CD3OD.特殊氘代溶剂: CD3COCD3, C6D6, CD3CN。 极性较大的化合物可以选择用D2O或CD3OD,如果想要观察活泼氢切记不能选择D2O和CD3OD。CDCl3为人民币2-3元,D2O为人民币6元,DMSO为人民币10元,CD3OD为人民币30元。Solvent 化学位移(ppm) 水峰位移(ppm) CDCl3 7.26 1.56 DMSO 2.50 3.33 CD3OD 3.31 4.87 D2O 4.79 CD3COCD3 2.05 2.84

有机化合物的紫外吸收光谱及溶剂效应

实验九有机化合物的紫外吸收光谱及溶剂效应 实验目的: (1)学习有机化合物结构与其紫外光谱之间的关系; (2)了解不同极性溶剂对有机化合物紫外吸收带位置、形状及强度的影响。 (3)学习紫外—可见分光光度计的使用方法 实验原理: 与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。跃迁类型有:σ→σ*,n→σ* ,n→π*,π→π* 四种。在以上几种跃迁中,只有π-π*和n-π*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。 影响有机化合物紫外吸收光谱的因素有内因和外因两个方面。 内因是指有机物的结构,主要是共轭体系的电子结构。随着共轭体系增大,吸收带向长波方向移动(称作红移),吸收强度增大。紫外光谱中含有π键的不饱和基团称为生色团,如有C=C、C=O、NO2、苯环等。含有生色团的化合物通常在紫外或可见光区域产生吸收带;含有杂原子的饱和基团称为助色团,如OH、NH2、OR、Cl等。助色团本身在紫外及可见光区域不产生吸收带,但当其与生色团相连时,因形成n→π*共轭而使生色团的吸收带红移,吸收强度也有所增加。 影响有机化合物紫外吸收光谱的外因是指测定条件,如溶剂效应等。所谓溶剂效应是指受溶剂的极性或酸碱性的影响,使溶质吸收峰的波长、强度以及形状发生不同程度的变化。这是因为溶剂分子和溶质分子间可能形成氢键,或极性溶剂分子的偶极使溶质分子的极性增强,从而引起溶质分子能级的变化,使吸收带发生迁移。例如异丙叉丙酮的溶剂的溶剂效应如表1所示。随着溶剂极性的增加K带红移,而R带向短波方向移动(称作蓝移或紫移)。这是因为在极性溶剂中π→π * 跃迁所需能量减小,吸收波长红移(向长波长方向移动)如图(a)所示;而n→π * 跃迁所需能量增大,吸收波长蓝移(向短波长方向移动),溶 剂效应示意图如(b)所示。 图1 电子跃迁类型 σ π * σ * n π?

酮洛芬在乙腈-水共溶剂中的荧光光谱

学号:14091700378 题目:酮洛芬在乙腈-水共溶剂中的荧光光谱 作者XX 届别2013届 院别化学化工学院专业化学(师范)指导老师XXX_职称_教授_ 完成时间_____2012年6月1日____

酮洛芬在乙腈-水共溶剂中的荧光光谱 摘要:荧光光谱分析中,不同极性的溶剂对基态和激发态样品分子的生色团作用不同,或稳定化程度不同。分子结构中若存在π→π*跃迁和某些分子内电荷转移跃迁,因为伴随着电子的重排而产生较大的偶极矩变化,所以光谱极易受溶剂极性的影响:随着溶剂极性的增大,荧光光谱向长波方向移动,即发生红移。 关键词:荧光光谱;偶极矩;红移 Abstract: In fluorescence spectroscopy analysis, different polar solvent have different influence on the ground and excited states of the sample molecules chromophores, or stabilization degree. If the molecular structure existence π→π* transitions and certain intra molecular charge transfer transitions, because with the electron rearrangements produce a rather large change in dipole moment, so the spectrum is highly susceptible to the effects of solvent polarity, that is to say, with the increase of polarity of the solvents, the fluorescence spectral shift to long wavelength or red shift. Keyword: Fluorescence spectroscopy;Dipole moment;Red shift 前言

溶剂概述和溶剂效应

溶剂概述和溶剂效应 摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。 关键词:溶剂溶剂效应吸收光谱液相色谱 1,溶剂 1.1溶剂的定义 溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。 1.2溶剂的分类 溶剂按化学组成分为有机溶剂和无机溶剂 有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。(本文主要概述有机溶剂在化学反应以及波谱中的应用) 2,溶剂效应 2.1溶剂效应的定义 溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。溶剂对化学反应速率常数 的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。 2.2溶剂效应在紫外,荧光,红外,核磁中的应用 2.2.1溶剂效应在紫外吸收光谱中的应用[5] 有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。通常,溶 剂的极性可以引起谱带形状的变化。一般在气态或者非极性溶剂(如正己烷)中,尚能观察 到振动跃迁的精细结构。但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱 带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。这一现象称为溶剂效应。例如, 苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平 滑的曲线,如图所示

2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2] n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下: 会发生n→π*跃迁的分子,都含有非键电子。例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O (激发态)。所以,与极性溶剂的偶极偶极相互作用强度基态大于激发态。被极性溶剂稳定而下降的能量也是基态大于激发态。跃迁能量增加而发生吸收峰蓝移,如图2所示;溶剂对n→π*跃迁的另一个影响是形成氢键,例如羰基与极性溶剂发生氢键缔合的作用程度,极性强的基态大于极性弱的激发态,致使基态的能级的能量下降较大,而激发态能级的能量下降较小,使吸收峰蓝移。 2.2.1.2溶剂极性对π→π*跃迁谱带的影响[2] π→π*跃迁的吸收谱带随溶剂极性的增大而向红移。一般来说,从以环烷烃为溶剂改为以乙醇为溶剂,会使该谱带红移10 20nm.增大溶剂的极性引起π→π*跃迁的吸收谱带红移的原因如下。大多数会发生π→π*跃迁的分子,其激发态的极性总是比基态的极性大,因而激发态与极性溶剂之间发生相互作用从而降低其能量的强度,要比极性小的基态与极性溶剂发生作用降低的能量大。也就是说,在极性溶剂的作用下,基态与激发态之间的能量差别变小了,因而要实现这一跃迁所需要的能量相应地小了,故引起吸收峰红移,2图可以加以说明。

重结晶溶剂的选择

一、溶剂的选择原则和经验 1、常用溶剂:DMF、氯苯、二甲苯、甲苯、乙腈、乙醇、THF、氯仿、乙酸乙酯、环己烷、丁酮、丙酮、石油醚。 2、比较常用溶剂:DMSO、六甲基磷酰胺、N-甲基吡咯烷酮、苯、环己酮、丁酮、环己酮、二氯苯、吡啶、乙酸、二氧六环、乙二醇单甲醚、1,2-二氯乙烷、乙醚、正辛烷。 3、一个好的溶剂在沸点附近对待结晶物质溶解度高而在低温下溶解度又很小。DMF、苯、二氧六环、环己烷在低温下接近凝固点,溶解能力很差,是理想溶剂。乙腈、氯苯、二甲苯、甲苯、丁酮、乙醇也是理想溶剂。 4、溶剂的沸点最好比被结晶物质的熔点低50℃。否则易产生溶质液化分层现象。 4、溶剂的沸点越高,沸腾时溶解力越强,对于高熔点物质,最好选高沸点溶剂。 5、含有羟基、氨基而且熔点不太高的物质尽量不选择含氧溶剂。因为溶质与溶剂形成分子间氢键后很难析出。 6、含有氧、氮的物质尽量不选择醇做溶剂,原因同上。[2, 3 7、溶质和溶剂极性不要相差太悬殊。水>甲酸>甲醇>乙酸>乙醇>异丙醇>乙腈>DMSO>DMF>丙酮>HMPA>CH2Cl2>吡啶>氯仿>氯苯>THF>二氧六环>乙醚>苯>甲苯>CCl4>正辛烷>环己烷>石油醚。 二、重结晶操作 1、筛选溶剂:在试管中加入少量(麦粒大小)待结晶物,加入0.5 mL根据上述规律所选择溶剂,加热沸腾几分钟,看溶质是否溶解。若溶解,用自来水冲试管外测,看是否有晶体析出。初学者常把不溶杂质当成待结晶物!如果长时间加热仍有不溶物,可以静置试管片刻并用冷水冷却试管(勿摇动)。如果有物质在上层清液中析出,表示还可以增加一些溶解。若稍微浑浊,表示溶剂溶解度太小;若没有任何变化,说明不溶的固体是一种东西,已溶物质又非常易溶,不易析出。[2] 2、常规操作:在锥形瓶或圆底烧瓶中加入溶质和一定溶剂,装上球冷,加热10分钟,若仍有不溶物,继续从冷凝管上口补加溶剂至完全溶解再补加过量30%溶剂。用折叠滤纸(折叠滤纸和三角漏斗要提前预热)趁热过滤入锥形瓶。滤液自然冷却后用布氏漏斗抽滤(用滤液反过来冲洗锥形瓶!)。如果物质在室温溶解度很小,滤饼可以用少量冷的溶剂淋洗(先撤掉减压,加少量溶剂[4] 润湿滤饼,再减压抽干。注意:用玻璃塞把滤饼压实有助于除掉更多溶剂!)。如果所用溶剂不易挥发,可以在常压下加入少量易挥发溶剂淋洗滤饼,如DMF 可用乙醇洗,二氯苯、氯苯、二甲苯、环己酮可以用甲苯洗。初学者常遇到问题:大量结晶在滤纸上析出,原因是漏斗和滤纸预热不好、溶剂过量太少、过滤时间太长。如产品贵重,可将三角漏斗和滤纸置于锥形瓶上用蒸气预热,边过滤边用已经过滤的滤液蒸气保温,但上述操作比较危险,甲苯、醚类、石油醚、环己烷等易燃溶剂慎用此法。注意:用热的重结晶母液淋洗滤纸和所有黏附溶质器具并冷却可减少结晶损失。 3、反常规操作热抽滤:吸滤瓶不能预热,布氏漏斗和滤纸放在溶解溶质的锥形瓶上面利用上升蒸气润湿,放在吸滤瓶上立即趁热抽滤。注意抽气压力不能太大以防止吸滤瓶中母液爆沸!初学者常犯错误:滤纸没有贴紧(可用双层的)、动作迟缓导致结晶在布氏漏斗中析出、抽气压力太大导致滤液被吸入泵中、过滤完毕没有立即卸压导致大量溶剂被抽进泵中。 总之,与“相似相溶“背道而驰就对了,大极性的东西,用中等极性的溶剂结晶;小极性的东西,用大极性的溶剂。这样,有一半以上的情况是适合的。

涂料混合溶剂配方设计

近年来涂料技术发展迅速,出现了许多树脂,并常复合使用。涂装技术也日新月异,出 现了多种多样的施工工艺,这都要求有不同的溶解性和挥发特性的溶剂来配合。以往使用的 单一溶剂已再不能胜任,必须应用混合溶剂,以照顾全面。而混合溶剂又不像单一溶剂那样 简单,它除了满足溶解性和挥发特性外,还有溶剂平衡问题,所以混合溶剂的配方设计也成 为近代涂料配方设计整体中的一个组成了。 一、混合溶剂的溶解性溶剂对成膜物的溶解性可用溶解度参数来衡量。 溶解度参数的概念是由Hidebrand提出,认为溶质与溶剂有相近似的内聚能密度时,则 溶质可为溶剂所溶解。为了处理方便起见,溶解度参数(δ)采用内聚能密度的平方根为单位 称为Hildebrand(h)。Hildebrand体系的溶解度参数涉及的是非电解质在非极性溶剂中的溶解性。 在Hansen体系的溶解度参数中,把内聚能(E)分为非极性的相互作用力,即色散力(Ed)、 偶极力(Ep)和氢键力(Eb),即ΔE=ΔEa+ΔEp+ΔEh 或(1) 式中:V为摩尔体积,δd、δp和δh分别为溶解度参数的色散力、偶极力和氢键力组成。 要定量地将δ分解成δd、δp和δh是不太容易的。在Hansen体系中,用同形(homomorph) 的概念来估计δd,用同形物间的气化热差作为偶极力与氢键力之和,其中的偶极力,则以摩尔介电常数、折光率和偶极距以Boetther经验式求得。并为了简化式(1)在三维座标中溶解 区“体”的图形,使之为球体起见,将δd的座标值加倍,这样球体内的溶剂将都能溶解某一特定树脂。 在Crowhy体系的溶解度参数中,用Hildebrand体系的溶解度参数(δ)用Gordy方法测定光谱中波长位移数的十分之一作为氢键合值(γ),以及偶极距(μ)在三维座标中来描绘的。 溶解度参数的体系还有几种。就目前而论,Hansen体系比较最富理论。由于ASTM D3132采用了Crowley体系,为了有标准测定方法可资遵循,故宜采用来衡量混合溶剂对成膜物的溶解性。 ASTM D3132“测定树脂和聚合物溶解区”的方法的大要如下: 按该标准的附表一所列的溶剂或混合溶剂以一定的成膜物/溶剂比例来溶解某一成膜物。有的能完全溶解;有的在溶解的边缘上,即混浊但无明显的分离;有的不溶解,即有胶粒或固相、或分层。由于溶剂对成膜物的溶解性以溶解度参数为最重要,氢键合值次之。因而对大多数的成膜物,以溶解度参数和氢键合值作溶解区图,已足够定其溶解性,故可将测定的结果分别以附表一上所对应的δ和γ值在座标中标出,绘成溶解区图。 偶极距在一般情况下对溶解区的影响不大。在某些情况下,溶解区的界线不清。这是偶 极距对之有较大的影响了。就需在几个氢键合值的水平上,以相对应的μ和δ值在座标中标 出而绘成溶解区图。 溶解区中任何一点,就是对成膜物有溶解性的混合溶剂,它的δm和γm值(或某一氢键 合值水平上的μm和δm),可用下面的关系式分解为它的组成以及比例。 δm=∑δiχi/∑χiVi γm=∑γiχi/∑χiVi (2) μm=∑μiχi/∑χiVi 式中的χi和Vi分别为混合溶剂中组成溶剂i的摩尔分数和摩尔容积。 这样就可设计有合适溶解性的混合溶剂的组成和比例了。 二、混合溶剂的挥发特性理想液体混合物在气/液平衡态下,它的蒸气压为各组成的分蒸气压Pi之和,即P=∑Pi,而Pi可用RaooH定律给出,即Pi=P0iχi 式中的P0i为组成i在纯态时的蒸气压。然而大多数液体包括大多数的溶剂在内是非理想 的,所以混合溶剂的蒸气压不能简单地用Raoult定律求得。为了矫正Raoult定律对非理想液体混合物的偏离导入了“活性系数”(γ),即Pi=γiP0iχi 这活性系数可用UNIFAC(Universal Functional Group Activity Coefficient)方法求得。这方法由Fredenslund等将溶剂的基团概念与UNIQUAC(Universal Quasi-Chemistry)模式相结合。这方法认为活

常用溶剂的回收及其精制方法

常用溶剂的回收及其精制方法 溶剂回收 在实验室里,常常使用三氯甲烷、四氯化碳和石油醚等有机溶剂。 这些试剂化学性质不活泼、不助燃,与酸、碱不起作用,处理起来比较困难。其易挥发,具有一定的毒性,污染环境。正确回收不仅能够保护环境,还能减少浪费。 常用溶剂的回收及其精制方法 一、石油醚: 石油醚是石油馏分之一,主要是饱和脂肪烃的混合物,极性很低,不溶于水,不能和甲醇、乙醇等溶剂无限止地混合,实验室中常用的石油馏分根据沸点不同有下列数种,其再生方法大致相同。 再生方法: 用过的石油醚,如含有少量低分子醇,丙酮或乙醚,则置分液漏斗中用水洗数次,以氯化钙脱水、重蒸、收集一定沸点范围内的部分,如含有少量氯仿,在分液漏斗中先用稀碱液洗涤,再用水洗数次,氯化钙脱水后重蒸。 精制方法: 工业规格的石油醚用浓硫酸,每公斤加50一振摇后放置一小时,分去下层硫酸液,可以溶去不饱和烃类,根据硫酸层的颜色深浅,酌情用硫酸振摇萃取二、三

次。上层石油醚再用5%稀碱液洗一次,然后用水洗数次,氯化钙脱水后重蒸,如需绝对无水的,再加金属钠丝或五氯化二磷脱水干燥。 二、环乙烷: 沸点,性质与石油醚相似。 再生方法: 再生时先用稀碱洗涤。再用水洗,脱水重蒸。 精制方法 将工业规格环乙烷加浓硫酸及少量硝酸钾放置数小时后,分去硫酸层,再以水洗,重蒸,如需绝对无水的,再用金属钠丝脱水干燥。 三、苯: 沸点,比重0.879,不溶于水,可与乙醚、氯仿、丙酮等在各种比例下混溶,纯苯在时固化为结晶,常利用此法纯化。 再生方法: 用稀碱水和水洗涤后,氯化钙脱水重蒸。 精制方法: 工业规模的苯常含有噻吩、吡啶和高沸点同系物如甲苯等,可将苯1000毫升,在室温下用浓硫酸每次80毫升振摇数次,至硫酸层呈色较浅时为止,再经水洗,氯化钙脱水重蒸,收集79℃馏分。对于甲苯等高沸点同系物,则用二次冷却结晶法除去,苯在固化成为结晶,可以冷却到,滤取结晶,杂质在液体中。

药剂学考试

药剂学本科 一、选择题 A D B B B A D B C C B A D C A B D C B D 二、判断题 错错对对错错对错对错 三、名词解释 1、GLP:是Good Laboratory Practice 的缩写形式,中文全称为"优良实验室操作规范"。GLP是指导药物的非临床安全性测试及各项体外试验的法规。 GCP:是Good Clinical Practice 的缩写形式,中文全称为"药品临床试验管理规范"。GCP是有关临床试验的全过程包括方案设计、组织、实施、监察、审核、记录、分析、总结和报告的标准。 GMP:是Good Manufacturing Practice 的缩写形式,中文全称为"药品生产管理规范"。GMP是指导药物生产的全过程,包括制药方法、原料及辅料、测试方法、剂型、工厂设备的安全、维修以及生产人员培训的管理规范。 2、混悬剂(suspensions)系指难溶性固体药物以微粒状态分散于分散介质中形成的非均匀的液体制剂。混悬剂中药物微粒一般在0.5~10μm之间,小者可为0.1μm,大者可达50μm 或更大。混悬剂属于热力学不稳定的粗分散体系,所用分散介质大多数为水,也可用植物油。 3、置换价是用以计算栓剂基质用量的参数,一定体积:药物的重量与同体积基质重量之比值称为该药物对某基质的置换价。 4、生物利用度(bioavailability,F)是指药物经血管外途径给药后吸收进入全身血液循环的相对量。药物制剂中的活性药物被全身利用的程度,包括进入全身血液循环的剂量和速度。 F=(A/D)X100%。 A为体内药物总量,D为用药剂量 5、固体分散体(SD)是指将药物高度分散于固体载体中形成的一种以固体形式存在的分散系统。药物在载体中的粒径在0.001~0.1毫米之间,主要用于加速和增加难溶性药物的溶出,提高其生物利用度。、 四、简答题: 一、渗透泵片是由药物、半透膜材料、渗透压活性物质和推动剂等组成的,以渗透压作为释药能源的控释片。 原理:由渗透泵控释片释药机理可知控释片中的药物是以恒定的速率缓慢释放到片外的(即零级释放),其基本原理是先将药物与适宜辅料压制成片芯,外包一层半透性物质膜,后用激光在膜上打一小孔。口服该药之后胃肠道水分透过半透膜进入片芯使药物溶解,药物溶解后产生渗透压可透过半透膜将水分源源不断的进入片芯,由于半透膜内容积的限制,药物的近饱和浓度溶液又不断的通过激光孔移向片外,这样就使药物以恒定的速率释放到片外,因此称为渗透泵。常用辅料不能产生足够大的渗透压时,可在片芯中加入增加渗透压的物质,如氯化钾、氯化钠等电解质,以增加药物的溶解度,提高渗透压。如普鲁卡因酰胺渗透泵控释片。 二.影响因素以及针对影响增加溶解度的方法具体如下: 1、药物的分子结构 药物在溶剂中的溶解度是药物分子与溶剂分子间相互作用的结果。根据“相似相溶”原理,药物的极性大小对溶解度有很大的影响,而药物的结构则决定着药物极性的大小。 2、溶剂 溶剂通过降低药物分子或离子间的引力,使药物分子或离子溶剂化而溶解,是影响药物溶解度的重要因素。极性溶剂可使盐类药物及极性药物产生溶剂化而溶解;极性较弱的药物分子中的极性集团与水形成氢键而溶解;非极性溶剂分子与非极性药物分子形成诱导偶极一诱导偶极结合;非极性溶剂分子与半极性药物分子形成诱导偶极-永久偶极结合。通常,药物的溶剂化会影响药物在溶剂中的溶解度。 3、温度

LCMs适用的溶剂

LCMS适用的溶剂 通常根据目标化合物的溶解性和与LCMS中使用的各种电离技术的兼容性选择溶剂。在ESI和其它常压电离技术中,溶剂的挥发性和给质子的能力很重要。使用的主要质子溶剂像甲醇和其与水的混合物,比如1:1的甲醇水,或1:1的乙腈水(甲醇水混合物增加的粘度超过了纯净的水或甲醇,因为发生了放热反应)。当使用100%的水时,水相对低的蒸汽压可能对灵敏度不利。通过添加挥发性有机溶剂,降低表面张力,能提高灵敏度。表面活性剂,虽然能增加从喷雾液滴中释放出离子,但因其较高的质子亲和力,可能降低灵敏度。质子惰性的共溶剂,像10%DMSO水溶液和异丙醇,对一些化合物,能提高溶解度。在确保被测物比溶剂更偏碱性的前提下,甲酸通常以较低的水平(0.1%)添加,便于电离。一些酸,即使是很少量,像TFA,也可能限制灵敏度,但对增加一些化合物的溶解度可能是必需的。 在ESI电离模式中,缓冲液和盐(Na+,k+和磷酸盐)可降低蒸汽压,导致信号减弱。液滴的表面张力增加,挥发性降低,可用相对更易挥发的缓冲液,像醋酸铵,形成弱酸-碱对,进行补救。 选择溶剂需要考虑的问题 - 对于比溶剂更偏碱性的分子,气相中的溶剂将限制ESI电离。光电离除外(不是酸碱电离),但受溶剂调节。 - 从电离区域去除溶剂和水蒸气,增加在大气压下电离化合物的种类。 - 相对于样品或溶解在液体中的目标被测物减少液体体积,将提高ESI的性能(如,使用较低流速)。 - 有用的溶剂 - 可接受的添加物 - 非挥发性盐(磷酸盐,硼酸盐,柠檬酸盐等等) 会在离子源沉积,阻塞毛细管,因此需要更多的清洗和维护操作。现代离子源设计,相比以往的设计,能较好地处理非挥发性物质。 - 表面活性试剂(表面活性剂/去垢剂)抑制电喷雾电离的效率 - 无机酸具有腐蚀性 - 三氟乙酸(TFA) 超过0.01%的水平时,会在一定程度上抑制阳离子电喷雾。大大的抑制了阴离子电喷雾。 - 三乙基胺(TEA) 高PA(232千卡/摩尔)在m/z102处,产生强[M+H]离子。抑制弱碱性化合物阳离子的电喷雾。 - 四氢呋喃(THF) 100%的THF具有高可燃性,因此APCI和绝大多数接口技术使用氮气作为喷雾气。(使用空气可能引起爆炸危险。)会与PEEK?管反应。 离子抑制 离子抑制是质谱学家使用ESI作为电离方式时面对的比较多的具体问题之一。2001年,美国食品药品管理局(美国FDA)出版了工业生物分析有效方法指南(联邦注册号,66,100,28526),表明确保分析质量的要求是不能妥协的。该条款指明了可用于评估离子抑制是否存在的几个实验方案。将基质提取后加标样品中的被测物的多反应监测(MRM)响应(峰面积或峰高),与直接溶于纯流动相的被测物的多反应监测响应进行对比。基质中被测物的信号比在纯溶剂中的地,表明基质中存在干扰物质。 C.Mallet等发表的文章表明,在色谱图中被测物(和内标物)基质效应的存在。试验人员使用三通装置,将含有目标被测物及其内标物的溶液以连续进样方式引入质谱,将空白基质样品抽取物通过LC系统自动进样引入质谱后,连续的基线出现下降,表明连续进样的被测物的电离受到抑制,因为基质中有干扰物质存在。柱化学杂交柱化学和直径低于2微米的高选择性颗粒的使用,是色谱柱技术的一项革命性进步。这种杂交化学性质不依赖于可能引起离子抑制的流动相的改性,并且增加了颗粒的选择性。

溶剂常识

常用的溶剂相关知识 一、乙醇(ethyl alcohol,ethanol) 1.理化性质: (1)分子式 C2H6O (2)相对分子质量 46.07 (3)结构式 CH3CH2OH (4)外观与性状:无色液体,有酒香。 (5)熔点(℃):-114.1 (6)沸点(℃):78.3 (7)相对密度(水=1):0.79 (8)相对密度(空气=1):1.59 (9)溶解性:与水混溶,可混溶于醚、氯仿、甘油等多数有机溶剂。(10)禁忌物:强氧化剂、酸类、酸酐、碱金属、胺类。 2.健康危害 (1)侵入途径:吸入、食入、经皮吸收 (2)健康危害:为中枢神经系统抑制剂。首先引起兴奋,然后抑制。(3)急性中毒:多发生于口服。一般可分为兴奋、催眠、麻醉、窒息四阶段。患者进入第三或第四阶段,出现意识丧失、瞳孔扩大、呼吸不规律、休克、心力循环衰竭及呼吸停止。 (4)慢性影响:长期接触高浓度本品可引起鼻、眼、黏膜刺激症状,以及头痛、头晕、疲乏、易激动、震颤、恶心等。长期酗酒可引起多发性神经病、慢性胃炎、脂肪肝、肝硬化、心机损害及器质性精神病等。皮肤长期接触可引起干燥、脱屑、皲裂和皮炎。 3. 急救措施: (1)皮肤接触:脱去被污染的衣着,用流动的清水冲洗。 (2)眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。 (3)吸入:迅速脱离现场至空气新鲜处。就医。 (4)食入:饮足量温水,催吐,就医。 4. 防护措施: (1)呼吸系统防护:一般不需防护,高浓度接触时可佩戴过滤式防毒面具(半面罩)。 (2)眼睛防护:一般不需防护。 (3)身体防护:穿防静电工作服。 (4)手防护:戴一般作业防护手套。 5.危险类别:

实验室常用溶剂的化学位移

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,and Abraham Nudelman* Department of Chemistry,Bar-Ilan University, Ramat-Gan52900,Israel Received June27,1997 In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice. We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist. Experimental Section NMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected. In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine. Results Proton Spectra(Table1).A sample of0.6mL of the solvent,containing1μL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3μL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once. For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively). Carbon Spectra(Table2).To each tube,50μL of the stock solution and3μL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts (1)For recommendations on the publication of NMR data,see: IUPAC Commission on Molecular Structure and Spectroscopy.Pure Appl.Chem.1972,29,627;1976,45,217. (2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz. (3)In contrast to what was said in note2,in the13C spectra the solvent signal is due to the perdeuterated isotopomer,and the one-bond couplings to deuterium are always observable(ca.20-30Hz). Figure1.Chemical shift of H DO as a function of tempera-ture. https://www.sodocs.net/doc/3c11374257.html,.Chem.1997,62,7512-7515 S0022-3263(97)01176-6CCC:$14.00?1997American Chemical Society

溶剂效应图解

溶剂效应图解 图解很好! 其实是样品,样品溶剂,流动相和固定相综合作用的关系.当样品在样品溶剂中的相对溶解度大于在流动相时(可以理解为样品溶剂的洗脱能力大于流动相),样品就更喜欢在样品溶剂中,并很想随之流动.但同时与固定相的强作用只能使之形成追赶样品溶剂的效果.最终导致前延峰或裂峰的出现.(如图2:高溶解性溶剂).但当样品与固定相作用很弱时,大部分样品可能会赶上样品溶剂,但又由于与固定相的弱作用,导致其不可能与样品溶剂同时流出,最终导致拖尾峰的出现. 这也就是为什么在一般反相色谱中要用低有机相(比流动相低)溶解样品的原因!其效果就如图1:低溶解性溶剂 样品溶剂效应 很多因素可以导致峰形变差。样品溶液的组成与进样体积很可能就是导致此种现象的原因。 问题 色谱图上较早洗脱的峰扭曲变形或者开叉,与此同时较晚洗脱的峰则较为尖锐与对称,这些现象显示一个比较特殊的起因――样品溶液的溶剂很可能强于流动相。此种强溶剂效应的例子在图10-1A中可见。此处的样品溶液的溶剂是100%乙腈(100%的强溶剂),而流

动相的组成则较弱,18%的乙腈与72%的水。第一个峰是开叉的,并且与第二个峰相比,明显地变宽了。当样品溶液的溶剂变成流动相时,所有的峰形都改善了,且变得尖锐。见图10-1B。 解释 当样品进样时,有可能出现峰展宽,最佳的样品溶液组成和体积将会保持在10%甚至更低,在这个例子里,当样品溶剂与流动相溶剂强度不同时,换句话来说,也就是样品未用流动相溶解,因此,有些样品分子溶解在强溶剂(100%ACE),并随强溶剂流过柱子,而有些则溶解在流动相中,从而导致峰分叉. 当样品与流动相强度相差较小,进样影响也会小,第一个峰可能会宽于第二个峰,而当这种展宽导致必要的分离度降低时,这样情况应引起注意,在图10-2A中, 使用一根短柱,和5UL进样,这与最佳进样体积4UL相近,用了极性更强的溶剂导致分离度明显的降低,从2.1降到1.5(如图10-2B),分离度为2 或更大是评估一个完善方法的一个必要参数,也是每天方法的验证参数,1.5只是一个基本的分离度,任何一个方法或一根柱子都必需满足这个条件,当进样为一倍时,也就是10UL时,分离度更一步降低,此方法就不行了 尽量用流动相去溶解样品,如果样品在流动相中溶解性差不得不用强溶剂溶解,那就尽量减少进样量。

相关主题