搜档网
当前位置:搜档网 › 铝粉含量对火箭发动机推力影响研究

铝粉含量对火箭发动机推力影响研究

1 结合图解释火箭发动机产生推力的原因

1 结合图解释火箭发动机产生推力的原因? 答:发射药燃烧后产生的压力迅速增加,高压的火药气体以一定的速度从喷管喷出。用符号 V e 表示火药气体的排气速度。当大量的火药气体以高速V e 从喷管喷出时,火箭弹在火药气体流反作用力的推动下获得与气体流相反运动的加速度,显然,火箭弹运动时其相互作用的物体一个是火箭弹本身,另一个是从火箭发动机喷出的高速气体流。该高速气体流又是火箭发送机内的发射药燃烧生成的。由此可见,火箭弹运动时不需要借助于任何外界物体。火箭弹的这种反作用运动为直接反作用运动。高速气体喷流作用在火箭弹上的反作用力为直接反作用力。(使火箭向前的推力) 2 火箭武器系统与身管武器相比有什么优点? 与火炮弹丸不同,火箭弹是通过发射装置借助于火箭发动机产生的反作用力而运动,火箭发射装置只赋予火箭弹一定的角度,射向和提供点火机构,创造火箭发动机开始工作的条件。 ,而不给火箭弹提供任何飞行动力。优点:1. 有较高的飞行速度。 2. 发射时没有后坐力。 3. 发射时过载系数小。3 什么是涡轮式火箭弹和尾翼稳定式火箭弹?后者比前者有什么优点? 涡轮式火箭弹一般由战斗部,火箭发动机和稳定装置三大部分组成。他是靠自身高速旋转即所谓的陀螺效应而保持飞行稳定。尾翼稳定式火箭弹即依靠尾翼来实现飞行稳定的火箭弹,他也是由战斗部,火箭发动机和稳定装置三大部分组成。尾翼稳定式火箭弹燃料全部用来加速飞行,不同于涡轮式火箭弹一部分燃料要用于稳定飞行,结构比涡轮式火箭弹简单。 4 导弹与火箭弹相比,有什么优缺点? 火箭炮的优点在于反应速度快,发射准备时间短,价格便宜,缺点就是精度比较差,火箭弹是靠火箭发动机推进的非制导弹药。主要用于杀伤、压制敌方有生力量,破坏工事及武器装备等。导弹是“导向性飞弹”的简称,是一种依靠制导系统来控制飞行轨迹的可以指定攻击目标,甚至追踪目标动向的无人驾驶武器,其任务是把战斗部装药在打击目标附近引爆并毁伤目标或在没有战斗部的情况下依靠自身动能直接撞击目标以达到毁伤效果。简言之,导弹是依靠自身动力装置推进,由制导系统导引、控制其飞行路线,并导向目标的武器。 1 杀爆弹的结构特点、主要用途及实现主要用途的途径是什么? 杀爆弹的结构特点:①引信:具有瞬发(0.001s)惯性和延期(0.01s)三种装定;②弹体:分整体式和非整体式;③弹带:采用嵌压或焊接等方式固定在弹体上;④弹丸装药 主要用途:①杀伤人员,破坏轻型工事和开辟通路②开辟通路,杀伤集结的隐蔽有生力量,兵器和军事技术装备等 途径:①杀伤作用②爆破作用 2 穿甲弹的结构特点、主要用途及实现主要用途的途径是什么? 主要用途及实现主要用途的途径:穿透装甲目标的破坏(韧性破坏,冲塞破坏,花瓣型破坏,破碎型破坏和层裂型破坏),利用弹体的动能,钢甲的破片或炸药的爆炸作用毁伤伪装甲后面的有生力量和器材。 3 破甲弹的结构特点、主要用途及实现主要用途的途径是什么? 结构特点:弹体,炸药装药,隔板,引信和稳定装置部分 主要用途:反装甲,对付各种工事和有生力量。 途径:①聚能效应②金属射流及爆炸成形弹丸③破甲作用 4 碎甲弹的结构特点、主要用途及实现主要用途的途径是什么? 主要用途及实现主要用途的途径:靠战斗部内的高能塑性炸药在敌方坦克或装甲车的钢甲正面爆炸后使钢甲背面崩落形成碟形破片和许多小碎片来杀伤坦克或装甲车辆内的人员,破坏车内的各种设备。 5 有哪些特种弹? ①烟幕弹②燃烧弹③照明弹④宣传弹⑤曳光弹⑥信号弹 6 迫击炮弹的弹道特点是什么?弹丸出口速度如何?它的弹尾为什么要做成流线型收尾?榴弹和碎甲弹为何不能这样做? 弹道特点:弹道弯曲,落角大,弹丸出口速度高 原因:保证飞行稳定和放置发射装药 7 怎样描述杀爆弹的杀伤威力? 杀伤作用:利用破片的动能;侵彻作用:利用弹丸的动能;爆破作用:利用炸药的化学能;燃烧作用:根据目标的易燃程度以及炸药的成分而定。 8 什么是侵彻? 利用动能对各种介质的侵入过程。 9 画出杀爆弹弹头、圆柱部和弹尾碎片分布图及各部分产生弹片数量总量的比率。 10 画出底凹弹结构。底凹有什么好处? ①减小低阻。 ②提高弹体强度。 ③增强飞行稳定。 ④提高威力。

国产最大推力火箭发动机

国产最大推力火箭发动机 火箭发动机是发展航天事业必不可少的一个重要环节。中国自主研发的火箭发动机攻克了不少的难题,直到今天,国产发动机的最大动力已达到120吨。下面随着一起来看看详细内容。 该火箭发动机目前推力最大 近日,由中国航天六院生产的“120吨级液氧煤油发动机”通过国防科工局现场验收。这种大推力发动机将成为中国未来实施载人航天、月球探测、空间实验室乃至执行深太空探索任务等工程的主要动力。 据介绍,我国此前发射的神舟系列运载火箭的主发动机推力都是75吨,随着我国航天事业的发展,这种推力的发动机已不能满足对更深远太空探索的需求。“120吨级液氧煤油发动机”就是航天六院针对上述现状,为我国新一代运载火箭系列研制的无毒、无污染、高性能、高可靠的基本动力装置,也是今后探月工程、空间实验室乃至深太空探索任务等必要的动力基础,是目前我国推力最大的火箭发动机。 该发动机的研制填补了我国补燃循环发动机技术空白,掌握了核心技术,使我国成为继俄罗斯之后第二个掌握高压补燃循环液氧煤油发动机技术的国家,实现了从常规有毒推进剂开式循环液体推进技术,到绿色无毒推进剂闭式循环液体推进技术的巨大跨越。未来,它

将替代现用的常规动力发动机。 是中国航天动力史的里程碑 5月27日至28日,国防科工局胡亚枫副局长带队在航天六院组织进行了120吨级液氧煤油发动机研制项目验收会。来自国防科工局、省国防工办、中国航天科技集团公司及所属科研院所,以及哈工大、北航、西工大等单位的专家,达成一致通过验收的最终意见。 5月27日至28日,国防科工局胡亚枫副局长带队在航天六院组织进行了120吨级液氧煤油发动机研制项目验收会。来自国防科工局、省国防工办、中国航天科技集团公司及所属科研院所,以及哈工大、北航、西工大等单位的专家,达成一致通过验收的最终意见。 胡亚枫副局长说,120吨级液氧煤油发动机的研制成功是中国航天动力发展过程中的里程碑。 另据了解,中国新一代运载火箭“长征五号”研制上月底在天津顺利完成助推器大型分离试验,这标志着中国“大火箭”初样研制阶段最重要的大型地面试验之一获得圆满成功。“120吨级液氧煤油发动机”正是“大火箭”的主推力发动机。 不过,不久将进行的我国首次载人航天空间交会对接即“神九”发射任务的主推力发动机仍然为75吨。

固体火箭发动机设计复习题答案

1. 画简图说明固体火箭发动机的典型结构 参考书中的发动机图吧 2. 固体火箭发动机的质量比是什么?什么是质量比冲? 质量比:推进剂质量与发动机初始质量的比。 质量比冲:单位发动机质量所能产生的冲量。 3. 固体火箭发动机总体设计的任务是什么? 依据导弹总体提出的技术要求,选择并确定发动机总体设计方案,计算发动机性能,确定发动机主要设计参数、结构形式和主要结构材料,固体推进剂类别和药柱形式等。在此基础上提出发动机各部件的具体设计要求。 4.请写出齐奥尔科夫斯基公式 式vm 中为导弹理想飞行速度,Is 为发动机比冲,mp 为药柱质量,mm 为发动机结构质量,ml 为导弹载荷量(除发动机以外的一切质量) 5.举出两种实现单室双推力的方案 (1)不改变喷管喉径,采用不同燃速的两种推进剂药柱,这两种药柱可前后放置,也可同心并列放置。前者推力比受燃速比的限制较小,后者较大。 (2)不改变喷管喉径,采用一种推进剂的两种药形,通过燃面变化实现双推力。该方法简单易行,但推力比调节范围较小。 (3)采用不同燃速的推进剂和不同药形,即同时用调节燃速和燃面的方法实现双推力。该方法有较大的灵活性,推力比调节范围宽,实际应用较为广泛。 (4)采用可调喷管改变推力大小,可得到较宽的推力比调节范围,但结构复杂。 6.什么是最佳长径比? 最佳长径比——对应最佳直径的长径比 第二章 7.什么是肉厚分数? 8.什么是装填密度、装填分数、体积装填分数? ln 1p m s m L m v I m m ??=+ ?+??

9.星形装药燃面变化规律与几何参数的关系? 参考2-2节,P49 10.单根管状装药的设计过程?如何计算? 参考2-4节,P64 11.什么是线性粘弹性? 指当应力值低于某一极限值时,粘弹性态是近似线性的,即在给定的时间内,由阶跃应力所导致的应变与应力值成正比。 12.什么是时温等效原理? 各种温度条件下所获得的松弛模量(或其他力学性能数据),可以通过时间标度的适当移动而叠加;这也就是说,材料性能随温度的变化关系可以用改变时间标度相应地(等效)表示出来。反过来,材料性能依赖于时间的变化,也可以靠改变温度条件相应地表示出来。这种关系就叫做时-温等效原理 第三章 13.固体火箭发动机燃烧室的主要组成部分和功用。 对于贴壁浇铸推进剂药柱的燃烧室,通常由壳体、内绝热层和衬层组成;对于自由装填药柱的燃烧室,一般由壳体、内绝热层和挡药板组成。 壳体主要承受内压作用。由于壳体还是弹体外壳的一部分,所以还要承受外载荷的作用。内绝热层用来对壳体内壁进行热防护。 衬层的作用是防止界面间的分子迁移,使浇铸的药柱与内绝热层粘结更牢,并缓和药柱与内绝热层之间的应力传递。 挡药板用于防止自由装填的药柱的运动。 14.发动机燃烧室壳体受到的载荷有哪些?

针栓式变推力火箭发动机技术现状与发展探索

针栓式变推力火箭发动机技术现状与发展探索集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

针栓式变推力火箭发动机技术现状与发展探索 岳春国李进贤冯喜平唐金兰 (西北工业大学燃烧、流动和热结构国家级重点实验室,陕西西安 710072) 摘要:随着人类探索太空活动的逐年增加,发展变推力推进技术的重要性愈发明显。本文综 述了针栓式变推力液体火箭发动机国内外的发展现状与趋势,分解了发展针栓式变推力液体 火箭发动机的关键技术,最后提出适合我国国情的变推力液体火箭发动机技术的发展设想。 关键词:变推力火箭发动机;针拴式喷注器;现状;建议 The Research on Technology Actuality and Development of Pintle Injector Variable Thrust Rocket Engine Yue Chun-guo,Li Jin-xian,Feng Xi-ping,Tang Jin-lan (National laboratory of combustion,flow and thermo-structure, Northwestern Polytechnical University., Xi.’an, 710072 China) Abstract: The significance of developing variable thrust propulsive technology becomes more and more obvious with the year after year increase of exploring outer space activity. In the paper, technology actuality and development trend of pintle injector variable thrust rocket engine at home and overseas are summarized. Key technologies of developing variable thrust rocket engine are analyzed. Development advices of developing variable thrust rocket engine that are adapted to the situation of our country are brought forward. Key Words: Variable thrust rocket engine; Pintle injector; Actuality; Advice 1、前言 液体火箭发动机是航天运输系统及空间飞行器推进与操纵控制的主要动力 装置。随着人类认知领域的逐步拓展,探索太空的活动越来越多,对火箭发动 机的要求也越来越高。研究现代火箭技术的先驱之一,早在20世纪初就提出了火箭发动机推力控制的必要性。具有推力控制能力的变推力液体火箭发动机在 航天运输及空间机动飞行的许多情况下都具有技术上的优越性[1]。 变推力液体火箭发动机技术是当今液体火箭推进技术的重要发展领域。航 天运输系统的动力装置采用变推力发动机,可以实现最佳推力控制,从而使运 载能力达到最大;载人航天的主动段飞行使用变推力发动机进行推进,可以严 格控制宇航员的过载,确保宇航员的飞行安全;对于空间飞行器的交会对接与 轨道机动,变推力发动机可以提高操纵控制的灵活性。如果导弹系统采用变推 力发动机进行推进,则可以改善导弹飞行轨道的机动性,从而提高导弹武器的 突防能力。在诸如月球等无大气天体表面的软着陆及机动飞行中,变推力发动 机是目前唯一可用的动力装置。由于火箭发动机是高密度的能量释放器,对其 推力进行设计和控制时需要解决诸多技术上的难题,因此变推力液体火箭发动 机的研究与发展具有不同于普通常推力液体火箭发动机的独特的技术问题。

固体火箭发动机工作原理及应用前景浅析

固体火箭发动机工作原理及应用前景浅析 摘要:本文主要介绍了固体火箭发动机的发展简史、基本结构和工作原理以及随着国民经济的日益发展,固体火箭发动机的应用前景。 关键词:火箭发动机工作原理应用 概述 火箭有着悠久的发展历史,早在公元九世纪中期人们便利用火药制成了火箭,并应用于军事。到了14~17世纪,火箭技术相继传入阿拉伯国家和欧洲,并对火箭的结构进行了改进,火箭技术得到进一步发展。19世纪早期,人们将火箭技术的研究从军事目的转向宇宙航行,从固体推进剂转向液体推进剂。到19世纪50年代,中、远程导弹和人造卫星的运载火箭,以及后来发展的各种航天飞船、登月飞行器和航天飞机,其主发动机均为液体火箭发动机,在这一时期,液体火箭推进技术得到了飞速发展。随着浇注成型复合推进剂的研制成功,现代固体火箭推进技术的发展也进入了一个新的时期。使固体火箭推进技术向大尺寸、长工作时间的方向迅速发展,大大提高了固体火箭推进技术的水平,并扩大了它的应用范围。 固体火箭发动机的基本结构 固体火箭发动机主要由固体火箭推进剂装药、燃烧室、喷管和点火装置等部件组成,如图一所示。 图一发动机结构图 1推进剂装药:包含燃烧剂、氧化剂和其他组分是固体火箭发动机的能源部份。装药必须有一定的几何形状和尺寸,其燃烧面的变化必须符合一定的规律,才能实现预期的推力变化要求。 2燃烧室:是贮存装药的容器,也是装药燃烧的工作室。因此不仅要有一定的容积,而且还需具有对高温、高压气体的承载能力。燃烧室材料大多采用高强度的金属材料,也有采用玻璃纤维缠绕加树脂成型的玻璃钢结构,可以大幅减轻燃烧室壳体的重量。 3 点火装置:用于点燃装药的装置。一般采用电点火,由电发火管和点火剂组成。

小推力姿_轨控液体火箭发动机材料的研究进展[1]

收稿日期:2004-06-30;修回日期:2005-08-22 作者简介:张绪虎,1966年出生,高级工程师,主要从事金属材料及工艺的研究工作 小推力姿/轨控液体火箭发动机材料的研究进展 张绪虎 汪 翔 贾中华 胡欣华 吕宏军 (航天材料及工艺研究所,北京 100076) 文 摘 概述了国内外小推力姿/轨控液体火箭发动机新材料的研究和应用进展。姿/轨控液体火箭发动机推力室已从高性能铌/硅化物材料体系向复合材料推力室技术发展,研制出耐高温性能更好的新型材料 体系和高温抗氧化涂层,以及将它们应用于发动机推力室的制造是提高姿/轨控发动机技术水平的有效途径。 关键词 姿/轨控液体发动机,材料,应用 Research Pr ogress ofMaterial of S mall Thruster f or Attitude and O rbit Contr ol Zhang Xuhu W ang Xiang J ia Zhonghua Hu Xinhua L üHongjun (Aer os pace Research I nstitute ofM aterials and Pr ocessing Technol ogy,Beijing 100076) Abstract The research p r ogress of advanced material f or s mall thruster f or attitude and orbit contr ol both a 2br oad and at home is p resented .Comparing with the traditi onalN i obiu m /silicide syste m ,composite thruster has be 2come the research trends .The app licati on of ne w high te mperature structure materials and their coating syste m is ef 2fective way t o i m p r ove the p r operties of the thrusters . Key words A ttitude and orbit contr ol thruster,Material,App licati on 1 前言 小推力液体火箭发动机是为导弹武器和航天器在空间进行轨道控制、姿态控制、航天器的对接和交 会、着陆等提供动力的推进装置;特点是在空间环境多次起动脉冲工作,推力较小,一般为0.001~4500N [1] ,最小脉冲宽度为毫秒,总工作时间(工作时间和间隙时间的总和)可达5~10年。小推力姿/轨控液体火箭发动机技术广泛应用于卫星轨道定位、姿态调整,飞行器(如动能拦截器KK V )的飞行控制和导弹末修和精确定位等,在航天领域中用途广、品种多、数量大、要求高。随着航天器的发展,需要轻质、高性能的小推力双组元液体火箭发动机,以增加卫星有效载荷;适应 动能拦截器不断向快速响应、轻质、低成本和安全化转化的要求,深空探测器推进系统需要高性能、长寿命、多次起动、无羽流污染,对小推力姿/轨控发动机的结构质量和性能提出了更高的要求。通过新材料、新工艺提高推进系统性能,可增大有效载荷,延长航天器工作寿命,保证发动机长期可靠工作。2 国外小推力姿/轨控液体火箭发动机材料研究与 应用 姿/轨控发动机普遍采用双组元推进剂液体火箭发动机。由于推进剂燃烧温度较高(如NT O /MMH 的燃烧温度可达2700℃),一般材料无法承受这样高的燃气温度和环境条件,而姿/轨控发动机以脉冲工作为主,特别是卫星上的发动机需多次起

西工大固体火箭发动机知识点精品总结

一、固体火箭发动机:由燃烧室,主装药,点火器,喷管等部件组成。 工作过程:通过点火器将主装药点燃,主装药燃烧,其化学能转变为热能,形成高温高压燃气,然后通过喷管加速流动,膨胀做功,进而将燃气的热能转化为动能,当超声速气流通过喷管排出时,其反作用力推动火箭飞行器前进。工作原理:1能量的产生过程2热能到射流动能的转化过程 优点:结构简单,使用、维护方便,能长期保持在备战状态,工作可靠性高,质量比高。 缺点:比冲较低,工作时间较短,发动机性能受气温影响较大,可控性能较差,保证装药稳定燃烧的临界压强较高。 二、1.推力是发动机工作时内外表面所受气体压力的合力。F=F 内+F 外 F=mu e +Ae(Pe-Pa) 当发动机在真空中工作时Pa=0.这时的推力为真空推力。 把Pe=Pa 的状态,叫做喷管的设计状态,设计状态下产生的推力叫做特征推力。 2.把火箭发动机动,静推力全部等效为动推力时所对应的喷气速度,称为等效喷气速度u ef 。 3影响喷气速度的因素来自两个方面:a).推进剂本身的性质b) 燃气在喷管中的膨胀程度 3.流量系数的倒数为特征速度C ?,他的值取决于推进剂燃烧产物的热力学特性,即与燃烧温度,燃烧产物的气体常数和比热比K 值有关,而与喷管喉部下游的流动过程无关。 4.推力系数C F 是表征喷管性能的参数,影响推力系数的主要因素是面积比和压强比。当Pe=Pa 时,为特征推力系数,是给定压强比下的最大推力系数,Pa=0时为真空推力系数。 5.发动机的工作时间包括其产生推力的全部时间,即从点火启动,产生推力开始,到发动机排气过程结束,推力下降到零为止。确定工作时间的方法:以发动机点火后推力上升到10%最大推力或其他规定推力的一点为起点,到下降到10%最大推力一点为终点,之间的时间间隔。 6.燃烧时间是指从点火启动,装药开始燃烧到装药燃烧层厚度烧完为止的时间,不包括拖尾段。确定燃烧时间的方法:起点同工作时间,将在推力时间曲线上的工作段后部和下降段前部各做切线,两切线夹角的角等分线与曲线的交点作为计算燃烧时间的终点。 7.总冲是发动机推力和工作时间的乘积。总冲与有效喷气速度和装药量有关,要提高总冲,必须用高能推进剂提高动推力。 8.比冲是燃烧一千克推进剂装药所产生的冲量。提高比冲的主要途径是选择高能推进剂,提高燃烧温度,燃气的平均分子量越小,比冲就越大,比冲随面积比变化的规律和推力系数完全相同。当大气压强减小,比冲增大,真空时达到最大,提高燃烧室压强可增加比冲。 9.在火箭发动机中常用实际值对理论值的比值来表示这个差别。这个比值就叫做设计质量系数,亦发动机冲量系数。 1.推力系数的变化规律:(1)比热比、工作高度一定时,随着喷管面积比的增大,推力系数增先大,当达到某一最大值后,又逐渐减小(2)比热比k 、面积比A e A t 一定时,C F 随着发动机工作高度的增加而增大; 2.最大推力分析:Pc 、At 、Pa 一定时,喷管处于完全膨胀工作状态时所对应的面积比,就是设计的最佳面积比,可获得最大推力; 3.比冲的影响因素:(1)推进剂能量对比冲的影响。能量高,R T f 高,c*高,Is 高; (2)喷管扩张面积比Ae/At 对比冲的影响。在达到特征推力系数前,比冲随喷管扩张面积比的增大而增加。(3) 环境压强Pa 对比冲的影响。Pa 减小,Is 增大;(4) 燃烧室压强Pc 对比冲的影响。当喷管尺寸和工作高度一定时,Pc 越高,u ef 越大。(5) 推进剂初温T 对比冲的影响。比冲随初温的增加而增大。 4.火箭发动机性能参数对飞行器性能的影响: V max =I s lnu (1)发动机的比冲Is 越大,火箭可以达到的最大速度Vmax 也越大,射程就越远。(2)火箭的质量数μ越大,火箭可以达到的最大速度Vmax 也越大.(3) 发动机比冲Is 和火箭的质量数μ可以**理 实c c C =ξ理实s s I I =ξN C F F C c C c ξξξ==理理实实**

课程名称固体火箭推进基础及发展

课程名称:固体火箭推进基础及发展 一、课程编码:0100029 课内学时:48学分:3 二、适用学科专业:航空宇航科学与技术,固体推进剂专业 三、先修课程:高等数学,大学物理,航空宇航推进原理,固体火箭发动机设计,气体动力 学基础,工程热力学,传热学等 四、教学目标 通过本课程的学习,掌握先进固体火箭推进的基本原理,并了解其它新型推进方式的概貌,提升学生对固体火箭发动机全方面的认识,为从事固体火箭发动机相关工作奠定基础。 五、教学方式 教学方法以讲授为主,结合教学内容适当安排讨论课,内容以本阶段的讲授的内容和安排的课外阅读材料为主。 六、主要内容及学时分配 A卷 1.固体火箭发动机的燃烧与流动4学时 1.1稳态燃烧 1.2非稳态燃烧 2.燃烧流场的现代诊断技术4学时 2.1燃烧流场的速度诊断 2.2燃烧流场的温度诊断 2.3燃烧流场的密度组分和浓度诊断 2.4凝相粒度及其尺寸分布诊断 3.固体火箭发动机的结构与材料4学时 3.1燃烧室壳体 3.2推进剂装药结构完整性分析 3.3喷管结构烧蚀 3.4壳体尾管的绝热层和包覆层材料 4.固体火箭发动机的喷焰特性4学时 4.1火箭发动机喷焰的排气特征效应 4.2排气特征的测量技术研究 4.3排气特征的预估技术研究 4.4减少排气特征效应的若干措施 5.新型固体推进剂4学时 5.1高能推进剂 5.2高燃速推进剂 5.3复合平台推进剂 5.4固体推进剂的安全性 5.5推进剂技术的发展趋势 6.固体火箭发动机的现代设计与评估技术4学时 6.1固体火箭发动机的现代设计技术

6.2固体火箭发动机的现代评估技术 6.3固体火箭发动机的故障分析 6.4固体火箭发动机的参数辨识 7.现代战术导弹发动机的发展和固体火箭发动机的应用前景4学时 7.1战术导弹发动机的发展方向 7.2当前研究的重点 7.3固体短脉冲控制发动机 8.冲压发动机8学时 8.1冲压发动机的工作原理 8.2整体式冲压发动机的主要组成部件 8.3冲压发动机的发展 B卷 I Introduction2学时 II Overall Design Approach2学时III Propellant Properties and Selection2学时IV Ballistic Analysis and Grain Design2学时V General Procedure for a Propellant Grain-Design Optimization and Computer-Aided Preliminary Design2学时VI Some Specific Cases2学时七、考核与成绩评定 期末笔试:60% 平时分组讨论考核:20% 八、参考书及学生必读参考资料 1.Jensen,G.E and Netzer D.W.Tactical Missile Propulsion[M].Reston:Progress in Astronautics and Aeronautics,Vol.170,1996 2.阿兰.达文纳斯.固体火箭推进剂技术[M].北京:宇航出版社,1997 3.张平等著,固体火箭发动机原理,北京理工大学出版社,1992 4.李宜敏,固体火箭发动机原理北京航空航天大学出版社,1991 5.(苏)阿列玛索夫等著,张大钦等译,火箭发动机原理,北京:宇航出版社,1993 6.王守范编著,固体火箭发动机燃烧与流动,北京工业学院出版社,1987. 7.[美]萨顿G P,比布拉兹O著.火箭发动机基础.北京:科学出版社,2003. 九、大纲撰写人:王宁飞

火箭发动机的性能参数

火箭发动机的基本性能参数 (1)推力 火箭发动机的推力就是作用在发动机内外表面的各种力的合力。图3-2所示为发动机的推力室,它由燃烧室和和喷管两部分组成。作用在推力室上的力有推进剂在燃烧室内燃烧产生的燃气压力p e ,外界的大气压力p 0,以及高温燃气进过喷管以很高的速 度向后喷出所产生的反作用力。由于喷管开口,作用在推力室内外壁的压力不平衡,产生向前的一部分推力,加上喷气流所产生的反作用力,发动机推力的合力为 e e e A p p mu F )(0-+= (3.1) 式中,F 为发动机推力(N );m 为喷气的质量流率,即单位时间的质量流量(kg/s);e u 为喷管出口的喷气速度(m/s ); p e 为推力室内燃气的压力(Pa );p 0为外界大气的压力(Pa );e A 为喷管出口的截面积(m 2) 从公式(3.1)可知,火箭发动机的推力由两部分组成。第一部分是由动量定理导出的mu e 项,它是推力的主要部分,占总推力的90%以上。成为动推力。它的大小取决于喷气的质量流率和喷气速度,前者实际上等于单位时间推进剂的消耗量。为了获得更高的喷气速度,要求采用高能的推进剂,并使推进剂的化学能尽可能多地转换为燃气的动能。 第二部分是由于喷管出口处燃气压力和大气压力不同所产生的A(p 0p e -)项,与喷管出口面积及外界大气的压力有关,称为静推力。显然,静推力随外界大气压力的减小而增大。这是3.2.1节讲过的 火箭发动机的主要特点之一。为方便起见,定义p e =e p o 时发动机的工作状态为设计状态。在设计状态下静推力等于零,总推力等于动推力,称之为特征推力或额定推力。用F e 表示,则: F e =mu e (3.2) 一般情况下,发动机的额定推力是不变的。发动机在接近真空的条件下工作时,

“固体火箭发动机气体动力学”课程 学习指南

1.课程属性 火箭武器专业(即武器系统与工程专业的火箭弹方向)的专业课程体系包括固体火箭发动机气体动力学、固体火箭发动机原理、火箭弹构造与作用、火箭弹设计理论和火箭实验技术。“固体火箭发动机气体动力学”属于专业基础课,是该专业的先修课程。 2.为什么要学习固体火箭发动机气体动力学课程 固体火箭发动机的工作过程是由推进剂燃烧和燃气流动构成的,燃气流动既是燃烧的直接结果,也是固体火箭发动机产生推进动力所需要的。因此,燃气流动是“固体火箭发动机原理”的重要组成部分。 “固体火箭发动机原理”课程将固体火箭发动机内的流动处理成燃烧室内的零维流和喷管中的一维流,如果不学习本课程,一方面不易理解固体火箭发动机内的流动过程,对学好“固体火箭发动机原理”课程是不利的;另一方面,对毕业后继续深造的学生而言,缺乏必要的气体动力学知识,难以深入开展本学科领域的基础理论研究,而本科毕业后直接从事固体火箭研制工作的学生将难以利用先进的计算工具进行工程设计与性能分析,不能适应时代发展和技术进步的要求。通过“固体火箭发动机气体动力学”课程的学习,学生既可以结合固体火箭发动机中的燃气流动问题,系统了解和掌握气体动力学的基本理论和计算方法,构建起完备的专业知识结构,同时也为学好后修课程奠定了坚实的理论基础,提高解决固体火箭发动机设计、内弹道计算、性能分析等实际工程技术问题的能力。 3.“固体火箭发动机气体动力学”的知识结构 把握课程的知识结构是学好“固体火箭发动机气体动力学”的前提。本课程由三个知识模块组成,即气体动力学基础知识、固体火箭发动机中一维定常流动和激波、膨胀波与燃烧波。 (1)气体动力学模块(14学时) 该模块由教材的第一至第三章组成,是相对独立、自成系统的知识模块,目的是建立起基本的气体动力学系统知识,为学习第二个知识模块奠定必要的气体动力学理论基础。该模块的主要知识点为 ?课程背景 ?流体与气体,气体的输运性质,连续介质假设,热力学基本概念与基础知识:系统,环境,边界,状态,过程,功,热量,焓,比热 比,热力学第二定律,理想气体,等熵过程方程,气体动力学基本 概念:控制体,拉格朗日方法,欧拉方法,迹线,流线,作用在流 体上的外力,扰动 ?拉格朗日方法与欧拉方法的关系,连续方程,动量方程,能量方程,熵方程 ?流动定常假设,一维流动假设,一维定常流的控制方程组,伯努利方程,气流推力,声速,对数微分,马赫数,马赫锥,理想气体一 维定常流的控制方程组,滞止状态,滞止过程,滞止参数,动压, 气体可压缩性,临界状态,最大等熵膨胀状态,速度系数,气体动 力学函数 (2)固体火箭发动机中的一维定常流动模块(8学时) 该模块为教材的第四章,是气体动力学知识在固体火箭发动机中的具体应用,分别针对喷管、长尾管、燃烧室装药通道展开讲述,最后简要介绍多驱动势广义一维流动。本知识模块的目的是为学生学习固体火箭发动机原理奠定理论基

液体火箭发动机工作原理

液体火箭发动机工作原理: 液体火箭发动机是指液体推进剂的化学火箭发动机。 常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。 液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。 推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达200大气压(约200MPa)、温度300℃~4000℃,故需要冷却。 推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。 发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作、关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。 液体火箭发动机的优点是比冲高(250~500秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。 液体火箭发动机是航天发射的主流,构造上比固体发动机复杂得多,主要由点火装置,燃烧室,喷管,燃料输送装置组成。点火装置一般是火药点火器,对于需要多次启动的上面级发动机,则需要多个火药点火器,如美国战神火箭的J-2X发动机,就具备2个火药点火器实现2次启动功能,我国的YF-73和YF-75也都安装了2个火药点火器,具备了2次启动能力;燃烧室是液体燃料和氧化剂燃烧膨胀的地方,为了获得更高的比冲,一般具有很高的压力,即使是普通的发动机,通常也有数十个大气压之高的压力,苏联的RD-180等发动机,燃烧室压力更是高达250多个大气压。高压下的燃烧比之常压下更为复杂,同时随着燃烧室体积的增加,燃烧不稳定情况越来越严重,解决起来也更加麻烦。目前根本没有可靠的数学模型分析燃烧稳定性问题,主要靠大量的发动机燃烧试验来解决。美国的土星5号火箭的F-1发动机,进行了高达20万秒的地面试车台燃烧测试,苏联能源号火箭的RD-170发动机,也进行了10多万秒的地面试车台燃烧测试,在反复的燃烧测试中不断优化发动机各项参数,

脉冲爆震火箭发动机研究

脉冲爆震火箭发动机研究 范玮,严传俊,李强,丁永强,胡承启 (西北工业大学动力与能源学院,西安,710072) 摘要本文论述了脉冲爆震火箭发动机的研究现状和发展方向,介绍了西北工业大学脉冲爆 震火箭发动机(PDRE)研究组从2002年以来在863-702主题项目的资助下,对PDRE进 行探索性研究所取得的主要成果,详细阐述了课题组在采用航空煤油/氧气为推进剂的脉冲 爆震火箭发动机试验模型上攻克两相爆震起爆、稳定可控工作、PDRE加与不加尾喷管时性 能测试等关键技术方面的研究进展。 关键词:脉冲爆震火箭发动机;两相;起爆;性能实测;喷管增益。* 1、引言 脉冲爆震火箭发动机(Pulse Detonation Rocket Engine,简称PDRE)是一种利用周期性爆震波发出的冲量产生推力的非稳态新型推进系统。PDRE是脉冲爆震发动机(Pulse Detonation Engine,简称PDE)的一种,它自带燃料和氧化剂,由控制系统、燃料和氧化剂储存系统、点火和流动控制用附属能量系统、燃料/氧化剂喷射系统、爆震触发系统及推力壁等基本部件组成[1]。每个爆震循环包括推进剂填充、点火起爆、爆震形成和传播、已燃气排出和隔离气填充隔开废气几个过程。与常规液体火箭发动机连续输出推力不同,脉冲爆震火箭发动机的推力是间歇式的。随着爆震频率的增加,推力趋于稳态。 与目前推进系统中常用的爆燃波不同,爆震波的特点是它能产生极快的火焰传播速度(Ma>4)和极高的燃气压力(1.51~5.57MPa)。火焰传播速度快意味着没有足够的时间达到压力平衡,从热力学的角度分析爆震循环更接近等容循环。显然,与以等压循环为基础的大多数推进系统相比,PDRE具有更高的热循环效率。由于爆震波能增压,对液体火箭发动机而言,可不用高压涡轮泵,从而大大降低了推进系统的重量、复杂性、成本及体积。据国外研究报道,PDRE可在0~25的宽广的飞行Mach数下工作[1,2]。 由于脉冲爆震发动机具有上述独特的优点,它在军用和民用等方面具有广阔的应用前景,可能成为本世纪新型动力装置。目前美国、法国、加拿大、俄国、中国及其他国家,正在积极实施脉冲爆震发动机的研究计划。 2003年5月,美国GE公司在2003年度的“航空百年国际论坛(中国部分)”报告资料中明确提出,下一代新型循环的航空发动机是基于PDE技术的。GE公司在PDE技术应用方面的研究方向主要有:(1)以PDE代替涡喷发动机发展纯PDE发动机;(2)以PDE 代替涡扇发动机的核心机发展先进大涵道比涡扇发动机;(3)以PDE代替核心机和加力燃烧室发展先进战斗机用小涵道比涡扇发动机;(4)以PDE吸气式加力涡轮发动机/脉 *基金项目:国家自然科学基金项目(50106012,50336030)

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却-(北航宇航学院火箭发动机热防护作业)

液体火箭发动机再生冷却文献综述报告 (火箭发动机热防护作业)

一、再生冷却简史[1] 再生冷却的概念最先苏联人齐奥尔科夫斯基提出来。 齐奥尔科夫斯基的学生格卢什科为液体火箭发动机作了大量的理论与实验研究,并于1930—1931年研制了苏联第一台液体火箭发动机OPM-1,采用四氧化二氮和甲苯,以及液氧煤油推进。采用再生冷却系统。 二、再生冷却的一般涵义[2] 再生冷却是在液体火箭发动机上通用的一种冷却方法。它利用推进剂中的一种组分或者可能是两种组分,在喷入燃烧室之前先通过推力室上的通道进行冷却。 再生冷却的优点是:没有性能损失(被冷却剂吸收的热能返回到喷注器),壁的型面基本上不随时间变化,其持续工作时间没有限制,而且结构较轻。 其缺点是:对绝大部分冷却剂使节流受到限制,对一些冷却剂(如肼)降低了可靠性,在高热流下需要高的压降,推力量级,混合比或喷管面积比可能受到最大容许冷却剂温度的限制。 三、再生冷却的计算模型 1、总论 再生冷却推力室 的传热可以通过隔着 多层隔层的二股运动 着的流体间的传热来 描述。如图1所示。 由燃气通过包括 金属室壁在内的隔层 到冷却液的一般稳态 传热关系式可以用下 式表示: 图 1 冷却系统的温

()()gc aw wg wg wc k h T T q T T t ??-==- ??? (1) ()()h T T h T T aw wg wc co gc c -=- (2) () ()h T T H T T aw wg aw co gc -=- (3) 111H t h k h gc c =++ (4) 式中 q ----热流,()2Btu in s g gc h ----燃气侧总热导率,()2Btu in s F o g g ,没有沉积物时,gc g h h = c h ------冷却剂侧传热系数,()2Btu in s F o g g k ------室壁的热导率,()2Btu in s F o g g t ------室壁厚度 in aw T -----燃气绝热壁温, R o wg T -----燃气侧壁温,R o wc T ----冷却剂侧壁温,R o co T -----冷却剂体积温度, R o H -----总传热系数,()2Btu in s F o g g 冷却剂从冷却通道进入到离开,其体积温度增高,它是所吸收热量和冷却剂流量的函数。为保持室壁温度低于可能发生熔化或应力破坏的温度,使这些参数达到适当的平衡,是设计再生冷却推力室的主要要求之一。通常用于推力室的

火箭发动机工作原理

火箭发动机工作原理本文包括: 1. 1. 引言 2. 2. 推力和固体燃料火箭 3. 3. 液体推进剂及其他类型的火箭 4. 4. 了解更多信息 5. 5. 阅读所有太空学类文章 迄今为止,人类从事的最神奇的事业就是太 空探索了。它的神奇之处很大程度上是因为 它的复杂性。太空探索是非常复杂的,因为 其中有太多的问题需要解决,有太多的障碍 需要克服。所面临的问题包括: 太空的真空环境 热量处理问题 重返大气层的难题 轨道力学 微小陨石和太空碎片 宇宙辐射和太阳辐射

在无重力环境下为卫生设施提供后勤保障 但在所有这些问题中,最重要的还是如何产生足够的能量使太空船飞离地面。于是火箭发动机应运而生。 一方面,火箭发动机是如此简单,您完全可以自行制造和发射火箭模型,所需的成本极低(有关详细信息,请参见本文最后一页上的链接)。而另一方面,火箭发动机(及其燃料系统)又是如此复杂,目前只有三个国家曾将自己的宇航员送入轨道。在本文中,我们将对火箭发动机进行探讨,以了解它们的工作原理以及一些与之相关的复杂问题。 火箭发动机基本原理 当大多数人想到马达或发动机时,会认为它们 与旋转有关。例如,汽车里的往复式汽油发动 机会产生转动能量以驱动车轮。电动马达产生的转动能量则用来驱动风扇或转动磁盘。蒸汽发动机也用来完成同样的工作,蒸汽轮机和大多数燃气轮机也是如此。 火箭发动机则与之有着根本的区别。它是一种反作用力式发动机。火箭发动机是以一条著名的牛顿定律作为基本驱动原理的,该定律认为“每个作用力都有一个大小相等、方向相反的反作用力”。火箭发动机向一个方向抛射物质,结果会获得另一个方向的反作用力。 火箭发动机工作原 理

液体火箭发动机综述

液体火箭发动机发展现状及发展趋势概述 摘要:介绍了液体火箭发动机的优缺点、工作原理,总结了大推力和小推力发动机的国内外发展现状,提出了未来液体火箭发动机的发展方向。 关键词:液体火箭发动机,推进系统,发展现状,发展趋势 1 引言 液体火箭发动机作为目前最为成熟的推进系统之一,具有诸多独特的优势,仍然是各国努力发展的主力推进系统,并且在大推力和小推力方面都取得了诸多成果,本文将美国、俄罗斯、欧洲、日本、中国等国家的发展状况进行了综述,目前美国仍然在大多数推进系统方面领先世界,俄罗斯则继续保持液体推进特别是大推力液体火箭方面的领先地位,欧盟和日本在追赶美国的技术水平,以中国为代表的第三世界国家也开始在液体推进领域同传统强国展开竞争。 2 定义与分类 液体火箭发动机(Liquid Rocket Motor)是指液体推进剂火箭发动机,即使用液态化学物质作为能源和工质的化学火箭推进系统。按照推进剂供应系统,可以分为挤压式和泵压式;按照推进剂组元可分为单组元、双组元、三组元;按照功能分,一类用于航天运载器和弹道导弹,包括主发动机、助推发动机、芯级发动机、上面级发动机、游动发动机等,另一类用于航天器主推进和辅助推进,包括远地点发动机、轨道机动发动机、姿态控制和轨道控制发动机等。 3 工作原理 液体火箭发动机工作时(以双组元泵压式液体火箭发动机为例),推进剂和燃料分别从储箱中被挤出,经由推进剂输送管道进入推力室。推进剂通过推力室头部喷注器混合雾化,形成细小液滴,被燃烧室中的火焰加热气化并剧烈燃烧,在燃烧室中变成高温高压燃气。燃气经过喷管被加速成超声速气流向后喷出,产生作用在发动机上的推力,推动火箭前进。

固体燃料火箭发动机学习笔记1

固体火箭发动机的基本结构:点火装置、燃烧室、装药、喷嘴构成。 固体火箭发动机的工作与空气无关 常见的推进剂有:1.双基推进剂(双基药) 2.复合推进剂(复合药) 3.复合改进双基推进剂(改进双基药)

直接装填! 形式: 自由装填:药柱直接放在燃料室 贴壁浇筑:把燃料直接和燃烧室粘贴在一起(液体发动机发射前现场加注推进剂)固体火箭一旦制造完成即处于待发状态 经过压身或浇注后形成的一定结构形式的装药我们叫他装药或者药柱 药柱的燃烧面积在燃烧过程中随时间变化必须满足一定的规律 完成特定任务所需要的。

装药面积的燃烧规律决定了发动机压强和推力面积的发展规律。 为了满足上述规律需要对装药的表面用阻燃层进行包裹,来控制燃烧面积变化规律。 药柱可以是:当根、多根,也可事实圆孔药,心孔药 燃烧室是一个高压容器! 装药燃烧的工作室。 燃烧时要求要求: 容积、对高温(2000-3000K)高压气体(十几到几十兆帕)的承载能力 与高温燃气直接接触的壳体表面需要采用适当的隔热措施

高温高压燃气的出口 作用: 1.控制燃气流出量保持燃烧室内足够压强。 2.使燃气加速膨胀,形成超声速气流,产生推动火箭前进的反作用推力。

部件作用:进行能量转化 工艺特点: 形状:先收拢后扩张的拉瓦尔喷灌,由收敛段、头部、扩张段、 中小型火箭,锥形喷管(节省成本和时间) 工作时间长、推力大、质量流速大采用高速推进剂的大型火箭采用特制喷管(收敛段和和直线段的母线可能不是直线可能是抛物线双圆弧)仔细设计型面,提高效率 作用:使燃气的流动能够从亚声速加速到超声速流 喉部环境十分恶略,烧蚀沉积现象影响性能(改变喉部尺寸改变性能)。

相关主题