搜档网
当前位置:搜档网 › 数学旋转的专项培优练习题(含答案)及答案

数学旋转的专项培优练习题(含答案)及答案

数学旋转的专项培优练习题(含答案)及答案
数学旋转的专项培优练习题(含答案)及答案

一、旋转 真题与模拟题分类汇编(难题易错题)

1.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α=

度;

发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.

拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.

【答案】(1)60或240;(2) AC=BD ,理由见解析;(3)13+12或131

2

;(4)PC 的最大值=3,PC 的最小值31. 【解析】

分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.

(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.

(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.

详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;

(2)结论:AC =BD ,理由如下:

如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,

OA OB

COA DOB CO OD =??

∠=∠??=?

,∴△AOC ≌△BOD ,∴AC =BD ;

(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.

在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=1

2

,OH=

3

2

.在Rt△AOH中,

AH=22

OA OH

-=13

2

,∴BD=AC=CH+AH=

113

2

+

如图4中,当A、C、D共线时,作OH⊥AC于H.

易知AC=BD=AH﹣CH=131

-

综上所述:当A、C、D三点共线时,BD的长为131

2

+

131

2

-

(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作

OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.

点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、

勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.

2.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.

(1)如图1,若α=90°,则AB=,并求AA′的长;

(2)如图2,若α=120°,求点O′的坐标;

(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.

【答案】(1)10,102;(2)(33,9);(3)12354

5

(,)

【解析】

试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则

∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则

O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求

出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作

P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.

试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,

∴AB==5,

∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,

∴△ABA′为等腰直角三角形,∴AA′=BA=5;

(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣

∠HBO′=30°,

∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为

();

(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,

∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,

则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),

设直线O′C的解析式为y=kx+b,

把O′(),C(0,﹣3)代入得,解得,

∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P

(,0),

∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,

∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,

∴P′点的坐标为(,).

考点:几何变换综合题

3.已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:

(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD= ;

(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD= ;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.

【答案】(1);(2);(3)当∠ACB=120°时,CD有最大值是a+b.

【解析】

【分析】

(1)a=b=3,且∠ACB=60°,△ABC是等边三角形,且CD是等边三角形的高线的2倍,据此即可求解;

(2)a=b=6,且∠ACB=90°,△ABC是等腰直角三角形,且CD是边长是6的等边三角形的高长与等腰直角三角形的斜边上的高的差;

(3)以点D为中心,将△DBC逆时针旋转60°,则点B落在点A,点C落在点E.连接AE,CE,当点E、A、C在一条直线上时,CD有最大值,CD=CE=a+b.

【详解】

(1)∵a=b=3,且∠ACB=60°,

∴△ABC是等边三角形,

∴OC=,

∴CD=3;

(2)3;

(3)以点D为中心,将△DBC逆时针旋转60°,

则点B落在点A,点C落在点E.连接AE,CE,

∴CD=ED,∠CDE=60°,AE=CB=a,

∴△CDE为等边三角形,

∴CE=CD.

当点E、A、C不在一条直线上时,

有CD=CE<AE+AC=a+b;

当点E、A、C在一条直线上时,

CD有最大值,CD=CE=a+b;

只有当∠ACB=120°时,∠CAE=180°,

即A、C、E在一条直线上,此时AE最大

∴∠ACB=120°,

因此当∠ACB=120°时,CD有最大值是a+b.

【点睛】

本题主要考查了等边三角形的性质,以及轴对称的性质,正确理解CD有最大值的条件,是解题的关键.

4.在△ABC中,AB=AC,∠A=300,将线段BC绕点B逆时针旋转600得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.

(1)如图1,直接写出∠ABD和∠CFE的度数;

(2)在图1中证明:AE=CF;

(3)如图2,连接CE,判断△CEF的形状并加以证明.

【答案】(1)15°,45°;(2)证明见解析;(3)△CEF是等腰直角三角形,证明见解析.【解析】

试题分析:(1)根据等腰三角形的性质得到∠ABC的度数,由旋转的性质得到∠DBC的度数,从而得到∠ABD的度数;根据三角形外角性质即可求得∠CFE的度数.

(2)连接CD、DF,证明△BCD是等边三角形,得到CD=BD,由平移的性质得到四边形BDFE是平行四边形,从而AB∥FD,证明△AEF≌△FCD即可得AE=CF.

(3)过点E作EG⊥CF于G,根据含30度直角三角形的性质,垂直平分线的判定和性质即可证明△CEF是等腰直角三角形.

(1)∵在△ABC中,AB=AC,∠A=300,∴∠ABC=750.

∵将线段BC绕点B逆时针旋转600得到线段BD,即∠DBC=600.∴∠ABD= 15°.

∴∠CFE=∠A+∠ABD=45°.

(2)如图,连接CD、DF.

∵线段BC绕点B逆时针旋转60得到线段BD,∴BD=BC,∠CBD=600.∴△BCD是等边三角形.

∴CD=BD.

∵线段BD平移到EF,∴EF∥BD,EF=BD.

∴四边形BDFE是平行四边形,EF= CD.

∵AB=AC,∠A=300,∴∠ABC=∠ACB=750.∴∠ABD=∠ACD=15°.

∵四边形BDFE是平行四边形,∴AB∥FD.∴∠A=∠CFD.

∴△AEF≌△FCD(AAS).

∴AE=CF.

(3)△CEF是等腰直角三角形,证明如下:

如图,过点E作EG⊥CF于G,

∵∠CFE =45°,∴∠FEG=45°.∴EG=FG.

∵∠A=300,∠AGE=90°,∴.

∵AE=CF,∴.∴.∴G为CF的中点.∴EG为CF的垂直平分线.

∴EF=EC.

∴∠CEF=∠FEG=90°.

∴△CEF是等腰直角三角形.

考点:1.旋转和平移问题;2.等腰三角形的性质;3.三角形外角性质;4.等边三角形的判定和性质;5.平行四边形的判定和性质;6.全等三角形的判定和性质;7.含30度直角三角形的性质;8.垂直平分线的判定和性质;9.等腰直角三角形的判定.

5.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB 交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.

思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.

①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;

②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;

③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.

【答案】(1)200;(2)①PC=PE,PC⊥PE;②PC与PE的数量关系和位置关系分别是

PC=PE,PC⊥PE,见解析;③PC21033

.

【解析】

【分析】

(1)由CD∥AB,可得∠C=∠B,根据∠APB=∠DPC即可证明△ABP≌△DCP,即可得AB =CD,即可解题.

(2)①延长EP 交BC 于F ,易证△FBP ≌△EDP (SAS )可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .

②作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,易证△FBP ≌△EDP (SAS ),结合已知得BF =DE =AE ,再证明△FBC ≌△EAC (SAS ),可得△EFC 是等腰直角三角形,即可证明PC =PE ,PC ⊥PE .

③作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°,得∠FBC =∠EAC ,同②可证可得PC =PE ,PC ⊥PE ,再由已知解三角形得∴EC 2=CH 2+HE 2

=10+

求出2211022

PC EC +==

【详解】

(1)解:∵CD ∥AB ,∴∠C =∠B , 在△ABP 和△DCP 中,

BP CP

APB DPC B C =??

∠=∠??∠=∠?

, ∴△ABP ≌△DCP (SAS ), ∴DC =AB . ∵AB =200米. ∴CD =200米, 故答案为:200.

(2)①PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图1,延长EP 交BC 于F , 同(1)理,可知∴△FBP ≌△EDP (SAS ), ∴PF =PE ,BF =DE , 又∵AC =BC ,AE =DE , ∴FC =EC , 又∵∠ACB =90°,

∴△EFC 是等腰直角三角形, ∵EP =FP , ∴PC =PE ,PC ⊥PE .

②PC 与PE 的数量关系和位置关系分别是PC =PE ,PC ⊥PE . 理由如下:如解图2,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF , 同①理,可知△FBP ≌△EDP (SAS ), ∴BF =DE ,PE =PF =1

2

EF , ∵DE =AE , ∴BF =AE ,

∵当α=90°时,∠EAC =90°, ∴ED ∥AC ,EA ∥BC ∵FB ∥AC ,∠FBC =90, ∴∠CBF =∠CAE , 在△FBC 和△EAC 中,

BF AE CBE CAE BC AC =??

∠=∠??=?

, ∴△FBC ≌△EAC (SAS ), ∴CF =CE ,∠FCB =∠ECA , ∵∠ACB =90°, ∴∠FCE =90°,

∴△FCE 是等腰直角三角形, ∵EP =FP , ∴CP ⊥EP ,CP =EP =

1

2

EF . ③如解图3,作BF ∥DE ,交EP 延长线于点F ,连接CE 、CF ,过E 点作EH ⊥AC 交CA 延长线于H 点,

当α=150°时,由旋转旋转可知,∠CAE =150°,DE 与BC 所成夹角的锐角为30°, ∴∠FBC =∠EAC =α=150° 同②可得△FBP ≌△EDP (SAS ),

同②△FCE 是等腰直角三角形,CP ⊥EP ,CP =EP

, 在Rt △AHE 中,∠EAH =30°,AE =DE =1, ∴HE =

12,AH

又∵AC =AB =3, ∴CH =

3+

2

, ∴EC 2=CH 2+HE 2

=10+∴PC 2

211022

EC +=

【点睛】

本题考查几何变换综合题,考查了旋转的性质、全等三角形的判定和性质,等腰直角三角形性质、勾股定理和30°直角三角形性质等知识,解题的关键是正确寻找全等三角形解决问题,属于压轴题.

6.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.

(1)求证:BE=CE

(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)

①求证:△BEM≌△CEN;

②若AB=2,求△BMN面积的最大值;

③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.

【答案】(1)详见解析;(2)①详见解析;②2;③62 4

.

【解析】

【分析】

(1)只要证明△BAE≌△CDE即可;

(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;

②构建二次函数,利用二次函数的性质即可解决问题;

③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.

【详解】

(1)证明:如图1中,

∵四边形ABCD是矩形,

∴AB=DC,∠A=∠D=90°,

∵E是AD中点,

∴AE=DE,

∴△BAE≌△CDE,

∴BE=CE.

(2)①解:如图2中,

由(1)可知,△EBC是等腰直角三角形,

∴∠EBC=∠ECB=45°,

∵∠ABC=∠BCD=90°,

∴∠EBM=∠ECN=45°,

∵∠MEN=∠BEC=90°,

∴∠BEM=∠CEN,

∵EB=EC,

∴△BEM≌△CEN;

②∵△BEM≌△CEN,

∴BM=CN,设BM=CN=x,则BN=4-x,

∴S△BMN=1

2

?x(4-x)=-

1

2

(x-2)2+2,

∵-1

2

<0,

∴x=2时,△BMN的面积最大,最大值为2.

③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.

∴EG=m+3m=(1+3)m

, ∵S △BEG =12?EG?BN=1

2

?BG?EH , ∴EH=3?(13)

m m +=3+3

m ,

在Rt △EBH 中,sin ∠EBH=3+3

6226m

EH

EB m

+==. 【点睛】

本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,

7.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=?,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .

(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;

(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α?<

(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;

【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;2CD. 【解析】

试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明

A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明

△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.

试题解析:(1)①AC=OE,

理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,

∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,

∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,

连接AD,

∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,

∴AC=OE;

②在Rt△CDO中,

∵CD2=OC2+OD2,∴CD2=AC2+OC2;

故答案为AC2+CO2=CD2;

(2)如图2,(1)中的结论②不成立,

理由是:

连接AD,延长CD交OP于F,连接EF,

∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,

∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,

∴∠ACD=∠AOB,

同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,

∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,

∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,

∴AC2+OC2=FO2+OE2=EF2,

Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,

所以(1)中的结论②不成立;

(3)如图3,结论:OC﹣CA=CD,

理由是:连接AD,则AD=OD,

同理:∠ADC=∠EDO,

∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,

∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,

即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,

故答案为OC﹣AC=CD.

考点:几何变换的综合题

8.已知∠AOB=90°,在∠AOB的平分线OM上有一点C,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.

当三角板绕点C旋转到CD与OA垂直时(如图①),易证:OD+OE2OC;

当三角板绕点C旋转到CD与OA不垂直时,即在图②,图③这两种情况下,上述结论是否仍然成立?若成立,请给予证明:若不成立,线段OD,OE,OC之间又有怎样的数量关系?请写出你的猜想,不需证明.

①②③

【答案】图②中OD+OE=2OC成立.证明见解析;图③不成立,有数量关系:OE-OD =2OC

【解析】

试题分析:当三角板绕点C旋转到CD与OA不垂直时,易得△CKD≌△CHE,进而可得出证明;判断出结果.解此题的关键是根据题意找到全等三角形或等价关系,进而得出OC 与OD、OE的关系;最后转化得到结论.

试题解析:图②中OD+OE=2OC成立.

证明:过点C分别作OA,OB的垂线,垂足分别为P,Q.

有△CPD≌△CQE,

∴DP=EQ,

∵OP=OD+DP,OQ=OE-EQ,

又∵OP+OQ=2OC,

即OD+DP+OE-EQ=2OC,

∴OD+OE=2OC.

图③不成立,

有数量关系:OE-OD2OC

过点C分别作CK⊥OA,

CH⊥OB,

∵OC为∠AOB的角平分线,且CK⊥OA,CH⊥OB,

∴CK=CH,∠CKD=∠CHE=90°,

又∵∠KCD与∠HCE都为旋转角,

∴∠KCD=∠HCE,

∴△CKD≌△CHE,

∴DK=EH,

∴OE-OD=OH+EH-OD=OH+DK-OD=OH+OK,

由(1)知:2OC,

∴OD,OE,OC满足2OC.

点睛:本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的交点是旋转中心.

相关主题