搜档网
当前位置:搜档网 › 纺织物理 第五章 纤维的光学性质

纺织物理 第五章 纤维的光学性质

纺织物理 第五章 纤维的光学性质
纺织物理 第五章 纤维的光学性质

纺织物理第五章纤维的光学性质

第五章纤维的光学性质

纤维的光学性质是指纤维对光的吸收、反射、折射和透射的性质,以及光在纤维中的传递性质。纤维在光照下会呈色发光,纤维对不同振动方向的光会产生不同的折射效果,纤维受光以后会老化降解,这些都是纤维的光学性质。

纤维的光学性质直接取决于纤维的结构,纤维的分子结构能很好地将光线的光电场能转化成纤维分子或电子云的振动能,将使纤维的耐光老化性提高。纤维聚集态结构的不同将引起纤维反光、折光性质的变化,尤其是取向的分子排列将使纤维的光学各向异性特征明显,应该说纤维的光学各向异性是纤维结构的各向异性的最明显的表征,也是用的最多最为方便的传统测量方法。

本章将重点介绍纤维的折射特征、双折射性质与测量、纤维的光老化及发光现象,以及纤维的红外光谱及性质。通常光学性质的讨论范围为紫外光(200~400nm)、可见光(400~700nm)和红外光(0.7~20um)。光的波长不同,能量不同。可见光的波长不同其颜色不同,结果见表5-1。

表5—1 各种颜色的波长及波长范围

颜色标准

波长波长范围

红700 620~7

80

橙610 595~6

20

黄580 575~5

95

绿510 480~5

75

蓝470 450~4

80

紫420 380~4

50

第一节纤维的反射与折射的性质

一、光与纤维

当光线照射在纤维上,在纤维与空气或与其他介质的界面处将发生反射与折射现象。

该界面在纤维体内存在时,情况也一样。其光路与纤维的相互关系如图5-1所示。

(5.1)

为光线在空气中或真空中的传播速式中,v

1

度;v

为光线在纤维中的传播速度。

2

二、纤维的折射率

纤维是一个轴对称的各向异性体,其折射率在上是不同的。折射率大小的矢量在纤维中是一个空间椭球分布,如图5-2所示。可以看出,沿纤维轴向(Z轴)的折射率较大,为椭球的长度。在纤维经向平面中的折射率为中心对称、值相等且较少。

图5—2 纤维的折射率分布

设:纤维中的直角坐标系的z轴为纤维轴方

向,则

n、y n、z n分别表示纤维中沿x、y、z轴的

x

折射率值。

则有:

n=y n=⊥n

x

n=//n

z

而纤维轴的整体平均折射率值,即将纤维看成一各向同性体时的折射率值为:

n=31(x n+y n+z n)

iso

(5.1)

n=31(2⊥n+//n)

iso

(5.2)

通常纤维的折射率有

n=⊥n,即平行纤维轴的

//

折射率较大,光的传播速度较低;垂直纤维轴的折射率较小,故光的传播速度较快。

光子在介质中的传递是受到介质的光密度影响的。而介质的光密度是由电子密度和电子云的易动性决定的。光子通过介质时,必然会与电子发生碰撞,和对电子云发生干扰,引起光子能量的转换与损耗,以及介质电子云的骚动,这将改变光子的运动速度与方向。在宏观上体现出光线的传递速度减慢,光波波长的变化和折射率的增大。因此,只要结构不同,分子排列方式不同、晶格参数(三轴方向和长短)不同,折射率值就会不同。

三、纤维的反射与光泽

由图5-1可知,除了折射外另一主要的光学现象为光的反射。图5-1中绘出的只是一种镜面反射和多层反射。实践中,镜面反射只是主反射线,在其他各个方向上也有反射,称为漫反射或者散射,如图5-3(a)所示。这与纤维的表面形态不同引起的散射不同有关,见图5-3(b),形态不同是由主反射线的变化引起的。前者是微观结构作用;后者为宏观形态作用。

入主

(a)反射示意图

(b)形态散射示意图

光的反射直接影响被光照物的光泽特征。

光线由光疏介质入射到光密介质时所产生的反射量,可由Flamier公式来表达,反射系数R为:

R=

2

1

212)

(

n n n n +-

(5.3)

R 0

=2

)1

1

(+-n n (5.4)

对纤维来说,反射系数R 一般为0.2~0.23左右,折

射率n 在1.5~1.6内。 第二节 纤维的双折射与测量 一、 纤维的双折射

对物质来说,当沿着两个不同的光轴的光线传播时,由于在此二方向上光密度的不同,将使光线产生两种传递速度,即具有两个折射率值,这种现象就称为双折射现象,表征其的指标为双折射率Δn 。双折射现象的本质是材料结构的各向异性的光学反映,对于三轴方向的折射率不同的物质其双折射率有三个。

若直角坐标系中的三个折射率分别x

n 、

y n 、z n 则双折射率为:

Δxy

n =x

n —y

n

Δ

yz

n =

y

n —

z

n

(5.5)

Δzx

n =z

n —x

n

由于纤维是轴对称的各向异性体,即只存在

平行纤维轴的折射率//

n 和垂直纤维轴折射率⊥

n ,

故纤维的双折射定义为:

Δ

n

Δ

//

n -Δ

⊥n

(5.6)

即平行于纤维轴振动的平面偏振光传播时的折射率//

n 与垂直于纤维轴振动的平面偏振光传

播时的折射率⊥

n 的差值Δn 。其物理过程为,当

一束平面偏振光进入纤维时,可将其分解为二组相互正交的平面偏振光.如图5-4所示.一是沿纤维轴向振动的平面偏振光,其一般传播速度较慢,折射率值较大,称为非常光,或称慢光,又称 e 光。另一是垂直纤维轴方向振动的平面偏振光,其一般传播速度较快,折射率较低,称为寻常光,或称快光,又称o 光。故一般情况中光对纤维的作用结果是: v ∥

, //

n >⊥n

但也有不同情况,通常将:

//n >⊥n

即Δn > 0 称为正晶体;

//n <⊥n 即Δn < 0 称为负晶体;

//n >⊥

n 即Δn = 0 称为零晶体(或者各向同

性体)。

纤维的双折射值有大有小,一般在0~

0.2范围内,而且其值有正有负.如涤纶为Δn =0.188,玻璃纤维Δn =0,腈纶为Δn =-0.004。

二、影响纤维双折射值的因素

影响纤维双折射值的因素很多,但基本上可以从纤维结构影响的角度和环境条件上来讨论。

1、纤维的结构因素

(1)极性基团及其排列方向

①极性基团的极性

聚乙烯与聚氯乙烯

a)-C-C-C-

b)

涤纶:

粘胶与醋酸纤维:

粘胶:

②极性基团的方向

因此光振动的方向与极性基团的偶极轴方向的一致性极为重要。相同时极化作用强,光传递损耗大,速度慢;垂直时,极化作用小,损耗小,光传导速度高。光电场对极性基团的极化度σ与折射率的关系为:

如腈纶分子结构,因机心风格基团方向的影响,

加之分子间排列中的侧向有序和轴向短程有序,长程无序,使腈纶变为负晶体材料。

(2) 纤维的密度和结晶度

纤维的结晶度增加意味着纤维密度的增加,而纤维密度与折射率的关系,根据Gladston & Dale ’s 方程可得: 同理存在:const n

iso

-1

即折射率与密度成正比,双折射值也与密度成正比。这也就是说,对同种纤维来说,纤维得密度越高,其双折射值越大。

(3) 纤维大分子的构型

//

////1

c n =-ρ⊥

⊥=-c n ρ1

=ρρ// c

c c n n =-=-⊥⊥

////ρ

(4) 纤维种分子得取向排列

根据:

其中:N 为链段数,λ为牵伸比。

其中:前者为极性分子的极化度;后者为链段的

双折射值 (5.

(5) 形状双折射率

当两种各向同性体得物质(或同种物质不同形态)以一定方式有序排列组合时,该混合物将产生双折射现象,这种双折射定义为形状双折射。

σπ

3

41122=+-n n )(2

611

11//2

222//2//⊥⊥⊥-+≈+--+-n n n n n n n n iso iso )

1

)(()2(4522//22

//λ

λσσπ--+=-⊥⊥N n n n n iso iso α

γσσn n -=-⊥//)

1cos 3(2

12//-=--=⊥θαγn n n n f 射值

为理论完成取向的双折αγn n -为实际双折射值

⊥-n n //)

9.5(

这种双折射现象的实质是界面的有序排列而致,故又称为界面取向双折射。如图5-7所示,玻璃棒插入水中,会形成双折射。 对于不同的界面形成的形状双折射值是不同的,如图5-8所示。

(6) 水分对纤维双折射的影响

纤维吸收水分后变为混合体,纤维自身

的双折射和界面的双折射将会共同存在。即:

∴ 则:

令:

333

.01

1

1

1

+-=

-+

-=

-f

f w

w f

f n n n n ρρρρ

333.1=w n 1=w ρ)

10.5(333

.01

1//

//////+-=-f f n n ρρ333.01

1+-=-⊥

⊥⊥⊥f f n n ρρ)

、(因为⊥⊥==f f ρρρρ////f

f

n n n n ρρ

)(////⊥⊥

-=

-)

11.5(为膨胀比

v

v q f

f ==ρρ

所以,纤维与水的混合体的折射为:

三、纤维双折射的测量

纤维双折射的测量方法有许多,有传统的、近代

的;也有这些方法与现代计算机技术结合的方

法;有基于折射率的测量方法;亦有根据双折射

现象的直接双折射值的测量方法。

虽然测量方法多种多样,但依据获得双折射值的途径可将这些方法分为直接法和间接法二类。

1、间接方法

所谓间接方法是利用纤维在某种介质中(通常为

液体),其光学人折射性质与该介质相同时,即

两物质的界面消失时,测量该介质的折射率,包

括平行和垂直纤维轴的折射率,最终求得纤维得

双折射率。

其原理为:当n f=n s (5.13)

式中n f、n s分别为纤维的折射率和溶液的折射率,

如果入射光的平面振动方向分别垂直和平行与

纤维轴时就可以得到:

n

f∥=n

s∥或者n f⊥=n s⊥

最终得到纤维的双折射率:

Δn f=(n

-n

f=

(n

-n

s

)

(

//

//⊥

-

=

-n

n

q

n

n

)

12

.5(

(5.14)

上式中溶液的折射率n s

可以阿贝折射仪直接测量

获得。显然要实现上述测量原理,不许要解决两个问题:

① 如何使溶液的折射率

n s

与纤维的折射率

n f

等;

② 怎样确切地知道 n s

=n f

,一般要求精度为<

0.0005

对于第一个问题一般采取三种方法解决。

(1) 溶液混合法

因为纤维地折射率一般在1.5~1.6之间,通

常只需要选择两种互溶地溶液,一种为高折射率(>1.6)的溶液(如α–溴代萘);一种低折射率(<1.5)的溶液(如石蜡油1.47)。将这两种溶液以不同的比例进行混合,而获得不同的折射率的混合液,以覆盖被测纤维的折射率(1.5~1.6之间)。这一混合折射率n s

为:

(5.14)

这种混合法在理论上极为简单明了,但在实际应用中要求很多很严。具体内容有:

2

12

211v v n v n v n s +-=

①两种溶液能很好的相溶,而无化学反应;

②两种溶液的物理性能稳定,不易挥发;

③两种溶液的比重应尽量一致,避免分层;

④两种溶液的折射率要能覆盖所有被测纤维

的折射率;

⑤两种溶液的透明度要高,无毒,无味。实际上要满足这些条件是极不容易的。

(1)改变光波波长法

利用不同波长的光与物质相互作用时,会产生色散即其折射率会发生变化的特点,连续地调节光波波长值,使纤维的折射率与溶液的折射率一致。完成这一光波波长变化的装置

是一个可连续变化波长的单色器,即光栅。这种测量方法的曲线示意图见图5—10。

图中n

si

为溶液的色散曲线;纤维的色散曲线。

显然随光波波长的变化,n

s →n

f

,当λ=λ

I

时,

n

si = n

f

。事实上,溶液不同(或温度不同)n

s

的色散曲线位置不同,n

f

的值也就不同。因此测量时必须注意溶液和温度的一致性。

(2)温度变化测量法

由于溶液和纤维所受的温度不同,其折射率也会不同,即存在温度与折射率的关系曲线,如图5—11所示。

0 λ

5—11

随着温度的上升,纤维和溶液的折射率下降,因此连续地改变温度,就能找到使纤维折射率n

f

等于

溶液的折射率n

s 的温度点。即:当T=T

I

时,n

si

=

n

f

。这种改变温度的方法,只需一个具有恒温和可先行升温的溶液槽即可。

上述三种方法比较,(1)法最简单,无需专门设备,亦最常用;(2)法只是设备复杂些,但是测量速度快,准确。

对于第二个问题,即如何准确地判定n

s = n

f

,其解

决方法有多种。

(1)倍克线法(Beck line)

其原理是,当纤维放置在某一折射率的溶液中,如果纤维的折射率与溶液的折射率不同时,

会有明显的界面。但当n

s ≈ n

f

时,界面就会变

得不十分清楚。在此微小的范围中,如何(准确

地)判断n

s = n

f

,倍克线的移动方向可以用来

有效地判定n

s 与 n

f

的关系。倍克线是在交界面

附近的一条淡线。

通常当n

s >n

f

时,溶液与纤维构成一个凹透镜

的形式如图5—12(a)。其为一个发散透光,因此当聚焦平面向上移动时,倍克线向外移动,反

之向内移动。

当n

s < n

f

时,溶液与纤维构成一个凸透镜。如图

5—12(b)所示。其相当于一个内聚透光。因此,在此条件下,当焦平面上升时,倍克线向内移动,反之向外侧移动。

5—15

但对(1)法,两种液体混合折射率不接近n

f

时,

如果()就会发生n

s >n

f

,反之,n

s

< n

f

这时再加溶液()就必须知道应该是提高n

s

,还是降低。要知道这一问题就可采用倍克线法。

图:

当n

s >n

f

时,纤维=凹透镜,光发散,当焦平面上

升时,倍克线外移,有纤维内向纤维外移动。

当n

s < n

f

时,纤维=凸透镜,光内聚,当焦平面

上升时,倍克线由外向纤维内移动。

向上移物镜,倍克线向外,n

s >n

f

向上移物镜,倍克线向内,n

s < n

f

当光()消失时,倍克线也不存在。

(2)中央照明法

原理与倍克线法基本相当,主要是物镜上下移动的距离较大,其是寻找在纤维中央()存在的一根明亮的线条,如有,则根据

5—16

物镜的上升还是下降确定溶液的折射率是大还是小,但此法对于高倍数时,下降距离往往不移。

图:

(3)相差显微镜法

图:

光线通过折射率不同的物质,要发生速度的改变,产生光程差。光程差即反射光波的振动的相位差,利用相差显微镜检验是否存在δ≠0,而调节溶液的混合比或温度以致光波波长,使δ

=0成立,这时的n

s = n

f

(4)干涉显微镜

同上,利用干涉加强为同相位,干涉()则有相位差,改变n

s

、T 、λ使干涉光强最大,此时,

n

s = n

f

,则n

s

比较:(1)、(2)简单,精度低;(3)、(4)设备要求

高,精度高。

5—17

而已知纤维的折射率要求纤维的双折射,这将是一件很容易的事,只需采用平面偏振光,当平面偏振

光的振动方向与纤维平行时,即测得n

;与纤

维垂直时,即是n

,

n

∥-n

=△n

(二)平面偏振光通过纤维的现象

1、滞后现象及椭圆偏振光(光程差的概念)

当一束平面偏振光与纤维轴呈一定夹角射入纤维时,光线由于从光疏物质进入光密物质,就会发

生速度减慢的现象,即单位时间通过的光程要发

生变化,

S=V

C ·t n= V

C

/V ∴ns= V

C

·t

由于纤维是各向异性体,因此平面偏振光进入纤维后,其沿纤维轴方向振动的光波不易于传播,速

度较慢,一般称为非寻常光,用e表示;沿纤维

轴垂直方向振动的光波易于传播,速度较快,一

物理光学第一章答案

第一章 波动光学通论 作业 1、已知波函数为:?? ? ???-?=-t x t x E 157 105.11022cos 10),(π,试确定其速率、波长和频率。 2、有一张0=t 时波的照片,表示其波形的数学表达式为 ?? ? ??=25sin 5)0,(x x E π。如果这列波沿负 x 方向以2m/s 速率运动, 试写出s t 4=时的扰动的表达式。 3、一列正弦波当0=t 时在0=x 处具有最大值,问其初位相为多少? 4、确定平面波:?? ? ??-+ + =t z k y k x k A t z y x E ω14314 214 sin ),,,(的传播方向。 5、在空间的任一给定点,正弦波的相位随时间的变化率为 s rad /101214?π,而在任一给定时刻,相位随距离 x 的变化是 m rad /1046?π。若初位相是 3 π ,振幅是10且波沿正x 方向前进, 写出波函数的表达式。它的速率是多少? 6、两个振动面相同且沿正x 方向传播的单色波可表示为: )](sin[1x x k t a E ?+-=ω,]sin[2kx t a E -=ω,试证明合成波的表达式可 写为?? ??? ???? ? ??+-?? ? ???=2sin 2cos 2x x k t x k a E ω。 7、已知光驻波的电场为t kzcoa a t z E x ωsin 2),(=,试导出磁场),(t z B 的表达式,并汇出该驻波的示意图。

8、有一束沿z 方向传播的椭圆偏振光可以表示为 )4 cos()cos(),(00π ωω--+-=kz t A y kz t A x t z E 试求出偏椭圆的取向 和它的长半轴与短半轴的大小。 9、一束自然光在30o 角下入射到空气—玻璃界面,玻璃的折射率n=,试求出反射光的偏振度。 10、过一理想偏振片观察部分偏振光,当偏振片从最大光强方位转过300时,光强变为原来的5/8,求 (1)此部分偏振光中线偏振光与自然光强度之比; (2)入射光的偏振度; (3)旋转偏振片时最小透射光强与最大透射光强之比; (4)当偏振片从最大光强方位转过300时的透射光强与最大光强之比. 11、一个线偏振光束其E 场的垂直于入射面,此光束在空气中以45o 照射到空气玻璃分界面上。假设n g =,试确定反射系数和透射系数。 12、电矢量振动方向与入射面成45o 的线偏振光入射到两种介质得分界面上,介质的折射率分别为n 1=1和n 2=。(1)若入射角为50o ,问反射光中电矢量与入射面所成的角度为多少?(2)若入射角为60o ,反射光电矢量与入射面所成的角度为多少? 13、一光学系统由两片分离的透镜组成,两片透镜的折射率分别为和,求此系统的反射光能损失。如透镜表面镀上增透

纺织纤维鉴别及成分分析实验报告

纺织纤维和面料的鉴别及其成分含量 一、实验目的 1.学会以手感目测法、燃烧法、溶解法及显微镜观察法鉴别各种纤维; 2.通过鉴别进一步理解不同纤维之间的特征、性能的差异。 二、实验原理 纤维鉴别就是利用各种纤维的外观形态和内在性质的差异,采用物理、化学等方法将其区分开来,一般采用如下三个步序。 1.手感目测法 感官法即通过人的感觉器官,眼、耳、鼻、手等,根据纤维、织物的不同外观和特点,对其成分进行判断。 原理:依靠人眼看(纤维或织物的颜色、质地、光泽等)、手摸(纤维或织物质感、厚度等)、耳听(织物摩擦声等)来鉴别服装材料纤维种类的一种方法。 2.显微镜法 天然纤维中棉、毛、麻、丝,由于动物物种的差异及形成纤维的过程不同,致使纤维形态各异。化学纤维由于纺丝方法、成形条件不同,横截面形状也有所不同。借助显微镜观察纤维纵向外形、截面形状或配合染色等方法,可以进行大致的区分,对形态特征典型的试样即可进行准确的判断。当然利用显微镜法进行观察首先能够判别样品是否为单一纤维构成,进而考虑分开鉴别。 3.燃烧法 不同纤维的化学组成不同,可以根据各种纤维燃烧现象进行鉴别。譬如,棉花与黏胶、麻类等纤维素纤维的主要成分均为纤维素,因此在与火焰接触时迅速燃烧,离开火焰后会继续燃烧,且伴有烧纸(主要成分亦为纤维素)气味,燃烧后留下少量灰烬;羊毛之类的动物纤维接触火焰时也能燃烧,燃烧时散发出类似烧头发的强烈臭味,这是因为它们的组成主要是角质蛋白,燃烧完毕留下黑色松脆的灰烬;上述方法能够粗略地区分纤维的大类。合成纤维一般组成差异较大,接近火焰时,也有各种气味,但很难从中确切判断纤维的品种。 4.溶解法 溶解法是利用各种纤维在不同的化学溶剂中的溶解特性来鉴别纤维的。对于混纺纤维可用一种试剂溶去一种组分,从而可以进行定量测定各种纤维的溶解情况。各种纤维在不同的化学溶剂中,其浓度、温度不同时会出现不同的溶解情况,依次可进行未知纤维的鉴别。 三、实验仪器及材料 仪器:普通生物显微镜、镊子、剪刀、载玻片、盖玻片、蒸馏水。 材料:编号1:白色纱线; 编号2:花纹织物。 四、实验步骤 1.手感目测法: 手感:用手揉搓编号1的纱线团和编号2的织物。感受其柔软度、光滑程度(滑或粗糙)。

鉴别纺织面料的几大方法

鉴别纺织面料的几大方法

纺织面料的鉴别方法 纺织面料鉴别主要可以从三个纬度入手,纺织面料成分、纺织面料正反面及经纬向、纺织面料外观质量,通过对这三大方向去鉴别,可以帮助面料采购商找到物优价廉的好布料。下面,小编详细介绍三大类鉴别法的具体方法,学着点哦~ 1纺织面料成分的鉴别 1.感官鉴别法 (1)主要方法 眼看:运用眼睛的视觉效应,观看面料的光泽明暗、染色情况、表面粗糙与否及组织、纹路和纤维的外观特征。 手摸:运用手的触觉效应,感觉面料的软硬、光滑、粗糙、细洁、弹性、冷暖等。 用手还可以察觉出面料中纤维和纱线的强度和弹性。 耳听、鼻嗅:听觉和嗅觉对判断某些面料的原料有一定的帮助。如蚕丝具有独特的丝鸣声;各类不同纤维面料的撕裂声不同;腈纶和羊毛纤维面料的气味有差异等。 (2)四个步骤 第一步,初步区分纤维或面料的所属大类。 第二步,由面料中纤维的感官特征,进一步判断原料的种类。 第三步,根据面料的感官特征做出最终判断。 第四步,验证判断结果。如果对判断把握不大时,可以采用其他方法予以验证。如果判断有误,可以重新进行感官鉴别或与其他方法相结合进行鉴别。 2.燃烧鉴别法 常见纺织纤维的燃烧特征 ①棉纤维,遇火即燃烧,燃烧速度快,产生黄色火焰,有气味;稍有灰白色烟,离火 后可以继续燃烧,吹熄火焰后仍有火星在续燃,但延续时间不长;燃烧后能保持原绒形状,手触易碎成松散的灰,灰烬呈灰色细软粉末,纤维的烧焦部分为黑色。 ②麻纤维,燃烧的速度很快,软化,不熔,不缩,产生黄色或蓝色火焰,有烧草的气 味;离开火焰继续迅速燃烧;灰烬少,呈浅灰色或白色草灰末状。

③羊毛,接触火焰不马上燃烧,先卷缩,后冒烟,然后纤维起跑燃烧;火焰呈橘色黄 色,燃烧速度比棉纤维慢,离开火焰立即停燃,不易续燃,有烧头发和羽毛的臭味; 灰烬不能保持纤维原状,而呈不定形或球状有光泽的黑褐色脆块,用手指一压即粉碎,灰烬数量较多,有燃烧时的气味。 ④蚕丝,燃烧比较慢,熔融并卷曲,烧时缩成一团,有烧毛发的臭味;离开火焰时略 带闪光,缓慢燃烧,有时会自灭;灰为黑褐色松脆小球,用手指一压即碎。 ⑤粘胶纤维,燃烧性状基本与棉相似,但粘胶纤维燃烧速度比棉纤维稍快,灰烬更少, 有时不易保持原形,粘胶纤维燃烧时会发出轻微的咝咝声。 ⑥醋酯纤维,燃烧速度快,有火花,一边熔化,一边燃烧,烧时有刺鼻的醋酸味;离 开火焰时,一边熔化,一边燃烧;灰为黑色有光泽的不规则块状,可用手指压碎。 ⑦铜氨纤维,燃烧速度很快,不熔融,不收缩,有烧纸的气味;离开火焰继续迅速燃 烧;灰烬少,呈浅灰色或灰白色。 ⑧燃烧时纤维先卷缩,一边熔化,一边缓慢燃烧,有黄白色火焰,火焰边呈蓝色,火 焰顶部冒黑烟;离开火焰继续燃烧,有时会停止燃烧而自灭;燃烧时有芳香气味或甜味;灰烬为黑褐色硬质小球,用手指不易捻碎。 ⑨锦纶,与火焰接近时引起纤维收缩,接触火焰后,纤维迅速卷缩,并熔融成透明的 胶状物,同时有小气泡。 ⑩腈纶,一边熔化熔融,一边燃烧,燃烧速度快;火焰呈白色,明亮有力,有时略有黑烟;有类似烧煤焦油的鱼腥臭味或辛辣味;离开火焰继续燃烧,但燃烧速度缓慢; 灰烬为黑褐色不规则脆性小球,用手指易捻碎。 ?维纶,燃烧时纤维迅速收缩,慢慢燃烧,火焰很小,几乎无烟;当纤维大量熔融时会产生较大的深黄色火焰,有小气泡;烧时带有电石气的特殊臭味;离开火焰继续燃烧,有时会自灭;灰烬为黑褐色不规则脆性小珠,用手指可捻碎。 ?丙纶,一边卷缩,一边熔化,缓慢燃烧;有蓝色明亮火焰,冒黑色浓烟,有胶状物滴下;有类似烧石蜡的气味;离开火焰继续燃烧,有时会自灭;灰烬为不规则硬块状,透明,用手指不易捻碎。 ?氯纶,难以燃烧;在火焰中熔融燃烧,冒黑色浓烟;离开火焰立即熄灭,不能续燃; 烧时有难闻的刺鼻氯臭味;灰烬为不规则黑褐色硬块,用手指不易捻碎。 ?氨纶,接近火焰先膨胀成圆形,而后收缩熔融;在火焰中熔融燃烧,燃烧速度比较缓慢,火焰呈黄色或蓝色;离开火焰边熔融边燃烧,缓慢自灭;烧时有特殊的刺激性气味;灰烬为白色黏着性块状物。

纺织品的基础知识

一、纺织纤维 1、 定义:纤维是天然或人工合成的细丝状物质,纺织纤维则是指用来纺 织布的纤维。 2、 纺织纤维特点:纺织纤维具有一定的长度、细度、弹性、强力等良好 物理性能。还具有较好的化学稳定性,例如:棉花、毛、丝、麻等天然纤维是 理想的纺织纤维。 3、 纺织纤维分类:天然纤维和化学纤维。 ①天然纤维包括植物纤维、动物纤维和矿物纤维。 A 植物纤维 如:棉花、麻、果实纤维。 B 动物纤维 如:羊毛、免毛、蚕丝。 C 矿物纤维 如:石棉。 ②化学纤维包括再生纤维、合成纤维和无机纤维。 A 再生纤维 如:黏胶纤维等。 B 合成纤维 如:锦纶、涤纶、氨纶等。 C 无机纤维 如:玻璃纤维、金属纤维等。 4、 常见纺织纤维的纺织性能: ①. 棉花:透气、吸湿、服用性能好、耐虫蛀。 ②. 黏胶纤维: 吸湿性、透气性好、颜色鲜艳、原料来源广、成本低,性 质接近天然纤维。 ③. 涤纶:织物、挺、爽、保形性好、耐磨、尺寸稳定、易洗快干。 ④. 锦纶:耐磨性特别好、透气性差。 ⑤.羊毛:吸湿、弹性、服用性能均好, 二、纤维的鉴别 1、 鉴别方法: ①鉴别的方法有手感、目测法、燃烧法、显微镜法、溶解法、药品着色法 以及红外光谱法等。在实际鉴别时,常常需要用多种方法,综合分析和研究以 后得出结果。 ②一般的鉴别步骤如下: A. 首先用燃烧法鉴别出天然纤维和化学纤维。 B. 如果是天然纤维,则用显微镜(放大镜)观察法鉴别各类植物纤维和动 物纤维。如果是化学纤维,则结合纤维的熔点、比重、折射率、溶解性能等方 面的差异逐一区别出来。 C. 在鉴别混合纤维和混纺纱时,一般可用显微镜(放大镜)观察确认其中 含有几种纤维,然后再用适当方法逐一鉴别。 ③. 常见纤维的燃烧性质: 3、 纱线的重量单位 纤维 近焰现象 在焰中 离焰以后 气味 灰 烬 棉 近焰即燃 燃烧 续燃有余辉 烧纸味 灰烬极少 毛 熔离火焰 熔并燃 难续燃自熄 烧毛味 易碎 脆 蓬松 黑 涤纶 近焰熔缩 滴落 起泡 续燃 弱香味 硬圆 黑淡褐色 锦纶 近焰熔缩 熔并燃 难续燃自熄 刺鼻味 硬圆 淡棕透明

纤维原料的鉴别方法

纤维原料的鉴别方法 鉴别纤维的方法很多,有燃烧法、显微镜观察法、密度测定法、染色法、试剂着色法及溶解法等。仅用一种方法,一般不能立刻确定纤维的类别,必须根据数种方法的测试结果,来作综合分析。初步鉴别时,可先用费时较少的燃烧法或显微镜观察法,当这种方法不能满足要求时,再采用其他方法补充鉴定之。 一、燃烧法 各种纤维的燃烧特性见表3—26 二、显微镜观察法 使用Y172型纤维切片器,将纤维切成极微的横断面薄片,用一般的生物显微镜,即可观察各种纤维的纵向和横向截面的形态,从纤维的形态来区别各种天然纤维和化学的类别。但合成纤维的外形只能做到大致地分辨。纺织纤维纵向与横截面形态特征见表3—27

化学纤维中的异形纤维,其纵向及横向形态随喷丝孔的几何形状不同而不一,故不包括在此范围内,一般异形纤维有三角形、蚕豆形、椭圆形、十字形或不规则形等。 三、纤维密度测定法 测定纺织纤维密度的方法很多,有浮沉法、液体浮力法、比重法、气体容积法、密度梯度管法等,测定纤维密度,即可鉴别纤维的类别,各种纤维的密度如表3—28 表3—28 关于分离液比重与混合比,可按表3—29配置,对不同原料可观察沉浮,来证实纤维性质。 表3—29 20℃时,分离液比重Y=0.873+0.721V 式中:V——四氯化碳容积百分率。 20℃时,四氯化碳比重为1.594(分析纯)。 20℃时,二甲苯比重为0.873(分析纯)。 四氯化碳的蒸发速度是二甲苯的数倍,配置的分离液时间一久,比重变轻,因此分离液必须现用现配,分离液与水不能混合,试样的水分影响测定的比重,应当注意。 四、试剂着色法(见表3-30) 表3-30

物理光学第一章习题

1.在真空中传播的平面电磁波,其电场为0=x E ,0=y E , ]2 )(10cos[10014ππ+-?=c x t E z ,问:(1)该电磁波的频率、波长、振幅和原点的初位相为多少?(2)波的传播和电矢量的振 动取哪个方向?(3)与电场相联系的磁场B 的表达式如何 写? 2.平面电磁波在真空中沿x 方向传播,Hz 14104?=ν,电场振幅为m V /14.14,若振动平面与xy 面成45 度,写出E 和B 的表达 式。 3.已知k ,ω,ABC O -为一正方体,分别求沿OC OB OA ,,方向传播的平面波的实波函数、复振幅及z y x ,,方向的空间频率和空间周期。 4.有3列在xz 平面内传播的同频率单色平面波,其振幅分别为:321,,A A A ,传播方向如图,若设振幅比为1:2:1,21θθ=,求xy 平面上的光强分布(假设初相位均为0)。 5. 维纳光驻波试验中,涂有感光乳剂的玻璃片的长度为1cm ,起一端与反射镜接触,另一端与反射镜面相距10m μ,测出感光片上两个黑纹的间距为250m μ,求所用光波波长。 6.确定正交分量由下面两式表示的光波的偏振态, )](cos[),(t c z A t z E x -=ω ]4 5)(c o s [),(πω+-=t c z A t z E y 7.让入射光连续通过两个偏振片,前者为起偏片,后者称为检偏片,通过改变两者透振方向之间的夹角可调节出射光强。设入射光为自然光,通过起偏片后光强为1,要使出射

光强减弱为8 1,41,21,问两偏振片透振方向的夹角各为多少? 8.一束自然光入射到折射率3/4=n 的水面上时反射光是线偏振的。一块折射率2/3=n 的平面玻璃浸在水下,若要使玻璃表面的反射光N O ''也是线偏振的,则玻璃表面与水平面夹角α应为多大? 9.s 光波从5.11=n 的玻璃以入射角0120=i 入射到0.12=n 的空气界面,求菲涅耳透射系数,光强透射系数,能流透射系数? 10.一束自然光从空气射到玻璃,入射角o 30,玻璃折射率5.1=n ,求反射光的偏振度。 11. 假设窗玻璃的折射率为1.5,斜照的太阳光(自然光)的入射角为600,求太阳光的光强透射率。 12.线偏光从0.11=n 的空气以入射角0145=i 入射到5.12=n 的玻璃表面,已知线偏光的振动面和入射面夹角为060=θ,试计算: 1)总的能流反射率R 和总能流透射率T 2)以自然光入射,又如何?

纺织材料性能及识别题库汇总

1.腈纶是属于()纺织材料。A A.易燃的 B.可燃的 C.难燃的 D.不燃的 2.纱线名义上的特数,叫()。A A.公称特数 B.设计特数 C.实际特数 D.标准特数 3.随着回潮率的提高,纺织材料的导热系数将(),保暖性将()。B A.减小,上升 B.增大,下降 C.减少,下降 D.增大,上升 4.羊毛、棉、维纶的耐摩擦性能从小到大的排列顺序应为()。B A.棉<羊毛<维纶 B.羊毛<棉<维纶 C.羊毛<维纶<棉 D.棉<维纶<羊毛 5.下列哪种纤维抗弯性能最大()。C A.棉 B.涤纶 C.苎麻 D.锦纶 6.一般把熔点以下()的一段温度范围,叫软化温度。B A.10-30℃ B.20-40℃ C.30-50℃ D.40-60℃ 7.当受热温度超过()时,纺织材料的热稳定性,叫耐高温性。C A.300℃ B.400℃ C.500℃ D.600℃ 8.在同等条件下,成熟差的棉纤维比成熟好的棉纤维吸湿性()。B A.好

B.差 C.相同 D.不一定 9.标准重量是指纺织材料在()的重量。B A.标准大气时 B.公定回潮率时 C.平衡回潮率时 D.特定气温 10.粘胶纤维吸湿性比棉纤维()。A A.好 B.差 C.相同 D.不一定 11.纺织材料的公定(标准)重量是()。C A.实际回潮率时的重量 B.标准回潮率时的重量 C.公定回潮率时的重量 D.一般回潮率 12.纺织材料的含水率为10%时,其回潮率()10%。A A.大于 B.小于 C.等于 D.不确定 13.同一种纤维从放湿达到平衡的回潮率()从吸湿达到平衡回潮率。A A.大于 B.小于 C.等于 D.不确定 14.纤维回潮率随着温度升高而()。A A.增大 B.降低 C.不变 D.不确定 15.维纶缩甲醛主要是为了提高纤维的()。D A.耐热性 B.强度 C.耐晒性

(完整版)物理光学-第一章习题与答案

v= 物理光学习题 第一章波动光学通论 、填空题(每空 2分) 1、. 一光波在介电常数为£,磁导率为卩的介质中传播,则光波的速 度 【V 1】 【布儒斯特角】 t ],则电磁波的传播方 向 ____________ 。电矢量的振动方向 _______________ 【x 轴方向 y 轴方向】 4、 在光的电磁理论中,S 波和P 波的偏振态为 __________ ,S 波的振动方向为 ______ , 【线偏振光波 S 波的振动方向垂直于入射面】 5、 一束光强为I 0的自然光垂直穿过两个偏振片,两个偏振片的透振方向夹角为 45°则通 过两偏振片后的光强为 ____________ 。 【I 0/4】 6、 真空中波长为入。、光速为c 的光波,进入折射率为 n 的介质时,光波的时间频率和波长 分别为 ______ 和 ________ 。 【c/入o 入o /n 】 7、 证明光驻波的存在的维纳实验同时还证明了在感光作用中起主要作用是 __________ 。 【电场E 】 &频率相同,振动方向互相垂直两列光波叠加,相位差满足 _____________ 条件时,合成波为线偏 振光波。 【0或n 】 9、 会聚球面波的函数表达式 ____________ 。 A -ikr 【E(r) e 】 r 10、 一束光波正入射到折射率为 1.5的玻璃的表面,则 S 波的反射系数为 _____________ , P 波 2、一束自然光以 入射到介质的分界面上,反射光只有 S 波方向有振动。 13 10 3、一个平面电磁波波振动表示为 E x =E z =0, E y =cos[2

纺织行业基本知识要点

纺织纤维基础知识 一、纤维 1、棉纤维 棉纤维是一种天然纤维素纤维,内部有中空管,按生长地区的不同分为亚洲棉、非洲棉、陆地棉和海岛棉。其中海岛棉又称长绒棉,品质最佳,国产长绒棉中以新疆长绒棉最著名。是家用纺织品的主要原料 棉纤维的分类: * 细绒棉:又叫陆地棉。世界上95%以上种植的都是细绒棉,我国大量种植的也是细绒棉。细绒棉的纤维长度在25-31mm之间。 * 长绒棉:也叫埃及棉,又叫海岛棉,棉花又白又细又长,光泽又好,是最优棉。一般用于高档织物。埃及长绒棉和普通棉相比,有以下几个特点:比普通棉更细更长,其纤维长度一般都大于33mm,可达60-70mm;比细绒棉更柔软,更滑爽;能纺棉的支数更高。光泽度 好。 ②、棉纤维特征 棉纤维的色泽通常为白色或乳白色、淡黄色,光泽度差。比较耐碱性,抗无机酸能力较弱,耐热。横截面为腰形状,内有很大的空腔。棉纤维是纤维素纤维,纤维上富含油脂。 ③、棉纤维优点 棉吸湿性和透气性好、隔热性好、穿着舒适、坚实耐用、保暖性好、表面光洁、不起静电、易洗涤、手感柔软 棉纤维优点:

* 吸湿性:棉纤维具有较好的吸湿性,在正常的情况下,纤维可向周围的大气中吸收水分,其含水率为8-10%,所以它接触人的皮肤,使人感到柔软而不僵硬。* 保湿性:由于棉纤维是热和电的不良导体,热传导系数极低,又因棉纤维本身具有多孔性,弹性高优点,纤维之间能积存大量空气,所以,纯棉纤维纺织品具有良好的保湿性,使用纯棉织品使人感觉到温暖 * 耐热性:纯棉织品耐热能良好,在摄氏110℃以下时,只会引起织物上水分蒸发,不会损伤纤维,所以纯棉织物在常温下使用、洗涤、印染等对织品都无影响。* 耐碱性:棉纤维对碱的抵抗能力较大,棉纤维在碱溶液中,纤维不发生破坏现象,该性能有利于使用后对污染的洗涤,消毒除杂质. * 卫生性:棉纤维是天然纤维,其主要成分是纤维素,还有少量的蜡状物质和含氮物与果胶质。纯棉织物经多方面查验和实践,织品与肌肤接触无任何刺激,无负作用,久穿对人体有益无害,卫生性能良好。 ④、棉纤维缺点: 缩水、易皱、湿度过大易发霉、虫蛀、耐碱不耐酸、色牢度低、弹性差 2.麻纤维 ①、优点:吸湿性好、易洗涤、耐磨、强度较大、透气性好、穿着凉爽、不易霉变、无静电、耐水浸浊。 ②、缺点:弹性差,不经过特殊处理,手感硬,无垂感、染色差。 3.蚕丝: 蚕丝为天然蛋白质纤维,其蛋白质和人体皮肤的化学成份组成相近,与皮肤接触时柔软舒适,无异物感。蚕丝光滑柔软,富有光泽,穿着舒适,夏季凉爽,冬季暖和的性能被称为纤维皇后。耐酸性小于羊毛,耐碱性稍强于羊毛,耐光性

纺织纤维鉴别实验报告

实验一纺织纤维的鉴别 一、实验目的纤维鉴别通常采用的方法有显微镜法、燃烧法、溶解法、熔点法等。对一般纤维,用单一的方法或用这些方法的组合便可比较准确、快捷的完成鉴别。否则将需借助红外光谱仪、气相色谱仪、热分析仪、X 光衍射仪和电子显微镜等仪器进行分析。 本实验采用常规方法对纤维进行鉴别。通过实验达到以下目的: 1.学会以燃烧法、溶剂溶解及显微镜观察法鉴别各种纤维; 2.熟练掌握手切法制作纤维切片的技术。 二、实验原理纤维鉴别就是利用各种纤维的外观形态和内在性质的差异,采用物理、化学等方法将其区分开来,一般采用如下三个步序。 1. 显微镜法天然纤维中棉、毛、麻、丝由于动植物物种的差异及形成纤维的过程不同,致使纤维形态各异。化学纤维由于纺丝方法、成形条件不同,横截面形状也有所不同。借助显微镜观察纤维纵向外形、截面形状或配合染色等方法,可以进行大致的区分,对形态特征典型的试样即可进行较准确的判断。当然利用显微镜法进行观察首先能够判别样品是否为单一纤维构成,进而考虑分开鉴别。常见的几种纤维的形态特征见表1和图1。 观察纤维的横截面须将纤维切成较薄的切片。用切片机制得的切片厚度可小于10 m 利于观察,但操 作复杂,成本较高。常用的切片方法还有哈氏切片法,也可用金属孔板或塑料管等来制作切片。哈氏切片法可制得10?30何的切片。后两种方法简捷,但切片较厚,影响观察,不过作为一般纤维的鉴别,这两种方法还是比较实用的。 2. 燃烧法不同纤维的化学组成不同,可以根据各种纤维燃烧现象进行鉴别。譬如,棉花与粘胶、麻类等纤维素纤维的主要成分均为纤维素,因此在与火焰接触时迅速燃烧,离开火焰后会继续燃烧,且伴有烧纸(主要成分亦为纤维素)气味,燃烧后留下少量灰烬;羊毛之类的动物纤维接触火焰时也能燃烧,燃烧时散发出类似烧头发的强烈臭味,这是因为它们的组成主要是角质蛋白,燃烧完毕留下黑色松脆的灰烬;上述方法能够粗略地区分纤维的大类。合成纤维一般组成差异较大,接近火焰时,也有各种气味,但很难从中确切判断的纤维品种。各种纤维的燃烧特征见表2。 燃烧法简单易行,无需特殊的设备和仪器,但比较粗糙,仅能进行大致的区分。这种方法不适于混合的纤维及经阻燃处理的纤维。 在纤维燃烧过程中可给出很多信息,如燃烧的状态、火焰的颜色、散发出的气味、燃烧后灰烬的颜色、形状和硬度等,均可作为鉴别的依据。对纤维热分解时产生的气体进行分析也会有助于纤维区分。即将纤 维试样放入试管,加热试管,用pH试纸在试管口检验。纤维受热后释放出的气体可以是酸性、中性或碱性, 通过鉴定释出的气体酸碱性。 酸性:棉、麻、粘胶纤维、铜氨纤维、醋酸纤维素纤维、维纶、氯纶; 中性:丙纶、腈纶; 碱性:羊毛、蚕丝、锦纶等。 3. 溶解法

第七章 纤维材料的热学、光学、电学性质

纤维材料的热学、光学、电学性质 1 热学性质 2 光学性质 3电学性质 内容提要:常用热学指标;纤维的热力学性质、热定形及抗热破坏性质(耐热性、热稳定性、燃烧性、熔孔性、热收缩等);纤维的色泽、双折射、耐光性、紫外荧光;纤维的电阻、静电。 重点难点:保暖性,热力学三态与热定形,热破坏温度,燃烧性;双折射、耐光性;电阻、静电序位及测试。难点在纤维这些性质的综合表现。 解决方法:理清概念的层次关系,结合实际产品的分析,建立概念体系和思维方法。 第一节热学性质 一、热学指标 (一)比热C 质量为一克的纺织材料,温度变化1℃所吸收或放出的热量。单位:焦尔/克·度。 纤维的比热值是随环境条件的变化而变化的,不是一个定值。同时,又是纤维材料、空气、水分的混合体的综合值。 比热值的大小,反映了材料释放、贮存热量的能力。或者温度的缓冲能力。 (二)导热系数λ 材料在一定的温度梯度场条件下,热能通过物质本身扩散的速度。单位:焦/米·度·时, 纤维本身的导热系数由于纤维结构的原因也呈现各向异性。 对于纤维集合体,也是纤维、空气、水分三者的综合值。导热系数与集合体的体积重量的关系呈对号规律(画图说明) (三)绝热率T 它反映的是材料的隔热能力——保暖性,此值越大,说明该材料越保暖。 二、热力学性质 热力学性质也叫热机械性质,是指在温度的变化过程中,纺织材料的机械性质亦随之变化的特性。用不同的温度点来表征力学特性。 绝大多数纤维材料的内部结构呈两相结构,即有结晶区与非结晶区,而这两个区域对热的反映是不一样的,对结晶区来说在热的作用过程中,它的热力学状态有两个:一个是在热的作用下,结晶体解体形成熔融态,要么结晶不被破坏的呈结晶态。对无定形区来讲,热力学状态大致有三个:玻动态、高弹态和粘流态,这些状态可用以下的热力学指标来表征和区分。 (一)熔点Tm 熔点是纤维的重要热性质之一,也是一个结构参数。我们知道低分子结晶体的熔化是一个相的转变过程,由结晶态(晶相)变成熔融态(液相),而且相的转变在很窄的温度范围内进行,所以叫熔点。对纤维材料,结晶是由高聚物形成的,它的熔化过程有一个较宽的温度区间——熔程,由于该熔程比较宽,通常把

物理光学课后习题答案-汇总教学提纲

第一章光的电磁理论 1.1在真空中传播的平面电磁波,其电场表示为 Ex=0,Ey=0,Ez=,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。 解:由Ex=0,Ey=0,Ez=,则频率υ= ==0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。 1.2.一个平面电磁波可以表示为Ex=0, Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写? 解:(1)振幅A=2V/m,频率υ=Hz,波长λ ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3) 由B =,可得By=Bz=0,Bx= 1.3.一个线偏振光在玻璃中传播时可以表示为 Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。 解:(1)υ===5×1014Hz; (2)λ=; (3)相速度v=0.65c,所以折射率n= 1.4写出:(1)在yoz平面内沿与y 轴成θ角的方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由,可得 ; (2)同理:发散球面波 , 汇聚球面波 。 1.5一平面简谐电磁波在真空中沿正x方向传播。其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy平面呈45o,试写出E,B 表达式。 解:,其中 = = = , 同理:。 ,其中 =。 1.6一个沿k方向传播的平面波表示为 E=,试求k 方向的单位矢。 解:, 又, ∴=。

纺织纤维鉴别word版

纺织纤维的鉴别 一、目的要求 根据纺织纤维的外观形态特征和物理化学性质的不同将各种未知纤维鉴别出来。要求掌握常见的鉴别纺织纤维的方法,能够制定鉴别方案,做到简便、快速、准确地将未知纤维鉴别出来。 二、纺织纤维的分类 1、天然纤维 动物纤维:毛、丝。 植物纤维:棉、麻。 矿物纤维 2、化学纤维 1)人造纤维: 再生纤维素纤维:普通粘胶、醋酯、竹纤维、Tencel、Model。 再生蛋白质纤维:酪素纤维、花生纤维、大豆蛋白纤维、牛奶纤维。 特种有机化合物纤维:甲壳素纤维。 无机纤维:碳纤维、玻璃纤维。 2)合成纤维:氨、涤、锦、丙、腈、氯、维纶。 三、实验仪器、材料及试样 1、材料:试管、酒精灯、98%浓硫酸、浓盐酸、甲酸、二甲苯、二甲基甲酰胺、碘-碘 化钾液等。 2、仪器:生物显微镜、哈氏切片器等。 3、试样:未知的常规纤维:棉、毛、蚕丝、麻、粘胶、涤纶、锦纶、腈纶、维伦、氯 纶、丙纶等 四、碘-碘化钾溶液的制备 将20g碘溶解于100ml的碘化钾饱和溶液中。 五、鉴别纤维的步骤 1、初步确定大类:利用手感目测法、燃烧法、显微镜观察法对纤维进行初步判断、估 计,将纤维初步分成天然纤维、化学纤维两大类。 2、具体区分出品种:利用药品着色法、溶解法或显微镜观察法等具体区分品种

3、验证:用前面所没有应用过的方法或药品对纤维品种进一步验证,保证准确性。 以上三步骤需将各种鉴别方法结合运用,综合分析。遵循原则:由简单方法入手粗略估计,再到复杂方法具体区分,最后用其他方法验证,力求简便、快速、准确。 六、常见的鉴别纤维的方法 1、手感目测法: 通过综合的感官印象对纤维种类进行初步判断和估计。 鉴别依据:纤维手感;长度、细度及其整齐度;强力;光泽;含杂情况;卷曲形态等等。 2、燃烧法: (1)鉴别依据:纤维化学组成不同其燃烧特征也不同,从而粗略地区分纤维。 (2)燃烧特征的观察:接近火焰、在火焰中、离开火焰、气味、灰烬。 常见纤维燃烧特征见表1。 (3)操作方法和注意事项:用镊子(切忌用手)夹取少量纤维,在酒精灯上燃烧,仔细观察燃烧特征。该法适用于单一纯品种纤维或制品。混纺或交织产品只能 粗略判断有否某类纤维。经过防燃等处理过的纤维或制品燃烧特征会有所改 变。 表1 纤维燃烧特征表

常用纺织纤维的主要特性

常用纺织纤维的主要特性 腈纶概况:腈纶的为聚丙烯腈纤维,它是用85以上的丙烯腈和少量第二、第三单体共聚,通过湿法或干法纺丝而制得的。腈纶于1950年在美国开始工业化生产,是目前主要的合成纤维品种之一。由于腈纶的性质类似羊毛,所以它又称为“合成羊毛”。腈纶生产以短纤维为主,它可以纯纺,也可以与羊毛或其他纤维混纺,制成衣着用织物,毛线、毛毯和针织品,特别适用于作窗帘。腈也可制长丝束,供加工成腈纶膨体纱。此外,腈纶还是生产碳纤维的主要原料。腈纶的主要物理和化学性 质 1.形态腈纶的纵面或有少量沟槽,截面随纺丝方法不同而异,干法纺丝的纤维截面呈哑铃形,湿法纺丝的则为圆形。 2.强伸性和弹性腈纶的强度为17.6~30.8cN/tex,比涤纶和锦纶都低,其断裂伸长率为25~46,与涤纶、锦纶相仿。腈纶蓬松、卷曲而柔软,弹性较好,但多次拉伸的剩余变形较大,因此腈纶针织的袖口、领口等易变形。 3.吸湿性和染色性腈纶结构紧密,吸湿性低,一般大气条件下回潮率为2左右。此外,腈纶的染色性不够好,但现在可采用阳离子染料染成各种鲜艳的色泽。 4.耐光性腈纶耐光性和耐气候性特别优良,在常见纺织纤维中最好。腈纶放在室外曝晒一年,其强力只下降20,因此腈纶最适宜做室外用织物。 5.耐酸碱性腈纶具有较好的化学稳定性,耐酸、耐弱碱、耐氧化剂和有机溶剂。但腈纶在碱液中会发黄,大分子发生断裂。 6.其他性质腈纶的准结晶结构使纤维具有热弹性,所以腈纶可制成各种膨体纱。此外,腈纶耐热性好,不发霉,不怕虫蛀,但耐磨性差,尺寸稳定性差。腈纶相对密度较小。涤纶的染色性差,一般应采用高温高压染色。 4.其他性质涤纶的耐热性很强,耐光性仅次于腈纶,导电性差,易产生静电,织物易吸尘沾污。涤纶具有良好的化学稳定性,且不易发霉和虫蛀。 氨纶概况:氨纶是聚氨基甲酸酯弹性纤维在我国的商品名称。氨纶于1959年开始工业化生产,它主要编制有弹性的织物,通常将氨纶丝与其他纤维纺成包芯纱后,供织造使用。它可用于制造各种内衣、游泳衣、紧身衣、牛仔裤、运动服、带类的弹性部分等。氨纶制成的服装,穿着舒适,能适应身体各部分变形的需要,并能减轻服装对身体的束缚感。氨纶的主要物理和化学性质 1.形态聚酯型弹性纤维的截面呈蚕豆状,聚醚型弹性纤维的截面呈三角形。 2.强伸性和弹性氨纶的强度很低,其长丝的断裂强度约4~9cN/tex,但氨纶的伸长很大,断裂伸长率达450~800,并且弹性很好。因此高伸长、高弹性是氨纶的最大特点。 3.吸湿性和染色性氨纶吸湿性较差,在一般大气条件下回潮率为0.8~1左右。但其染色性能较好。 4.其他性质氨纶的密度较好,仅为1~1.3g/cm3。此外,氨纶的耐酸碱性、耐溶剂性、耐光性、耐磨性都较好。 丙纶概况:丙纶是聚丙烯纤维的商品名称,它是由丙烯作原料经聚合、熔体纺丝制得的纤维。丙纶于1957年正式开始工业化生产,是合成纤维中的后起之秀。由于丙纶具有生产工艺简单,产品价廉,强度高,相对密度轻等优点,所以丙纶发展得很快。目前丙纶是合成纤维的第四大品种。丙纶的生产包括短纤维、长丝和裂膜纤维等。丙纶膜纤维是将聚丙烯先制成薄膜,然后对薄膜进行拉伸,使它分裂成原纤结成的网状而制得的。丙纶大量用于制造工业用织物、非织造织物等。如地毯、工业滤布、绳索、渔网、建筑增强材料、吸油毯以及装饰布等。在民用方面,丙纶可以纯纺或与羊毛、棉或粘纤等混纺来制作各种衣料。此外,丙纶膜纤维可用作包装材料。丙纶的主要物理和化学性质 1.形态丙纶的纵面平直光滑,截面呈圆形。 2.密度丙纶最大的优点是质地轻,其密度仅为0.91g/cm3是常见化学纤维中密度最轻的品种,所以同样重量的丙纶可比其他纤维得到的较高的覆盖面积。 3.强伸性丙纶的强度高,伸长大,初始模量较高,弹性优良。所以丙纶耐磨性好。此外,丙纶的湿强基本等于干强,所以它是制作渔网、缆绳的理想材料。 4.吸湿性和染色性丙纶的吸湿性很小,几乎不吸湿,一般大气条件下的回潮率接近于零。但它有芯吸作用,能通过织物中的毛细管传递水蒸气,但本身不起任何吸收作用。丙纶的染色性较差,色谱不全,但可以采用原液着色的方法来弥补不足。 5.耐酸耐碱性丙纶有较好的耐化学腐蚀性,除了浓硝酸,浓的苛性钠外,丙纶对酸和碱抵抗性能良好,所以适于用作过滤材料和包装材料。 6.耐光性等丙纶耐光性较差,热稳定性也较差,易老化,不耐熨烫。但可

纺织物理 第五章 纤维的光学性质

纺织物理第五章纤维的光学性质

第五章纤维的光学性质 纤维的光学性质是指纤维对光的吸收、反射、折射和透射的性质,以及光在纤维中的传递性质。纤维在光照下会呈色发光,纤维对不同振动方向的光会产生不同的折射效果,纤维受光以后会老化降解,这些都是纤维的光学性质。 纤维的光学性质直接取决于纤维的结构,纤维的分子结构能很好地将光线的光电场能转化成纤维分子或电子云的振动能,将使纤维的耐光老化性提高。纤维聚集态结构的不同将引起纤维反光、折光性质的变化,尤其是取向的分子排列将使纤维的光学各向异性特征明显,应该说纤维的光学各向异性是纤维结构的各向异性的最明显的表征,也是用的最多最为方便的传统测量方法。 本章将重点介绍纤维的折射特征、双折射性质与测量、纤维的光老化及发光现象,以及纤维的红外光谱及性质。通常光学性质的讨论范围为紫外光(200~400nm)、可见光(400~700nm)和红外光(0.7~20um)。光的波长不同,能量不同。可见光的波长不同其颜色不同,结果见表5-1。

表5—1 各种颜色的波长及波长范围 颜色标准 波长波长范围 红700 620~7 80 橙610 595~6 20 黄580 575~5 95 绿510 480~5 75 蓝470 450~4 80 紫420 380~4 50 第一节纤维的反射与折射的性质 一、光与纤维 当光线照射在纤维上,在纤维与空气或与其他介质的界面处将发生反射与折射现象。

该界面在纤维体内存在时,情况也一样。其光路与纤维的相互关系如图5-1所示。 (5.1) 为光线在空气中或真空中的传播速式中,v 1 度;v 为光线在纤维中的传播速度。 2 二、纤维的折射率 纤维是一个轴对称的各向异性体,其折射率在上是不同的。折射率大小的矢量在纤维中是一个空间椭球分布,如图5-2所示。可以看出,沿纤维轴向(Z轴)的折射率较大,为椭球的长度。在纤维经向平面中的折射率为中心对称、值相等且较少。 图5—2 纤维的折射率分布 设:纤维中的直角坐标系的z轴为纤维轴方 向,则 n、y n、z n分别表示纤维中沿x、y、z轴的 x

物理光学梁铨廷版的习题答案.doc

第一章光的电磁理 论 1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez= ,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。 解:由Ex=0,Ey=0,Ez= ,则频率υ===0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m, 波长λ=cT=3×108×2×10-14=6×10-6m。 1.2.一个平面电磁波可以表示为Ex=0,Ey= ,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少?(2)波的传播和电矢量的振动取哪个方向?(3)与电场相联系的磁场B的表达式如何写? 解:(1)振幅A=2V/m,频率υ= Hz,波长λ ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动

方向沿y轴;(3)由B=,可得By=Bz=0,Bx= 1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex= ,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。解:(1)υ===5×1014Hz; (2)λ= ;(3)相速度v=0.65c,所以折射率n= .4写出:(1)在yoz平面内沿与y轴成θ角的方 传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。 解:(1)由 ,可得 ; (2)同理:发散球面波, , 汇聚球面波, 。

1.5一平面简谐电磁波在真空中沿正x方向传播。其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy 平面呈45o,试写出E,B 表达式。 解:,其中 = = = ,同理: 。 ,其中 =。 1.6一个沿k方向传播的平面波表示为 E= ,试求k方向的单位矢。 解: , 又,∴= 。

纺织纤维的各种鉴别方法

纺织纤维的各种鉴别方法 1、显微镜观察法 利用显微镜观察纤维的纵向和横断面形态特征来鉴别各种纤维,是广泛采用的一种方法。它既能鉴别单成份的纤维,也可用于多种成份混合而成的混纺产品的鉴别。天然纤维有其独特的形态特征,如棉纤维的天然转曲,羊毛的鳞片,麻纤维的横节竖纹,蚕丝的三角形断面等,用生物显微镜能正确地辨认出采。而化学纤维的横断面多数呈圆形,纵向平滑,呈棒状,在显微镜下不易区分,必须与其他方法结合,才能鉴别。 2、燃烧法 燃烧法是鉴别纤维的常用方法之一,它是利用纤维的化学组成不同,其燃烧特征也不同来区分纤维的种类。取一小束待鉴别的纤维,用镊子夹住,缓慢地移近酒精灯火焰,仔细观察纤维接近火焰,在火焰中,和离开火焰后的燃烧状态,燃烧时散发的气味,以及燃烧后灰烬的特征,对照纤维燃烧特征表,粗略地鉴别属于哪一类纤维。 燃烧法适用于纯纺产品,不适用于混纺产品,或经过防火、防燃及其他整理的纤维和纺织品。 几种常见纤维的燃烧特征如表所示。 表几种常见纤维的燃烧特征

3、药品着色法 药品着色法是根据各种纤维对某种化学药品的着色性能不同来迅速鉴别纤维品种的方法,此法适用于未染色的纤维或纯纺纱线和织物。鉴别纺织纤维用的着色剂分专用着色剂和通用着色剂两种。前者用以鉴别某一类特定纤维,后者是由各种染料混合而成,可对各种纤维染成各种不同的颜色,然后根据所染的颜色不同鉴别纤维。通常采用的着色剂有碘一碘化钾溶 液。 碘一碘化钾溶液是:将碘20克溶解于100毫升的碘化钾饱和溶液中,把纤维浸入溶液中。~1分钟,取出后水洗于净,根据着色不同,判别纤维品种。几种纺织纤维的着色反应如表 所示。 4、溶解法 溶解法是利用各种纤维在不同的化学溶剂中的溶解性能来鉴别纤维的方法,官适用于各种纺织纤维,包括染色纤维或混合成分的纤维、纱线与织物。此外,溶解法还广泛用于分 析混纺产品中的纤维含量。 对于单一成分的纤维,鉴别时,可将少量待鉴别的纤维放入试管中,注入某种溶剂,用—玻璃棒搅动,观察纤维在溶液中的溶解情况,如溶解、微溶解,部分溶解和不溶解等几种。若是混合成分的纤维或纤维量极少,则可在显微镜载物台上放上具有凹面的载玻片,然后在凹面处放入试样,滴上溶液,盖上盖玻片,直接在显微镜中观察,根据不同的溶解情况,判别纤维种类。有些溶液需要加热,此时要控制一定温度。

纺织纤维鉴别试验方法

纺织纤维鉴别试验方法 拉曼光谱鉴别方法 1 适用范围 本标准规定了一种纺织纤维鉴别试验方法——拉曼光谱鉴别方法。 本标准适合于鉴别天然纤维和各种合成纤维。 2 规范性引用文件 下列文件中的条款通过本标准引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本标准。凡是不注明日期的引用文件,其最新版本适用于本标准。 FZ/T 01057.1 纺织纤维鉴别试验方法第1部分:通用说明 3原理 当一束激光照射样品时,样品分子与光子之间产生非弹性碰撞,即产生拉曼散射。借助于仪器将拉曼散射的强度值与相应拉曼位移值作图,即可获得该样品的拉曼光谱,光谱每一个特征谱带都包含了样品分子结构的信息。不同物质有不同的拉曼光谱图。纤维鉴别就是利用这种原理,将未知纤维与已知纤维的标准拉曼光谱进行比较来区别纤维的类别。 部分纺织纤维的拉曼位移特征峰表见附录A 部分纤维的标准拉曼光谱图见附录B 4 仪器与工具 拉曼光谱仪、剪刀 5 试样 试样应能代表抽样单位中的纤维。如果发现试样存在不均匀性,则应按每个不同部分取样。 6 试样的预处理方法 一般试样无需经过预处理,如果试样中混有非纤维物质,如油脂、蜡及其它杂质时,按FZ/T 01057.1中试样的预处理方法除去杂质 7试验程序

7.1 仪器校准 仪器必须根据仪器制造商提供的仪器说明书调节和校准仪器,保证各散射谱带在它应有的位置上出现。 7. 2 选择合适的扫描条件 7.3 将试样夹入拉曼光谱仪激光器的聚焦支架上,然后进行测量,记录50~2500cm-1的拉曼散射光谱图。 7.4 将试样的原始拉曼光谱图进行基线校正、微分、分段积分及归一化等预处理,得到标准拉曼光谱图,再将其与已知纤维的标准拉曼光谱进行比较来鉴别纤维。

相关主题