搜档网
当前位置:搜档网 › 步进电机选型手册

步进电机选型手册

步进电机选型手册
步进电机选型手册

重要。雷赛步进电机控制祥细资料

什么是步进电机 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步 进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B 与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。

步进电机选型方法

如何选择合适的步进电机 1. 负载分类: (1)Tf力矩负载: Tf = G·r G 重物重量 r 半径 (2)TJ惯性负载: J = M(R12+R22)/ 32 (Kg·cm) M:质量 R1:外径 R2:内径 TJ = J·dw/dt dw/dt 为角加速度 2.力矩曲线图的说明 力矩曲线图是步进电机输出特性的重要表现,以下是我们对其中关键词语的解释。

说明: 1. 工作频率点:表示步进电机在该点的转速值。单位:Hz n=Θ*Hz / (360*D) n 转/秒 Hz 该点的频率值 D 电路的细分值, Θ步进电机的步距角 例:1.8步进电机,在1/2细分驱动的情况下(即每步0.9)500Hz 时,其速度是 1.25转/秒 2. 起动区域:步进电机可以直接起动或停止的区域。 3. 运行区域:在这个区域里,电机不能直接运行,必须先要在起动区域内起动,然后通过加速的方式,才能到达该工作区域内。同样,在该区域内,电机也不能直接制动,否则就会造成失步,必须通过减速的方式到起动区域内,在进行制动。 4. 最大起动频率点:步进电机在空载情况下,最大的直接起动速度点。 5. 最大运行频率点:步进电机在空载情况下,可以达到的最大的运行速度点。 6. 起动力矩:步进电机在特定的工作频率点下,直接起动可带动的最大力矩负载值。 7. 运行力矩:步进电机在特定的工作频率点下,运行中可带动的最大力矩负载值。由于运动惯性的原因,所以,运行力矩要比起动力矩大。 3 加速和减速运动的控制 当一个系统的工作频率点在力矩曲线图的运行区域内时,如何在最短的时间内加速,减速就成了关键。如下图示,步进电机的动态力矩特性一般在低速时为水平直线状,在高速时,由于电感的影响,很快下滑。

步进电机驱动芯片选型指南

以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它 的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。 (3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。(2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。

如何选择合适的步进电机

如何选择合适的步进电机 2004年3月14日 1. 负载分类: (1)Tf力矩负载: Tf = G·r G 重物重量 r 半径 (2)TJ惯性负载: J = M(R12+R22)/ 32 (Kg·c m) M:质量 R1:外径 R2:内径 TJ = J·dw/dt dw/dt 为角加速度 2.力矩曲线图的说明 力矩曲线图是步进电机输出特性的重要表现,以下是我们对其中关键词语的解释。

说明: 1. 工作频率点:表示步进电机在该点的转速值。单位:Hz n=Θ*Hz / (360*D) n 转/秒 Hz 该点的频率值 D 电路的细分值, Θ步进电机的步距角 例:1.8步进电机,在1/2细分驱动的情况下(即每步0.9)500Hz 时,其速度是 1.25转/秒 2. 起动区域:步进电机可以直接起动或停止的区域。 3. 运行区域:在这个区域里,电机不能直接运行,必须先要在起动区域内起动,然后通过加速的方式,才能到达该工作区域内。同样,在该区域内,电机也不能直接制动,否则就会造成失步,必须通过减速的方式到起动区域内,在进行制动。 4. 最大起动频率点:步进电机在空载情况下,最大的直接起动速度点。 5. 最大运行频率点:步进电机在空载情况下,可以达到的最大的运行速度点。 6. 起动力矩:步进电机在特定的工作频率点下,直接起动可带动的最大力矩负载值。 7. 运行力矩:步进电机在特定的工作频率点下,运行中可带动的最大力矩负载值。由于运动惯性的原因,所以,运行力矩要比起动力矩大。 3 加速和减速运动的控制 当一个系统的工作频率点在力矩曲线图的运行区域内时,如何在最短的时间内加速,减速就成了关键。如下图示,步进电机的动态力矩特性一般在低速时为水平直线状,在高速时,由于电感的影响,很快下滑。

三相步进电机产品手册

运动系统控制产品
使用手册
上海昀研自动化科技有限公司
二〇〇九年七月第三版

三相步进电机
返回目录
■ 42mmHB 系列三相步进电机
步 距 角(Step Angle) 步距精度(Step Accuracy) 温 升(Temperature Rise) 环境温度(Ambient Temperature Range) 绝缘等级(Insulation Class) 绝缘电阻(Insulation Resistance) 绝缘强度(Dielectric Strength) 径向跳动(radial runout) 轴向间隙(axial clearance) 1.2° ±5% 75℃ Max -20℃~+50℃ B 500VDC 100MΩ Min 500VAC 50Hz 1Ma Minute 0.02mmMax(450g 负载) 0.08mmMax(450g 负载)
技术参数(Specifications) 技术参数
型号 Model 步距角 机身长 额定电流 驱动器电源输入 保持转矩 Holding torque (N.m) 0.16 0.22 0.32 Step Angle Length Current Power Supply O () L(mm) (A/phase) (A) DC24V 1A DC24V 2A DC24V 1A 重量 转动惯量 适配驱动器 Rotor inertia Weight Matched driver 2 (g.cm ) (kg) 100 220 380 0.23 0.28 0.35 YK3605MA YK3605MA YK3605MA
423HB35-153 1.2 35 1.5 423HB40-153 1.2 40 1.5 423HB50-153 1.2 50 1.5 ▲以上仅为代表性产品,可按要求另行制作.
外形尺寸(Dimension) 外形尺寸(Dimension)
力矩测试数据(仅供参考) 力矩测试数据(仅供参考)
注意: ▲ 注意:
电机特性数据和技术数据都是在匹配我公司驱动器驱动的情况下测得,测试电压为 28VDC. 电机安装时务必用电机前端盖安装止口定位,并注意公差配合,严格保证电机轴与负载轴的同心度. 电机与驱动器连接时,请勿接错相.
1

雷赛步进电机选型参考

步进电机的种类和特点 步进电机在构造上有三种主要类型:反应式(Variable Reluctance,VR)、永磁式(Permanent Magnet,PM)和混合式(Hybrid Stepping,HS)。 * 反应式 定子上有绕组、转子由软磁材料组成。结构简单、成本低、步距角小,可达1.2°、但动态性能差、效率低、发热大,可靠性难保证。 * 永磁式 永磁式步进电机的转子用永磁材料制成,转子的极数与定子的极数相同。其特点是动态性能好、输出力矩大,但这种电机精度差,步矩角大(一般为7.5°或15°)。 * 混合式 混合式步进电机综合了反应式和永磁式的优点,其定子上有多相绕组、转子上采用永磁材料,转子和定子上均有多个小齿以提高步矩精度。其特点是输出力矩大、动态性能好,步距角小,但结构复杂、成本相对较高。 按定子上绕组来分,共有二相、三相和五相等系列。最受欢迎的是两相混合式步进电机,约占97%以上的市场份额,其原因是性价比高,配上细分驱动器后效果良好。该种电机的基本步距角为1.8°/步,配上半步驱动器后,步距角减少为0.9°,配上细分驱动器后其步距角可细分达256倍 (0.007°/微步)。由于摩擦力和制造精度等原因,实际控制精度略低。同一步进电机可配不同细分的驱动器以改变 精度和效果。 雷赛步进电机系列 雷赛两相、三相混合式步进电机,采用优质冷轧钢片和耐高温永磁体制造,产品规格涵盖35-130范围。具有温升低、可靠性高的特点,由于其具有良好的内部阻尼特性,因而运行平稳,无明显震荡区。可满足不同行业、不同环境下的使用需求。 雷赛采用专利技术研发的三相步进电机驱动系统,更好地解决了传统步进电机低速爬行、有共振区、噪音大、高速扭矩小、起动频率低和驱动器可靠性差等缺点,具有交流伺服电机的某些运行特性,其运行效果可与进口产品相媲美。 两相步进电机命名规则 <> 上例表示机座号为57mm,两相混合式,步距角为1.8度,扭矩0.9Nm,设计序号01,单边出轴的电机。 三相步进电机命名规则 <> 上例表示机座号为57mm,三相混合式,步距角为1.8度,扭矩0.9Nm,设计序号01,单边出轴的电机。

步进电机选择的详细计算过程总结

步进电机选择的详细计算过程 2011-07-25 00:13:59| 分类:默认分类|举报|字号订阅 1,如何正确选择伺服电机和步进电机? 主要视具体应用情况而定,简单地说要确定:负载的性质(如水平还是垂直负载等),转矩、惯量、转速、精度、加减速等要求,上位控制要求(如对端口界面和通讯方面的要求),主要控制方式是位置、转矩还是速度方式。供电电源是直流还是交流电源,或电池供电,电压范围。据此以确定电机和配用驱动器或控制器的型号。 2,选择步进电机还是伺服电机系统? 其实,选择什么样的电机应根据具体应用情况而定,各有其特点。请见下表,自然明白。

各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 6,使用电机时要注意的问题? 上电运行前要作如下检查: 1)电源电压是否合适(过压很可能造成驱动模块的损坏);对于直流输入的+/-极性一定不能接错,驱动控制器上的电机型号或电流设定值是否合适(开始时不要太大); 2)控制信号线接牢靠,工业现场最好要考虑屏蔽问题(如采用双绞线); 3)不要开始时就把需要接的线全接上,只连成最基本的系统,运行良好后,再逐步连接。 4)一定要搞清楚接地方法,还是采用浮空不接。 5)开始运行的半小时内要密切观察电机的状态,如运动是否正常,声音和温升情况,发现问题立即停机调整。 7,步进电机启动运行时,有时动一下就不动了或原地来回动,运行时有时还会失步,是什么问题? 一般要考虑以下方面作检查: 1)电机力矩是否足够大,能否带动负载,因此我们一般推荐用户选型时要选用力矩比实际需要大50%~100%的电机,因为步进电机不能过负载运行,哪怕是瞬间,都会造成失步,严重时停转或不规则原地反复动。 2)上位控制器来的输入走步脉冲的电流是否够大(一般要>10mA),以使光耦稳定导通,输入的频率是否过高,导致接收不到,如果上位控制器的输出电路是CMOS电路,则也要选用CMOS输入型的驱动器。 3)启动频率是否太高,在启动程序上是否设置了加速过程,最好从电机规定的启动频率内开始加速到设定频率,哪怕加速时间很短,否则可能就不稳定,甚至处于惰态。 4)电机未固定好时,有时会出现此状况,则属于正常。因为,实际上此时造成了电机的强烈共振而导致进入失步状态。电机必须固定好。 5)对于5相电机来说,相位接错,电机也不能工作。 8,我想通过通讯方式直接控制伺服电机,可以吗? 可以的,也比较方便,只是速度问题,用于对响应速度要求不太高的应用。如果要求快速的响应控制参数,最好用伺服运动控制卡,一般它上面有DSP和高速

步进电机的计算与选型实用计算

步进电机的计算与选型实 用计算 Prepared on 22 November 2020

步进电机的计算与选型 对于步进电动机的计算与选型,通常可以按照以下几个步骤: 1)根据机械系统结构,求得加在步进电动机转轴上的总转动惯量eq J; T; 2)计算不同工况下加在步进电动机转轴上的等效负载转矩eq 3)取其中最大的等效负载转矩,作为确定步进电动机最大静转矩的依据; 4)根据运行矩频特性、起动惯频特性等,对初选的步进电动机进行校核。 1.步进电动机转轴上的总转动惯量eq J的计算 加在步进电动机转轴上的总转动惯量eq J是进给伺服系统的主要参数之一, 它对选择电动机具有重要意义。eq J主要包括电动机转子的转动惯量、减速装置 与滚珠丝杠以及移动部件等折算到电动机转轴上的转动惯量等。 T的计算 2.步进电动机转轴上的等效负载转矩eq 步进电动机转轴所承受的负载转矩在不同的工况下是不同的。通常考虑两 种情况:一种情况是快速空载起动(工作负载为0),另一种情况是承受最大 工作负载。 T (1)快速空载起动时电动机转轴所承受的负载转矩eq1 T=T+T+T (4-8) eq1amax f0 T——快速空载起动时折算到电动机转轴上的最大加速转矩,单位式中amax 为N·m; T——移动部件运动时折算到电动机转轴上的摩擦转矩,单位 f N·m; T——滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩,单位 为N·m。

具体计算过程如下: 1)快速空载起动时折算到电动机转轴上的最大加速转矩: amax eq 2T =J =60eq m a J n t πε (4-9) 式中 eq J ——步进电动机转轴上的总转动惯量,单位为2kg m ?; ε——电动机转轴的角加速度,单位为2/rad s ; m n ——电动机的转速,单位r/min ; a t ——电动机加速所用时间,单位为s ,一般在~1s 之间选取。 2)移动部件运动时折算到电动机转轴上的摩擦转矩: f T =2F i πη摩h P (4-10) 式中 F 摩——导轨的摩擦力,单位为N ; h P ——滚珠丝杠导程,单位为m ; η——传动链总效率,一般取0.70.85η=; i ——总的传动比,/s m i n n =,其中m n 为电动机转速,s n 为丝杠的 转速。 其中式(4-10)中的导轨的摩擦力为: F μ摩c =(F +G) (4-11) 式中 μ——导轨的摩擦因素(滑动导轨取~,滚动导轨取~); c F ——垂直方向的工作负载,车削时为c F ,立铣时为z F ,单位为N ,空载时c F =0; G ——运动部件的总重力,单位为N ; 3)滚珠丝杠预紧后折算到电动机转轴上的附加摩擦转矩:

步进电机选型

步进电机在构造上有三种主要类型:反应式(Variable Reluctance,VR)、永磁式(Permanent Magnet,PM)和混合式(Hybrid Stepping,HS) 反应式:定子上有绕组、转子由软磁材料组成。结构简单、成本低、步距角小,可达1.2°、但动态性能差、效率低、发热大,可靠性难保证。 永磁式:永磁式步进电机的转子用永磁材料制成,转子的极数与定子的极数相同。其特点是动态性能好、输出力矩大,但这种电机精度差,步矩角大(一般为7.5°或15°)。 混合式:混合式步进电机综合了反应式和永磁式的优点,其定子上有多相绕组、转子上采用永磁材料,转子和定子上均有多个小齿以提高步矩精度。其特点是输出力矩大、动态性能好,步距角小,但结构复杂、成本相对较高。 按定子上绕组来分,共有二相、三相和五相等系列。最受欢迎的是两相混合式步进电机,约占97%以上的市场份额,其原因是性价比高,配上细分驱动器后效果良好。该种电机的基本步距角为1.8°/步,配上半步驱动器后,步距角减少为0.9°,配上细分驱动器后其步距角可细分达256倍(0.007°/微步)。由于摩擦力和制造精度等原因,实际控制精度略低。同一步进电机可配不同细分的驱动器以改变精度和效果。 由此可以确定机械手选取步进电机为两相混合式步进电机。 日本信浓 二相混合式步进电机:58D混合式步进电机 59D混合式步进电机

56C混合式系列 45D系列 42D系列

39D系列 日本安川: 42HD系列 马达:https://www.sodocs.net/doc/3c14635365.html,/products/st/list/?series_code=HM00&type=标准型 CMK系列是2相步进电动机和DC24V输入微步驱动器的组合产品。 有助于装置的小型化、低振动化。

步进电机选型

步进电机选型 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给用户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1) 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A 偏移(て-1/3て)=2/3て。如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这

信浓步进电机STP-43D2035选型及使用说明

STP-43D2035最初是我公司要求信浓工厂定制的一款跑高速的42步进电机,是按照标准型号SST43D2160参数定制的,主要变更之处是将电机轴长加长到 24mm以方便安装同步轮,并配好引线方便客户直接使用。但实际应用中很少用单极驱动了,所以大部分客户都是串联接线用于中速运行场合,目前多用于医疗设备和上板机设备上。 STP-43D2035的主要电气特性参数如下: STP-43D2035主要外形尺寸:

现在很少用户会选用STP-43D2035用于本来设计目的的单极驱动方式,绝大多数用双极驱动,配双极驱动器时在高速运行场合STP-43D2035用半绕组接线,额定电流还是1.6A,步进电机距频图参考SST43D2160。但如果用于低于300rpm 转速下工作,可以用STP-43D2035串联接线,额度电流变成1.13A,这时候电机距频图可以参考SST43D2085。综上所述,如果不是用串联接线用于低速运行场合,不太推荐选用STP-43D2035。 STP-43D2035接线图: 单极驱动的时候按照上图接线,双极驱动的时候,半绕接线可以不接A-B-,接A,Acom和B,Bcom,串联接线的时候不接Acom,Bcom,接AA-和BB-。

STP-43D2035单极驱动下的距频图和半绕接线可以参考SST43D2160距频图,串联接线参考SST43D2085距频图。X轴是驱动器不细分情况下的脉冲频率值,这个脉冲频率*0.3=转速,rpm。 如果需要双出轴的,对应型号是STP-43D2035-01,和STP-43D2035是插头式出线不一样,这款双出轴步进电机STP-43D2035-01是引线式出线。如果工作转速比较高的话,双出轴建议选用比较常用的SST43D2126。另外,这些双出轴步进电机维科特机电都有配上刹车器的刹车步进电机,需要的话请咨询维科特机电或者浏览公司网站。 配套驱动器推荐选用DM3622,电压范围DC8~36V,电流峰值0.2~2.2A,最大细分128细分,带自检和连续自运行、受控自运行等功能,支持单双脉冲信号,运行噪声低。如果配套信浓步进电机驱动器,推荐选用XNFDR4,但电流值偏大,匹配度不是很好。

步进电机选型的计算示例

步进电机选型的计算示例 一、必要脉冲数和驱动脉冲数速度计算的示例 下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。这是一个实际应用例子,可以更好的理解电机选型的计算方法。 1.1 驱动滚轴丝杆 如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下: 必要脉冲数=100 10 × 360° 1.2° =3000[脉冲] 如果采用自启动方式驱动1秒钟,则驱动脉冲速度应该这样计算: 3000[Pulse]/1[sec]=3[kHz] 但是,自启动速度不可能是5kHz,应该采用加/减速运行方式来驱动。如果加/减速时间设置为定位时间的25%,启动脉冲速度为500[Hz],则计算方法如下: 驱动脉冲速度[Hz]=3000[脉冲]-500[Hz]×0.25[秒] 1[秒]-0.25[秒] =3.8 [kHz] 如图所示: 1.2驱动传动带 如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟。驱动轮的周长即旋转一圈移动的距离大约为50[mm]。 因此,所需要的必要脉冲数为: 必要脉冲数=1100 50 × 360° 1.2° =6600 [脉冲]

所需参数同上例驱动滚轴丝杆,采用加/减速运行模式,则驱动脉冲速度为: 驱动脉冲速度[Hz]=6600[脉冲]-500[Hz]×0.25[秒] 1[秒]-0.25[秒] =8.7 [kHz] 如图所示: 二、负载力矩的计算示例(T L) 下面给出的是一个3相步进电机负载力矩的计算示例。这是一个实际应用例子,其中的数字公式有助于更好的理解电机选型的应用。 2.1 滚轴丝杆驱动水平负载 如下图,滚轴丝杆驱动水平负载,效率为90%,负载重量为40千克,则负载力矩的计算方法如下: T L=m·P B 2πη × 1 i [kgf·cm] T L=40[kg]×1[cm] 2π×0.9 × 1 1 =7.07 [kgf·cm] 2.2 传送带驱动水平负载 传送带驱动水平负载,效率为90%,驱动轮直径16毫米,负载重量是9千克,则负载力矩的计算方法如下:

步进电机选型的步骤及如何选择步进电机.docx

在选择步进电机时可以按以下步骤进行选择,这样可以避免选型不当带来的麻烦。具体如下,仅供参考。 1、步进电机转矩的选择 步进电机的保持转矩,近似于传统电机所称的“功率”。当然,有着本质的区别。步进电动机的物理结构,完全不同于交流、直流电机,电机的输出功率是可变的。通常根据需要的转矩大 小 ( 即所要带动物体的扭力大小) ,来选择哪种型号的电机。大致说来,扭力在以下,选择20、 28、35 、39、42( 电机的机身直径或方度,单位:mm);扭力在左右的,选择57 电机较为合适。扭 力在几个或更大的情况下,就要选择86、 110、 130 等规格的步进电机。 2、步过电机转速的选择 对于电机的转速也要特别考虑。因为,电机的输出转矩,与转速成反比。就是说,步进电机 在低速 ( 每分钟几百转或更低转速,其输出转矩较大) ,在高速旋转状态的转矩(1000 转 / 分 --9000 转) 就很小了。当然,有些工况环境需要高速电机,就要对步进电动机的线圈电阻、电感等指标进 行衡量。选择电感稍小一些的电机,作为高速电机,能够获得较大输出转矩。反之,要求低速 大力矩的情况下,就要选择电感在十几或几十mH,电阻也要大一些为好。 3、步进电机空载起动频率的选择 步进电机空载起动频率,通常称为“空起频率”。这是选购电机比较重要的一项指标。如果 要求在瞬间频繁启动、停止,并且,转速在1000 转 / 分钟左右 ( 或更高 ) ,通常需要“加速启动” 。

如果需要直接启动达到高速运转,最好选择反应式或永磁电机。这些电机的“空起频率”都比较高。 4、步进电机的相数选择 步进电机的相数选择,这项内容,很多客户几乎没有什么重视,大多是随便购买。其实,不 同相数的电机,工作效果是不同的。相数越多,步距角就能够做的比较小,工作时的振动就相对 小一些。大多数场合,使用两相电机比较多。在高速大力矩的工作环境,选择三相步进电机是比较实用的。 5、针对步进电机使用环境来选择 特种步进电机能够防水、防油,用于某些特殊场合。例如水下机器人,就需要放水电机。对 于特种用途的电机,就要针对性选择了。 6、根据您的实际情况可否需要特殊规格 特殊规格的步进电机,请和我们沟通,在技术允许的范围内,加工订货。例如,出轴的直径、长短、伸出方向等。 7、如有必要最好与厂家的技术工程师进一步沟通与确认型号

步进电机选型指南

步进电机选型指南 何为步进电机 步进电机是一种专门用于位置和速度精确控制的特种电机。步进电机的最大特点是其“数字性”,对于控制器发过来的每一个脉冲信号,步进电机在其驱动器的推动下运转一个固定角度(简称一步),如下图所示。如接收到一串脉冲步进电机将连续运转一段相应距离。同时可通过控制脉冲频率,直接对电机转速进行控制。由于步进电机工作原理易学易用,成本低(相对于伺服)、电机和驱动器不易损坏,非常适合于微电脑和单片机控制,因此近年来在各行各业的控制设备中获得了越来越广泛的应用。 步进电机的种类和特点 步进电机在构造上有三种主要类型:反应式(Variable Reluctance,VR)、永磁式(Permanent Magnet,PM)和混合式(Hybrid Stepping,HS)。 * 反应式 定子上有绕组、转子由软磁材料组成。结构简单、成本低、步距角小,可达1.2°、但动态性能差、效率低、发热大,可靠性难保证。 * 永磁式 永磁式步进电机的转子用永磁材料制成,转子的极数与定子的极数相同。其特点是动态性能好、输出力矩大,但这种电机精度差,步矩角大(一般为7.5°或15°)。

* 混合式 混合式步进电机综合了反应式和永磁式的优点,其定子上有多相绕组、转子上采用永磁材料,转子和定子上均有多个小齿以提高步矩精度。其特点是输出力矩大、动态性能好,步距角小,但结构复杂、成本相对较高。 按定子上绕组来分,共有二相、三相和五相等系列。最受欢迎的是两相混合式步进电机,约占97%以上的市场份额,其原因是性价比高,配上细分驱动器后效果良好。该种电机的基本步距角为1.8°/步,配上半步驱动器后,步距角减少为0.9°,配上细分驱动器后其步距角可细分达256倍(0.007°/微步)。由于摩擦力和制造精度等原因,实际控制精度略低。同一步进电机可配不同细分的驱动器以改变精度和效果。 雷赛步进电机系列 雷赛两相、三相混合式步进电机,采用优质冷轧钢片和耐高温永磁体制造,产品规格涵盖35-130范围。具有温升低、可靠性高的特点,由于其具有良好的内部阻尼特性,因而运行平稳,无明显震荡区。可满足不同行业、不同环境下的使用需求。 雷赛采用专利技术研发的三相步进电机驱动系统,更好地解决了传统步进电机低速爬行、有共振区、噪音大、高速扭矩小、起动频率低和驱动器可靠性差等缺点,具有交流伺服电机的某些运行特性,其运行效果可与进口产品相媲美。 两相步进电机命名规则 <>

步进电机的选型及计算方法

步进电机选型的计算方法 步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 一、驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离 × 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒] (2)加/减速运行方式

加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 定位时间[秒]-加/减速时间[秒] 二、电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(TL) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动 ※负载力矩的计算公式: TL=[ F·PB 2πη + μ0F0PB 2π ]× 1 i [kgf·cm] ※负载力矩的估算公式: TL=m·PB 2πη × 1 i [kgf·cm] (水平方向) TL=m·PB × 1 ×2 [kgf·cm] (垂直方向)

步进电机的选型原则

步进电机的选型原则集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

步进电机的选型原则是一种作为控制用的特种电机,它的使用非常广泛,在工业控制中起着重要的作用。 的旋转是以固定的角度(称为“步距角”)一步一步运行的,其特点是没有积累误差(精度为百分之100),所以广泛应用于各种开环控制。步进电机的运行要有一电子装置进行驱动,这种装置就是,它是把控制系统发出的脉冲信号转化为步进电机的角位移,或者说:控制系统每发一个脉冲信号,通过驱动器就使步进电机旋转一步距角。所以步进电机的转速与脉冲信号的频率成正比。虽然已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 ?为了让更多的用户了解步进电机及,选择到最适合自己使用要求的步进电机和步进电机驱动器,特将有关选型原则介绍如下:(仅供参考) 一、首先确定步进电机拖动负载所需要的扭矩。最简单的方法是在负载轴上加一杠杆,用弹簧秤拉动杠杆,拉力乘以力臂长度既是负载力矩。或者根据负载特性从理论上计算出来。由于步进电机是控制类电机,所以目前常用步进电机的最大力矩不超过45Nm,力矩越大,成本越高,如果您所选择的力矩较大或超过此范围,可以考虑加配减速装置。 二、确定步进电机的最高运行转速。转速指标在的选取时至关重要,的特性是随着电机转速的升高,扭矩下降,其下降的快慢和很多参数有关,如:驱动器的驱动电压、的相电流、的相电感、大小等等,一般的规律是:驱动电压越高,力矩下降越慢;的相电流越

步进电机的选型原则

步进电机的选型原则 步进电机是一种作为控制用的特种电机,它的使用非常广泛,在工业控制中起着重要的作用。 步进电机的旋转是以固定的角度(称为“步距角”)一步一步运行的,其特点是没有积累误差(精度为百分之100),所以广泛应用于各种开环控制。步进电机的运行要有一电子装置进行驱动,这种装置就是步进电机驱动器,它是把控制系统发出的脉冲信号转化为步进电机的角位移,或者说:控制系统每发一个脉冲信号,通过驱动器就使步进电机旋转一步距角。所以步进电机的转速与脉冲信号的频率成正比。虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 为了让更多的用户了解步进电机及步进电机驱动器,选择到最适合自己使用要求的步进电机和步进电机驱动器,特将有关选型原则介绍如下:(仅供参考) 一、首先确定步进电机拖动负载所需要的扭矩。最简单的方法是在负载轴上加一杠杆,用弹簧秤拉动杠杆,拉力乘以力臂长度既是负载力矩。或者根据负载特性从理论上计算出来。由于步进电机是控制类电机,所以目前常用步进电机的最大力矩不超过 45Nm ,力矩越大,成本越高,如果您所选择的步进电机力矩较大或超过此范围,可以考虑加配减速装置。 二、确定步进电机的最高运行转速。转速指标在步进电机的选取时至关重要,步进电机的特性是随着电机转速的升高,扭矩下降,其下降的快慢和很多参数有关,如 : 驱动器的驱动电压、步进电机的相电流、步进电机的相电感、步进电机大小等等,一般的规律是:步进电机驱动电压越高,力矩下降越慢;步进电机的相电流越大,步进电机力矩下降越慢。在设计方案时,应使步进电机的转速控制在 1500 转 / 分或 1000 转 / 分,当然这样说很不规范,可以参考〈矩 - 频特性〉。 三、根据步进电机负载最大力矩和步进电机最高转速这两个重要指标,再参考〈矩 - 频特性〉,就可以选择出适合自己的步进电机。如果您认为自己选出的步进电机太大,可以考虑加配减速装置,这样可以节约成本,也可以使您的设计更灵活。要选择好合适的减速比,要综合考虑力矩和速度的关系,选择出最佳方案。 四、最后还要考虑留有一定的(如百分之30 )步进电机力矩余量和步进电机转速余量。 五、尽量选择混合式步进电机,它的性能高于反应式步进电机。 六、尽量选取细分步进电机驱动器,且使步进电机驱动器工作在细分状态。

步进电机 知识及驱动芯片选型指南

步进电机驱动芯片选型指南 以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。(3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。 (2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。 (2)反应式、永磁式和混合式三种步进电机的性能指标、外形尺寸、安装方法、脉冲电源种类和控制电路等都不同,价格差异也很大,选择时应综合考虑。 (3)具有控制集成电路的步进电机应优先考虑。 8、步进电机的基本参数: (1)电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角

相关主题