搜档网
当前位置:搜档网 › 桥梁工程计算书

桥梁工程计算书

桥梁工程计算书
桥梁工程计算书

第一章设计资料

1.1设计内容

①根据已给地形图等设计资料,选择三至四种以上可行的桥型方案,拟定桥梁结构主要尺寸,根据技术经济比较,推荐最优方案进行桥梁结构设计。

③对推荐桥梁方案进行运营阶段的内力计算,并进行内力组合,强度、刚度、稳定性等验算。

④选择合理的下部结构形式,拟定构件尺寸,并进行内力计算,内力组合、配筋设计。

⑤绘制桥梁总体布置图、上部结构一般构造图、钢筋构造图、桥台一般构造图、桥墩盖梁一般构造图、桥墩盖梁配筋图。

⑥编写设计计算书。

1.2设计技术标准

1、设计桥梁的桥位地型及地质图一份

2、设计荷载:公路—I级;

3、桥面净空:净-2×0.5+9=10米

4、桥面横坡:1.5%

5、最大冲刷深度:2.0m

6、地质条件:根据断面图确定

7、桩基础施工方法:旋转钻成孔

8、安全系数:γ0=1

1.3采用材料:

(1)预应力钢筋:? s15.2钢绞线

(2)非预应力钢筋:直径D≥12mm用HRB335, 直径D≤12mm 用

R235;

(3)混凝土:

主梁混凝土采用C50;

铰缝为C30细集料混凝土;

桥面铺装采用C40沥青混凝土;

栏杆及人行道板为C30混凝土;

盖梁、墩柱用C30混凝土;

系梁及钻孔灌注桩采用C30混凝土;

桥台基础用C30混凝土;

桥台台帽用C30混凝土;

(4)锚具用OVM锚

1.4主要技术规范

JTG D60-2004《公路桥涵设计通用规范》

JTG D62-2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》

JTJ 022-85《公路砖石及混凝土桥涵设计规范》

JTJ 024-85《公路桥涵地基与基础设计规范》

第二章方案比选

在我国,安全、经济、适用、美观是桥梁设计中的主要考虑因素,安全尤为重要。桥梁结构造型简洁,轻巧,设计方案力求结构新颖,保证结构受力合理,技术可靠,施工方便。本设计桥梁的形式可以考虑以下形式:连续梁桥、拱桥、斜拉桥三种形式。

2.1拟定方案

(1)方案一:箱型连续梁桥

对于桥孔的分跨主要考虑以下影响因素:桥址地形、水文地质条件、墩台基础支座等构造,力学的要求。

本设计采用三跨桥孔布置,边跨长度可取为中跨的0.5—0.8倍。本桥总长215m,本设计跨度组合为:60米+95米+60米为适应连续梁内力变化的需要,连续梁的纵向截面通常做成变截面的形式。梁底立面曲线采取二次抛物线的形式。

图2-1 箱型连续

梁桥型设计

连续梁桥可以降低梁高,有利于争取桥下净空,具有较大的刚度和强大的抗扭性能和结构简单,受力明确、节省材料、架设安装方便,跨越能力较大、造型轻巧、平整、线路流畅、桥下视觉效果好等优点;

连续梁在力学性能上由于其结构刚度大,桥面变形小,动力性能好,有利于高速行车。采用分段施工技术,充分发挥了预应力技术的优点,使施工设备机械化和构件生产工厂化,从而提高了施工质量,减低了施工费用。但是基础沉降要求严格,特别是由于脸长较大,梁体与墩台之间的受力十分复杂,加大了设计难度。

(2)方案二:拱桥设计

拱桥桥跨结构的主要承重构件是曲线形的拱圈。本例采用中承式拱桥结构,由三个拱圈组成,即:(50+115+50)米,拱桥总长为215米。设计见图2-2。

图2-2

拱桥设计

拱桥取材容易,节省钢材与水泥,构造简单,技术容易掌握,承载能力潜力较大耐久性好,养护费用少。在竖直荷载作用下,拱的两端不仅有竖直反力,而且还有水平反力。由于水平反力的作用,拱的弯矩大大减少。设计的合理拱轴拱桥主要受压力压力,弯矩、剪力均较小,因此拱的跨越能力比梁大的多,且可以充分利用石料、混凝土的抗压性能。但是,拱桥也有以下缺点;一般拱桥结构的上部结构自重较大,且存在水平推力,下部结构的工程量也增加,地质条件与地基要求较高,施工工序较多,建桥时间也较长,施工较困难。

(3)方案三:斜拉桥设计

本设计采用单塔双孔布置,斜拉桥的受力可以看成用高强钢材制成的斜拉索将主梁多点吊起,主梁恒载及作用在主梁上的活载通过斜拉索传至塔柱,再通过塔柱基础传至地基。这样大跨度的斜拉桥的主梁就像一根多点弹性支撑的连续梁一样工作,从而主梁的截面尺寸比同跨径的梁桥截面尺寸小得多,大大减少了主梁的材料用量,结构自重明显减轻,大幅度增加了桥梁的跨越能力。主梁受到斜拉索的支撑作用,特别是密索斜拉桥中主梁的受力以压力为主,弯矩较小,主梁受力已不同于传统的梁桥,主梁高度可以大大减小。设计图见图2-3.

图2-3 斜拉桥设计

斜拉索是斜拉桥的主要组成部分,除必须具有高强度性能外,还必须具备抗疲劳性能、耐久性和良好的抗腐蚀性。因此对于斜拉索的质量要求很高,工程造价相对较高,维修养护也相对困难。大跨度斜拉桥由于密索体系的采用,主梁的刚度越来越小,抗风稳定性越来越突出,往往成为了决定主梁截面尺寸的主要因素。

2.2方案比选

方案一连续梁桥结构刚度大,属于超静定结构,受力较好,主桥面连续,桥面变形小,无伸缩缝,动力性能好,有利于高速行车,养护也较容易。所需技术先进,所需设备较少,占用施工场地少。而相比方案二拱桥承载潜力大,伸缩缝较多,养护较麻烦。虽有成熟的工艺技术经验,但需要大量的吊装设备,占用场地较大,需用劳动力较多。上部结构自重较大,且存在水平推力,下部结构的工程量也增加,地质条件与地基要求较高,施工工序较多,建桥时间也较长,施工较困难。方案三中的斜拉桥结构新颖,工艺要求极严格,所需设备最少,占用施工场地少,但斜拉索的材料质量要求很高,工程造价相对较高,维修养护也相对困难。

在上述三种方案比选中,综合考虑比较三个拟定方案桥型的优缺点,相比之下,箱型连续梁桥抗扭刚度大,在恒载作用下,

连续梁在支点处有负弯矩,由于负弯矩的卸载作用,跨中正弯矩显著减小。整体受力和动力稳定性能好,适应性强,在直线、曲线等区间段均可采用,外观简洁,造型简洁美观、且施工技术成熟,养护工程量小、抗震能力强等而成为最富有竞争力的主要桥型之一,而且造价适中。

因此本设计推荐采用方案一连续梁桥设计。

第三章预应力混凝土连续梁桥总体布置

3.1桥型布置

本设计推荐方案采用三跨一联预应力混凝土变截面连续梁结构,桥全长215m。

3.2孔径布置

本设计采用三跨一联预应力混凝土变截面连续梁结构。连续梁桥跨径的布置一般采用不等跨的形式。因为如采用等跨布置,则边跨内力将控制全桥设计,而这样是不经济的。一般边跨长度选为中跨跨径的0.5~0.8倍,钢筋混凝土连续梁桥取偏大值使边跨与中跨控制截面内力基本相同,预应力混凝土连续梁桥取偏小值以增加边跨刚度和减小活载弯矩的变化幅度,从而减少预应力筋数量。此外,边跨长度还与施工方法有关,如采用悬臂法施工,边跨长度不宜超过中跨长度的0.65倍为宜。本设计采用悬臂法施工,边跨取为中跨的0.625倍,即为(60米+95米+60米),桥全长215米。

3.3桥的立面设计

从预应力混凝土连续梁桥的受力特点来分析,连续梁的立面应采取变高度的布置为宜。连续梁在恒、活载作用下,支点截面的负弯矩的绝对值往往大于跨中正弯矩,因此采用变高度梁能

较好的符合梁的内力分布规律。同时,变高度的立面布置可使梁体外形和谐,节省材料并增大桥下净空。若采用悬臂法施工,变高度梁又与施工内力状态相吻合。因此,本设计采用边高度梁。截面变化曲线为二次抛物线。

3.4桥的横截面设计

箱形截面这种闭合薄壁截面抗扭刚度很大,对于弯桥和采用悬臂施工的桥梁尤为有利;同时,因其都具有较大的面积,所以能够有效地抵抗正负弯矩,并满足配筋要求;箱形截面具有良好的动力特性。本设计是一座公路连续箱形梁,采用的横截面形式为单箱单室。单箱单室截面的优点是受力明确,施工方便,节省材料用量。

(1)梁高

墩顶处梁高根据规范一般取1/16~1/20L,取L/17,即5.5m。

跨中处梁高根据规范一般取1/30~1/55L,取L/38,即2.5m。

(2)顶板与底板

箱形截面的顶板和底板是结构承受正负弯矩的主要工作部位,。其尺寸要受到受力要求和构造两个方面的控制。墩顶处底板还要承受很大的压应力,一般来讲:变截面的底版厚度也随梁高变化,底板一般25-100cm(变厚),顶板25-30cm(等厚)。因此,顶板厚度取30cm;支座处底板厚度取60cm;跨中底板厚度取40cm。

(3)腹板

的功能是承受截面的剪应力和主拉应力,大跨度预应力混凝土箱梁桥,腹板厚度可从跨中逐步向支点加宽,以承受支点处交大的剪力,一般采用300—600mm,甚至可达到1m左右。本设计制作处与跨中截面腹板厚度均取50cm;

(3)横隔梁

横隔梁可以增强桥梁的整体性和良好的横向分布,同时还可以限制畸变;支承处的横隔梁还起着承担和分布支承反力的作用。由于箱形截面的抗扭刚度很大,一般可以比其它截面的桥梁少设置横隔梁,甚至不设置中间横隔梁而只在支座处设置支承横隔梁。因此本设计中考虑在支座处截面与中跨处截面设置一道横隔梁,而且由于中跨横隔梁的尺寸及对内力的影响较小,在内力计算中也可不作考虑。

跨中截面及中支点截面示意图如下图3-1所示:(图中单位以厘米计)。

图3-1(单位:cm)

(4)桥面铺装

桥面铺装层采用10cm厚的C40沥青混凝土铺装,防撞栏采用C30混凝土。

第四章荷载内力计算

4.1全桥结构单元的划分

4.1.1 分段原则

主梁的分段应该考虑梁的跨径、截面变化、施工方法、预应力布置等因素,单元分的越细计算的内力就越精确,接近真实值,并且兼顾施工中的实施,所以本设计分为70个单元。

4.1.2具体分段

本桥全长215米,总共分为70个单元,最小的单元长度为1.5米,最长的单元长度为4米,本设计推荐单元划分为:3@4;2;5@4;6@3;8@2;6@3;5@4;1.5;1.5;5@4;6@3;8@2;6@3;5@4;2;3@4。单元划分见图4-1.

图4-1 单元划分

4.2全桥施工节段划分

4.2.1桥梁划分施工分段原则

1. 杆件的转折点和截面的变化点

2. 施工分界点、边界处及支座处

3. 需验算或求位移的截面处

4. 分段应尽量使各段的工程量基本相同,一边与施工节奏流畅,使施工均衡。

5. 当出现位移不连续的情况时,例如相邻两单元以铰接形式相连(转角不连续),可在铰接处设置两个节点,利用主从约束考虑

该连接方式

4.2.2施工分段划分

全桥分为70个单元。全桥整体采用悬臂节段浇筑施工法,两端桥台附近单元处使用整体现浇法。施工详细划分见下表4-1。

主跨施工分段表表4-1

第十七阶段 跨中和垄断 3to36

4.3主梁内力计算

根据梁跨结构纵断面的布置,并通过对移动荷载作用最不利位置,确定控制截面的内力,然后进行内力组合,画出内力包络图。

4.3.1横在内力计算

(1)第一期恒载(结构自重) 恒载集度

1123

(801010)G A A A γ

=?+?+?? (2)第二期恒载

二期恒载为桥面铺装层和防撞栏杆的重量,桥面铺装层用10cm 厚的C40沥青混凝土铺装,容重取为24K/m ,防撞栏杆用C30混凝土,每侧的防撞栏自重作用力取为8.5KN/m 。则二期恒载集度为:

28.52240.11041/G K N m =?+??=

4.3.2悬臂浇注阶段内力

浇筑零号块,拼装挂蓝,悬臂浇注各箱梁梁段并张拉相应顶板纵向预应力束,悬臂浇注结束时全桥的恒载内力见图4-2:

图4-2 最大悬臂浇注阶段内力图

(a )弯矩图

(b )剪力图

4.3.3边跨合拢阶段内力

安装排架并按施工要求进行预压,现浇边跨等高粱段,达到强度要求后,浇注边跨合龙段,张拉边跨底板纵向预应力束。此时全桥恒载内力见图4-3。

图4-3 边跨合拢段内力累计图

(a)弯矩图

(b)剪力图

4.3.4中跨合拢段内力

拼装中跨合龙吊架,焊接合龙段骨架,绑扎合龙段钢筋,浇注中跨合龙段,张拉中跨底板纵向预应力束和剩余次中跨底板纵向预应力束。中跨合龙完成后的全桥恒载内力图见图4-4。

图4-4 中跨合龙段累计内力图

(a)弯矩图

(b)剪力图

一期恒载作用下个单元的弯矩与剪力值见下表4-2。

一期恒载作用下弯矩剪力值表4-2

4.3.5桥面铺装阶段内力

桥面铺装、等桥面系安装完毕大桥建成后的全桥恒载内力图

见图4-5。

图4-5 桥面铺装阶段累计内力图

(a)弯矩图

(b)剪力图

一期恒载作用下个单元的弯矩与剪力值见下表4-3

一期恒载作用下弯矩剪力值表4-3

单元

弯矩

(KN m

?)

(K

N)

弯矩

(K Nm)

(

KN m

?)

10.00-631

.043610315.7

2

22196.17-467

.043710269.5

9

61.5

33736.35-303

.04

389695.59225.5

44620.52-139

.04398465.59389.4

7

54816.61-57.

04

406579.59553.4

64716.78106.

96414037.59717.2

3

一期恒载作用下弯矩剪力值表4-3续

.46

338465.59-389

.50684620.52139.0

4

349695.59-225

.50693736.35303.0

4

3510269.5

9

-61.

50

702196.17467.0

4

4.3.6支座位移引起的内力计算方法及结果

由于各个支座处的竖向支座反力和地质条件的不同引起支座的不均匀沉降,连续体系是一种对支座不均匀沉降特别敏感的结构,所以由它引起的内力是构成内力的重要组成部分。在桥梁设计中,支座沉降工况的选取是应慎重考虑的问题。一般应综合考虑桥址处的地质、水文等自然条件,根据已建桥梁的设计经验来定。有时需选取几种沉降工况计算,这样就存在一个工况组合的问题。程序一般对每一个截面挑最不利的工况内力值作为沉降次内力。

由于各个支座处的竖向支座反力和地质条件的不同引起支座的不均匀沉降,支座沉降会引起桥梁产生内力。假设三跨连续梁桥的左右两个支点分别下沉5mm,中间两个支点分别下沉10mm。最少沉降1个支座,最多沉降4个支座,将各种支座沉降情况所得到的内力进行叠加,取最不利的内力范围。

利用Midas软件从而得出在支座沉降下主梁产生的内力图如图4-6所示。

图4-6 支座沉降作用下主梁产生的内力图

(a)弯矩包络图

(b)剪力包络图

主梁在支座沉降作用下各截面的弯矩和剪力数值见表4-4。支座沉降作用下的弯矩、剪力值表4-4

单元弯矩

(KN m

?)

(KN)

弯矩

(KN m

?)

(KN)

10.0080.1136585.3295.03

2281.4180.1137585.3295.03 3562.8280.1138585.3295.03 4844.2380.1139739.4195.02 5984.9480.11401050.7495.01 61266.3580.11411370.3394.99 71547.7680.10421750.4494.97 81829.1780.09432035.5294.95 92110.5880.08442320.6194.92 1

2391.9980.06452605.6994.89

1

1

2603.0580.04462890.7794.85

1

2

2814.1180.02473175.8694.80

1

3

3025.1779.99483460.9494.76

桥梁工程量计算规则

桥梁的工程量计算 桥梁工程量计算规则 预算基价项目的工程量计算规则: ㈠桩基 钢筋混凝土方桩、板桩按桩长度(包括桩尖长度)乘以桩横断面面积计算; 钢筋混凝土管桩按桩长度(包括桩尖长度)乘以桩横断面面积,减去空心部分体积计算; 钢管桩按成品桩考虑,以吨计算。 焊接桩型钢用量可按实调整。 陆上打桩时,以原地面平均标高增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。 支架上上打桩时,以当地施工期间的最高潮水位增加0.5m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量. 船上打桩时,以当地施工期间的平均水位增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。㈢㈣㈤㈥ 灌注桩混凝土体积按设计桩面积乘以设计桩长(桩尖到桩顶)加超钻0.5m的几何体积计算。 ㈡现浇混凝土 混凝土工程量按设计尺寸以实体积计算(不包括空心板、梁的空心体积),不扣除钢筋、铁丝、铁件、预留压浆孔道和螺栓所占的体积。

㈢预制混凝土 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量以在预算基价中考虑。 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量已在定额中考虑。 预制空心板梁,凡采用橡胶囊做内模的,考虑其压缩变形因素,可增加混凝土数量,当梁长在16m以内时,可按设计计算体积增加7%,若梁长大于16m时,则增加9%计算。如设计图以注明考虑橡胶囊变形时,不得再增加计算。 预应力混凝土构件的封锚混凝土数量并入构件混凝土工程量计算。安装预制构件已m3为计量单位的,均按构件混凝土实体积(不包括空心部分)计算。 ㈣砌筑 砌筑工程量按设计砌体尺寸以立方米体积计算,嵌入砌体中的钢管、沉降缝、伸缩缝以及0.3m3以内的预留孔所占体积不予扣除。 ㈤挡墙、护坡 1.块石护底、护坡以不同平面厚度按m3计算。 2.浆砌料石、预制块的体积按设计断面以m3计算。 3.浆砌台阶以设计断面的实砌体积计算。 4.砂石滤沟按设计尺寸以m3计算。 ㈥立交箱涵 1.箱涵滑板下的肋楞,其工程量并入滑板内计算。

桥梁工程课程设计计算书

桥梁工程课程设计及计算书 设计题目: 桥梁工程课程设计 学院:土木与建筑学院 指导老师:汪峰 姓名: 学号: 班级: 2014年6月

一、基本资料 1.标准跨径:20 m 计算跨径:19.50 m 主梁全长:19.96 m 2.桥面净宽:净7.5 m+2×0.25 m 3. 车辆荷载:公路— 级 4. 人群荷载:3.0 KN/m2 5. 选用材料: 钢筋:采用HRB300钢筋,HRB335钢筋。 混凝土:主梁C40 人行道及栏杆:C25 桥面铺装:C25(重度24KN/m) 6. 课程设计教材及主要参考资料: 《桥梁工程》.姚玲森编.人民交通出版社,1990年 《桥梁工程》.邵旭东等编.人民交通出版社,2007年 《桥梁工程》.范立础编.人民交通出版社,2001年 《简支梁桥示例集》.易建国编.人民交通出版社,2000年 《桥梁工程课程设计指导书》.桥梁教研室.哈尔滨工业大学教材科, 2002年 《梁桥设计手册》.桥梁编辑组.人民交通出版社,1990年 《公路桥涵设计通用规范》(JTG D60-2004)人民交通出版社北京 《拱桥设计手册(上、下)》.桥梁编辑组.人民交通出版社,1990年 《配筋混凝土结构设计原理》袁国干主编,同济大学出版社 二、桥梁尺寸拟定 1.主梁高度:h=1.5m 梁间距:采用5片主梁,间距1.8m。 2.横隔梁:采用五片横隔梁,间距为4×4.85m,梁高1.0m, 横隔 梁下缘为15cm,上缘为16cm。 3.主梁梁肋宽:梁肋宽度为18cm。 4.桥面铺装:分为上下两层,上层为沥青砼厚2.0cm, 下层为C25 防水混凝土垫层厚10.0cm。桥面采用1.5%横坡。 5.桥梁横断面及具体尺寸:(见作图)

桥梁的工程量计算

桥梁的工程量计算桥梁工程量计算规则 预算基价项目的工程量计算规则: ㈠桩基 钢筋混凝土方桩、板桩按桩长度(包括桩尖长度)乘以桩横断面面积计算; 钢筋混凝土管桩按桩长度(包括桩尖长度)乘以桩横断面面积,减去 空心部分体积计算; 钢管桩按成品桩考虑,以吨计算。 焊接桩型钢用量可按实调整。 陆上打桩时,以原地面平均标高增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。 支架上上打桩时,以当地施工期间的最高潮水位增加0.5m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量. 船上打桩时,以当地施工期间的平均水位增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。㈢㈣㈤㈥ 灌注桩混凝土体积按设计桩面积乘以设计桩长(桩尖到桩顶)加超钻0.5m的几何体积计算。 ㈡现浇混凝土 混凝土工程量按设计尺寸以实体积计算(不包括空心板、梁的空心体积),不扣除钢筋、铁丝、铁件、预留压浆孔道和螺栓所占的体积。 ㈢预制混凝土 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量以在预算基价中考虑。

预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量已在定额中考虑。 预制空心板梁,凡采用橡胶囊做内模的,考虑其压缩变形因素,可增加混凝土数量,当梁长在16m以内时,可按设计计算体积增加7% 若梁长大于16m时,则增加9%+算。如设计图以注明考虑橡胶囊变形时,不得再增加计算。 预应力混凝土构件的封锚混凝土数量并入构件混凝土工程量计算。 安装预制构件已m3为计量单位的,均按构件混凝土实体积(不包括空心部分)计算。 ㈣砌筑 砌筑工程量按设计砌体尺寸以立方米体积计算,嵌入砌体中的钢管、 沉降缝、伸缩缝以及0.3m3以内的预留孔所占体积不予扣除。 ㈤挡墙、护坡 1.块石护底、护坡以不同平面厚度按m3计算。 2.浆砌料石、预制块的体积按设计断面以m3计算。 3.浆砌台阶以设计断面的实砌体积计算。 4.砂石滤沟按设计尺寸以m3计算。 (六)立交箱涵 1.箱涵滑板下的肋楞,其工程量并入滑板内计算。 2.箱涵混凝土工程量,不扣除0.3m3以下的预留孔洞体积。 3.顶柱、中继间护套及挖土支架均属专用周转性金属构件,预算基价中已按摊销量计列,不得重复计算。 4.箱涵顶进预算基价分空顶、无中继间实土顶和有中继间实土顶三类,

2019桥梁工程计算题

1) 计算图1所示T 梁翼板所构成铰接悬臂板的设计内力。桥梁荷载为公路—Ⅰ级,桥面铺装为80mm 厚C50 混凝土配@φ8100钢筋网;容重为253 kN/m /;下设40mm 厚素混凝土找平层;容重为233 kN/m /,T 梁翼板材料容重为253 kN/m /。 图 1 铰接悬臂行车道板 (单位:mm ) 解:a .恒载及其内力(以纵向1m 宽的板条进行计算) 每延米板上的恒载g ; 钢筋混凝土面层g 1:...kN/m 008?10?25=200 素混凝土找平层g 2:...kN/m 004?10?23=092 T 梁翼板自重g 3: ....kN/m 008+014 ?10?25=2752 合计: i g =g .kN/m =567∑ 每米宽板条的恒载内力 弯矩 ...kN m Ag M gl 2201 =- -?567?100=-284?2 1=2 剪力 g ...kN Ag Q l 0=?=567?100=567 b .公路—Ⅰ级荷载产生的内力 要求板的最不利受力,应将车辆的后轮作用于铰缝轴线上,见图2,后轮轴重为P =140kN ,着地长度为 2=0.2m a ,宽度为 2b .m =060,车轮在板上的布置及其压力分布图见图1-1

图2公路—Ⅰ级荷载计算图式(单位:mm ) 由式 ...m ...m a a H b b H 1212=+2=020+2?012=044=+2=060+2?012=084 一个车轮荷载对于悬臂根部的有效分布宽度: ...m>1.4m a a l 10=+2=044+142=186(两后轮轴距) 两后轮的有效分布宽度发生重叠,应一起计算其有效分布宽度。铰缝处纵向2个车轮对于悬臂板根部的有效分布宽度为: ....m a a d l 10=++2=044+14+142=326 作用于每米宽板条上的弯矩为: () ()A p b P M l a μ10=-1+-24 ..(.).140084=-13??10-2?3264 .kN m =-2205? 作用于每米宽板条上的剪力为: () ..kN .Ap P Q a μ140=1+=13?=279122?326 c. 行车道板的设计内力 ...(.).(.).kN m ......=45.88kN A Ag Ap A Ag Ap M M M Q Q Q =12?+14?=12?-284+14?-2205=-3428?=12?+14?=12?567+14?2791 2) 如图23所示为一座桥面板为铰接的T 形截面简支梁桥,桥面铺装厚度为0.1m ,净跨径为1.4m ,试计算 桥面板根部在车辆荷载作用下的活载弯矩和剪力。(车辆前后轮着地宽度和长度分别为:m b 6.01=和 m a 2.01=;车辆荷载的轴重kN P 140=) 1.4 0.1 板间铰接 图23 解:(1)荷载

桥梁工程计算书

第一章设计资料 1.1设计内容 ①根据已给地形图等设计资料,选择三至四种以上可行的桥型方案,拟定桥梁结构主要尺寸,根据技术经济比较,推荐最优方案进行桥梁结构设计。 ③对推荐桥梁方案进行运营阶段的内力计算,并进行内力组合,强度、刚度、稳定性等验算。 ④选择合理的下部结构形式,拟定构件尺寸,并进行内力计算,内力组合、配筋设计。 ⑤绘制桥梁总体布置图、上部结构一般构造图、钢筋构造图、桥台一般构造图、桥墩盖梁一般构造图、桥墩盖梁配筋图。 ⑥编写设计计算书。 1.2设计技术标准 1、设计桥梁的桥位地型及地质图一份 2、设计荷载:公路—I级; 3、桥面净空:净-2×0.5+9=10米 4、桥面横坡:1.5% 5、最大冲刷深度:2.0m 6、地质条件:根据断面图确定 7、桩基础施工方法:旋转钻成孔 8、安全系数:γ0=1 1.3采用材料: (1)预应力钢筋:? s15.2钢绞线 (2)非预应力钢筋:直径D≥12mm用HRB335, 直径D≤12mm用R235; (3)混凝土:

主梁混凝土采用C50; 铰缝为C30细集料混凝土; 桥面铺装采用C40沥青混凝土; 栏杆及人行道板为C30混凝土; 盖梁、墩柱用C30混凝土; 系梁及钻孔灌注桩采用C30混凝土; 桥台基础用C30混凝土; 桥台台帽用C30混凝土; (4)锚具用OVM锚 1.4主要技术规范 JTG D60-2004《公路桥涵设计通用规范》 JTG D62-2004《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTJ 022-85《公路砖石及混凝土桥涵设计规范》 JTJ 024-85《公路桥涵地基与基础设计规范》 第二章方案比选 在我国,安全、经济、适用、美观是桥梁设计中的主要考虑因素,安全尤为重要。桥梁结构造型简洁,轻巧,设计方案力求结构新颖,保证结构受力合理,技术可靠,施工方便。本设计桥梁的形式可以考虑以下形式:连续梁桥、拱桥、斜拉桥三种形式。 2.1拟定方案 (1)方案一:箱型连续梁桥 对于桥孔的分跨主要考虑以下影响因素:桥址地形、水文地质条件、墩台基础支座等构造,力学的要求。 本设计采用三跨桥孔布置,边跨长度可取为中跨的0.5—0.8倍。本桥总长215m,本设计跨度组合为:60米+95米+60米

桥梁工程计算书

钢筋混凝土简支T形梁桥设计 1.1基本设计资料 1、跨度和桥面宽度 (1)标准跨径:10m。 (2)计算跨径:9.6m。 (3)主梁全长:9.96m。 (4)桥面宽度:1.5m(人行道)+净-7m(行车道)+0.5m(防撞栏)。 2.技术标准 设计荷载:公路—Ⅱ级,人行道和栏杆自重线密度按照单侧6kN/m计算,人群荷载为3kN/m2。 环境标准:Ⅰ类环境。 设计安全等级:二级。 3.主要资料 (1)混凝土:混凝土简支T形梁及横梁采用C50混凝土:桥面铺装上层采用0.03m沥青混凝土,下层为厚0.06~0.13m的C50混凝土,沥青混凝土重度按 26kN/m3计。 (2)钢材:主筋采用HRB335钢筋,其它用R235钢筋。 4.构造截面及截面尺寸

图1-1 桥梁横断面和主梁纵断面图(单位:cm) 如图1所示,全桥共由5片T形梁组成,单片T形梁高为0.9m,宽1.8m;桥上横坡为双向1.5%,坡度由C50混凝土桥面铺装控制;设有三根横梁。 1.2 主梁的计算 1.2.1 主梁的荷载横向分布系数计算 1.跨中荷载横向分布系数 桥跨内设有三根横隔梁,具有可靠的横向联系,且承重结构的宽跨比为: B/l=9/9.6=0.9375>0.5。故先按修正的刚性横隔梁法来绘制横向影响线和计算分布系数m c。 (1)计算主梁大的抗弯及抗扭惯性矩I和I T: 1)求主梁截面的重心位置x(见图1-2): 图1-2 主梁抗弯及抗扭惯性矩计算图式 翼缘板的厚按平均厚度计算,其平均厚度为h1=1/2×(10+16)cm=13cm

则(18018)1313/2901890/2 23.24(18018)139018 x cm cm -??+??= =-?+? 2)抗弯惯性矩I 为 I=[1/12×(180-18)×133+(180-18)×13×(23.24-13/2)2+1/12×18×903 +18×90× (90/2-23.24)2] cm 4 =2480384 cm 4 对于T 形梁截面,抗扭惯性矩可进似按下式计算: 31m T i i i i I c b t ==∑ 式中 b i 、t i──── 单个矩形截面的宽度和高度; c i ──── 矩形截面抗扭刚度系数; m ──── 梁截面分成单个矩形截面的个数。 I T 的计算过程及结果见表1-1。 表1-1 I T 计算表 即得I T =2.631×10-3m 4 (2)计算抗扭惯性矩β:对于本次计算,主梁的间距相同,将主梁近似看成等截面,则得 2 1 1(/) T GI l B EI βξ= + 式中,G=0.425E ;I T =2.631×10-3m 4;I=2480384 cm 4; l=9.6m ;B=1.8×5=9.0m ;ξ=1.042 代人上式,计算得β=0.949。 (2) 按修正的刚性横梁法计算横向影响线竖坐标值

桥梁工程的工程量计算方法

桥梁工程的工程量计算方法 1、土石方体积均以天然实体积(自然方)计算,回填土按碾压后的体积(实方)计算,余松土和堆积土按堆积方乘以 0.8系数折合为自然方计算。 2、土方工程量按图纸尺寸计算,修建机械上下坡道土方量并进入工程量内。 3、挖土放坡和沟、槽加宽应按图纸尺寸计算。 4、石方工程量按图纸尺寸加允许超挖量: xxxx20cm,普特坚xx15cm。 5、放坡挖土交接处产生的重复工程量不扣除。如在同一断面内遇有数类土,其放坡系数可按各类土占全部深度的百分比加权计算。 6、土石方运距应以挖土重心至填土或弃土重心最近距离计算,挖土、填土、弃土重心按施工组织设计确定。 7、挖沟槽、基坑需挡土板时,其宽度按图示沟槽、基坑底宽,单面加 10cm,双面加20cm计算。有支挡土板者,不再计算土方放坡。 8、沟槽、基坑、平整场地和一般土石方的划分: 底宽7m以内,低长大于底宽3倍以上按沟槽计算;低长小于底宽3倍以内按基坑计算;厚度在30cm以内就地挖、填土按平整场地计算。超过上述范围的土、石方按挖石方和一般石方开挖计算。 9、平整场地、原土夯实(碾压),按设计图纸以平方米为单位计算。 10、各类挡土板工程量,均按槽、坑按槽、坑垂直支撑面积以平方米为单位计算。 4.2.

2、围堰、井点降水 1、土草围堰,土、石混合围堰,按围堰的施工断面乘以围堰中心线的长度以立方米为单位计算。 2、木板桩围堰、圆木桩围堰、钢板桩围堰、木(竹)笼围堰分高度(高度按施工期内最高临水面加 0.5cm),按围堰中心线的长度以延长米为单位计算。 3、恐岛填心均按设计尺寸立方米为单位计算。 4.2. 3、打桩工程 (一)打桩 各种桩的打桩工程量,均按桩的设计长度(包括桩尖长度)乘以断面积以立方米为单位计算。 (二)送桩 1、采用陆上打桩,按桩截面面积乘以送桩长度(即原地平均标高至桩顶面另加1cm)以立方米为单位计算工程量。 2、采用支架上打桩,按截面面积乘以送桩长度(即当地施工期的平均水位至桩顶面另加1cm)以立方米为单位计算工程量。 3、采用船上打桩,按桩截面面积乘以送桩长度(即当地施工期的平均水位至桩顶面另加1cm)以立方米为单位计算工程。 4、接桩 各类接桩按设计接头以个为单位计算。 (三)灌注桩成孔工程量

桥梁工程课程设计计算书

钢筋混凝土T 型梁桥设计计算书 1 行车道板内力计算 1.1恒载产生的内力 以纵向1米宽的板条进行计算如图1.1所示。 图1.1铰接悬臂板计算图示(单位:cm ) 沥青混凝土面层:= 0.02×1.0×21= 0.42/kN m C25号混凝土垫层:=0.06×1.0×24=1.44/kN m T 形翼缘板自重: = 0.100.16 1.025 3.25/2 kN m +??= 合计:g=i g ∑=++=0.42+1.44+3.25=5.11/kN m 每米宽板条的恒载内力: 弯距:22011 5.110.95 2.3122AG M gl kN m =-=-??=-? 剪力:0 5.110.95 4.85AG V gl kN ==?=1.2荷载产生的内力 按铰接板计算行车道板的有效宽度如图1.2所示)。 由<<桥规>>得=0.2m ,=0.6m 。桥面铺装厚度为8cm ,则有: =+2H=0.2+2×0.08=0.36m =+2H=0.6+2×0.08=0.76m 荷载对于悬臂板的有效分布宽 度

为:=+d+2=0.36+1.4+1.90=3.66m 冲击系数采用1+=1.3, 作用为每米宽板条上的弯矩为: 01(1)/2(/4)AP M P a l b μ=-+??- 1.3140/2/3.66(0.950.76/4)=-??-18.90KN m =-? 作用于每米宽板条上的剪力为: 图1.2 荷载有效分布宽度图示(cm ) 140(1) 1.324.8622 3.66 AP P V KN a μ=+=?=? 1.3内力组合 承载能力极限状态内力组合: 1.2 1.4 1.2 2.31 1.418.9029.23j Ag Ap M M M KN m =+=-?-?=-? 1.2 1.4 1.2 4.85 1.424.8640.62j Ag Ap V V V KN =+=?+?= 1.4 截面设计、强度验算 (HRB335钢筋:335sk f MPa =,280sd f MPa =,C25混凝土:16.7,ck f MPa = 1.78,11.5, 1.23tk cd td f MPa f MPa f MPa ===) 翼缘板的高度:h=160mm ;翼缘板的宽度:b=1000mm ;假设钢筋截面重心到截面受拉边缘距离=35mm ,则=125mm 。 按<<公预规>>5.2.2条规定:010()2d u c x M M f bx h γα==- 1.029.2311.51000(0.125)2 x x ?=???- 解得:x=0.0224m 验算00.550.1250.0688()0.0224()h m x m ξ=?=>= 按<<公预规>>5.2.2条规定:sd s cd f A f bx = 211.5 1.00.0224/280920s A mm =??= 查有关板宽1m 内钢筋截面与间距表,考虑一层钢筋为8根由规范查得可供使

13m跨径桥梁计算书

算例 某13米桥梁计算书(含全部项目) 本计算书中包括桥涵水文的计算、恒荷载计算、活荷载计算桩长、以及挡墙的计算。 荷载标准:公路Ⅱ级乘0.8的系数 桥面宽度:净4.5+2×0.5m 跨度:13孔×13m 1、工程存在问题 *****桥位于***闸下游1000m处,建于1982年,为钢筋砼双排架式桥墩,预制拼装型板梁桥面,17孔,每跨8.85m。总长150.45m,宽5.3m。该桥运行20多年,根据***省水利建设工程质量监测站检验测试报告检测结果如下:(1)桥墩 A.桥墩基础 桥墩基础为抛石砼,设计强度等级为150#,钻芯法检测砼现有强度代表值为16.4MPa。 B.排架立柱及联系梁 立柱设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.0~18.3MPa。联系梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为14.7MPa。 立柱外观质量总体较差,局部区域麻面较重。立柱砼碳化深度最大值为31mm,最小值为5mm,平均值为14mm。立柱钢筋保护层实测厚度为20mm,钢筋目前未锈,但碳化深度平均值已接近钢筋保护层厚度。通过普查,全桥64根立柱中有12根35处箍筋锈胀外露,有6处联系梁主筋外露。 C.盖梁 盖梁设计强度等级为200#,超声回弹综合法检测砼现有强度代表值为

17.4~21.5MPa。 盖梁外观质量一般,梁体砼总体感觉较疏松。盖梁砼碳化深度最大值为24mm,最小值为9mm,平均值为18mm。,盖梁主筋侧保护层实测厚度为9~13mm,底保护层实测厚度29~42mm,砼碳化深度已超过钢筋侧保护层厚度,盖梁主筋已开始锈蚀。通过普查,全桥32根盖梁中共有14根15处主筋锈蚀膨胀,表层砼脱落,主筋外露,长度15~70cm;有28处箍筋锈胀外露。 (2)T型梁 T型梁设计强度等级为200#,每跨中间两根T型外观较好,两边T型梁外观较差。T型梁砼碳化深度最大值为20mm,最小值为7mm,平均值为14mm。T型梁主筋保护层设计厚度为20mm,砼碳化深度已经接近钢筋保护层设计厚度,实际保护层相对较薄的主筋已经开始锈蚀。通过普查,全桥34根边梁中共有9根10处肋梁主筋锈蚀膨胀,砼开裂或脱落,长度15~160cm;全桥34根边梁中共有15根工52处肋梁箍筋锈胀外露,有13块三角形隔板钢筋锈胀,表层脱落。 (3)桥台 两侧浆砌石桥台总体没有大的变形,左岸桥台浆砌石有纵向和斜向裂缝,右岸桥台浆砌石发现斜向裂缝,裂缝较长较宽。 (4)桥面及栏杆 桥面铺装层破损露石,栏杆老化损坏,钢筋外露,且多处被撞。 (5)桥墩基础防护工程 该桥的底部和侧向的防护工程水毁现象非常严重。左岸浆砌石护坡全部损毁、坍塌,7#桥墩基础裸露,基础下土壤已经开始流失,出现空洞。浆砌石护底下游的土壤(砂质)已全部被水流带走,经常受水流冲刷的护底局部已被淘空,护底已出现不同程度的损坏,危及桥墩基础乃至整座桥梁的安全。 (6)结论 由于该桥原设计标准较低,长期超负荷运行,工程老化失修,水毁严重,且为中和岛内防洪抢险撤离的主要通道,选取方案时优先考虑拆除重建方案。 2、设计标准 荷载标准:公路Ⅱ级乘0.8的系数; 桥面宽度:净4.5+2×0.5m;

桥梁工程课程设计计算书

桥梁工程课程设计计算 书 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

《桥梁工程》课程设计 专 业:土木工程(道桥方向) 班 级: 2011班 学生姓名: 周欣树 学 号: 指导教师: 一、确定纵断面、横断面形式,选择截面尺寸以及基本设计资料 1. 桥面净宽:净—72 1.0+? 荷载: 公路—Ⅱ级 人群—23.0kN m 人行道和栏杆自重线密度-5.0kN m 2. 跨径及梁长:标准跨径13b L m = 计算跨径12.40L m = 主梁全长 '12.96L m = 3. 材料 钢筋:主筋用HRB400级钢筋,其他用HPB335级钢筋 混凝土:C40,容重325kN m ; 桥面铺装采用沥青混凝土;容重323kN m 4.构造形式及截面尺寸 梁高: 1.0h m = 梁间距:采用5片主梁,间距。 采用三片横隔梁,间距为

梁肋:厚度为18cm 桥面铺装:分为上下两层,下层为C25砼,路缘石边处厚 ;上层为沥青砼,。桥面采用%横坡。 桥梁横断面及具体尺寸:(见作图) 二、确定主梁的计算内力 (一)计算结构自重集度(如下表) (二)计算自重集度产生的内力(如下表) 注:括号()内值为中主梁内力值 根据计算经验,边梁荷载横向分布系数大于中梁,故取边梁进行计算分析。 (三)支点处(杠杆原理法) 由图可求得荷载横向分布系数: 汽车荷载:1 0.3332oq m η==∑ 人群荷载: 1.222or r m η== (四)跨中处(修正刚醒横梁法) 1、主梁的抗弯惯性矩I x 平均板厚:()1 1012112H cm =+= 22 3344 1111 100162111621127.86181001810027.861221223291237.580.03291x I cm m ?? ?? =??+??-+??+??- ? ????? == 2、主梁的抗扭惯性矩Ti I 对于T 形梁截面,抗扭惯性矩计算如下:见下表. 3.计算抗扭修正系数 主梁的间距相等,将主梁近似看成等截面,则得

桥梁工程量计算

摘要:通过在京福高速公路邵三段ma13标施工中积累的造价经验,详述了编制桥梁工程预算时如何提取工程量进而正确套用定额、准确把握造价的方法,对广大预算人员作桥梁造价具有切实的参考价值。 关键词:桥梁;工程;造价计算;问题 工程造价编制的一般步骤和工作内容可概括为拟定工作方案,确定编制原则;熟悉掌握计价定额的内容和使用范围,工程量计算规则和计算方法,应取费用项目和标准;在熟悉设施国表资料和文字说明、结合现场调查、做好核对工程量的基础上,正确提取工程量;了解施工方案和施工计划中的内容,确定先进合理、安全可靠的施工方法;进行工程造价和各种价格、费用的分析和累计计算,复核及审核,最后编写编制说明和成稿装订。 1 施工预算中如何剥离和提取工程量 我国的公路建设工程设计图纸的编制办法,不同于房建工程(现国家已对建筑工程推行工程量清单计价模式),作为编制工程造价的基础资料的工程量,通常是设计人员在完成设计图纸的同时已进行了计算。在编制工程造价之前,造价工程师又进行了熟悉设计图纸和对工程量的核对工作。所以,施工计价的关键是如何从设计图纸中提取工程量。 在编制预算工作中,桥梁工程的计价是比较繁琐的,而且又是占造价文件篇幅最多的一项,加之近年来桥梁的设计及施工技术地不断发展,新结构、新材料、新工艺的广泛应用,更增加了工程造价计价的难度。 1.1 辅助工程量的确定至关重要 1根据桥梁工程施工技术的特点,其造价的基础资料包括以下两下方面的内容: (1)主体工程 它包括桥染基础、下部和上部工程。一般设计图纸已经给定,按照定额的要求,可较容易确定其计价的各项工程量。 (2)辅助工程 它们只是有助于主体工程的形成,为完成主体工程所必须采取的措施,完工后随之拆除的一些设施。这样情况就比较复杂,如属于基础工程部分的,有挖基、围堰、排水、工作平台、护筒、泥浆船及其循环系统等;属于上下部工程的,有拱盔、支架、吊装设备、提升模架、施工电梯等;与基础和上下部工程都有关联的,如混凝土构件运输、预制场及其设施(如大型预制构件底座、张拉台座、门架等)、拌和站(船)、蒸汽养生设施等。这些辅助工程的计价数量,除挖基外,都要根据建设项目的实际情况和施工组织设计的要求,并参考以往的成功经验来取定,设计图纸上是不反映的,可塑性较大,而对工程造价又有极其重要的影响。因此,正确取定各项计价工程量,就有着十分重要的现实意义。 1.2 提取工程量顺序 桥涵工程计价的项目比较多,工程量的计算和提取难度也大。经实践证明,

结构设计大赛(桥梁)计算书

桥梁结构设计理论方案作品名称蔚然水岸 参赛学院建筑工程学院 参赛队员吕远、李丽平、李怡潇、赵培龙 专业名称土木工程 一、方案构思 1、设计思路 对于这次的设计,我们分别考虑了斜拉桥、拱桥、梁式桥与桁架桥的设计方案。斜拉桥可以瞧作就是小跨径的公路桥,且对刚度有较高的要求,所以斜拉桥对材料的要求比较高,对于用桐木强度比不上其她样式的桥来得结实;拱桥最大主应力沿拱桥曲面而作用,而沿拱桥垂直方向最小主应力为零,可以很好的控制桥梁竖直方向的位移,但锁提供的支座条件较弱,且不提供水平力,显然也不就是一个好的选择;梁式桥有较好的承载弯矩的能力,也可以较好的控制使用中的变形,但桥梁的稳定性就是个很大的问题,控制不了桥梁的扭转变形,因此,我们也放弃了制作梁式桥的想法;而桁架桥具有比较好的刚度,腹杆即可承拉亦可承压,同时也可以较好的控制位移用料较省,所以,相比之下我们最后选择了桁架桥。 2、制作处理

(1)、截杆 裁杆就是模型制作的第一步。经过试验我们发现,截杆时应该根据不同的杆件,采用不同的截断方法。对于质地较硬的杆应该用工具刀不断切磋,如同锯开;而对于较软的杆应该直接用刀刃用力按下,不宜用刀口前后切磋,易造成截面破损。 (2)、端部加工 端部加工就是连接的就是关键所在。为了能很好地使杆件彼此连接,我们根据不同的连接形式,对连接处进行处理,例如,切出一个斜口,增大连接的接触面积;刻出一个小槽,类似榫卯连接等。 (3)拼接 拼接就是本模型制作的最大难点。由于就是杆件截面较小,接触面积不够,乳胶干燥较慢等原因,连接就是较为困难的。我们采取了很多措施加以控制,如用铁夹子对连接处加强压、用蜡线进行绑扎固定等。对于拱圈的制作,则预先将杆件置于水中浸泡并加上预应力使其不断弯曲,并按照先前划定的拱形不断调整,直至达到理想形状。 在拱脚处处理时,先粘结一个小的木块,让后用铁夹子施加很大的压力,保证连接能足够牢固。 乳胶粘接时要不断用电吹风间断性地吹风,使其尽快形成粘接力,达到强度的70%(基本固定)后即可让其自行风干。 (4)风干 模型制作完成后,再次用吹风机间断性地吹粘接处,基本稳定后,让其自然风干。 (5)修饰

桥梁工程量计算规则

桥梁工程量计算规则 预算基价项目的工程量计算规则: ㈠桩基 钢筋混凝土方桩、板桩按桩长度(包括桩尖长度)乘以桩横断面面积计算; 钢筋混凝土管桩按桩长度(包括桩尖长度)乘以桩横断面面积,减去空心部分体积计算; 钢管桩按成品桩考虑,以吨计算。 焊接桩型钢用量可按实调整。 陆上打桩时,以原地面平均标高增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。 支架上上打桩时,以当地施工期间的最高潮水位增加0.5m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量. 船上打桩时,以当地施工期间的平均水位增加1m为界线,界线以下至设计桩顶标高之间的打桩实体积为送桩工程量。 灌注桩混凝土体积按设计桩面积乘以设计桩长(桩尖到桩顶)加超钻0.5m的几何体积计算。 ㈡现浇混凝土 混凝土工程量按设计尺寸以实体积计算(不包括空心板、梁的空心体积),不扣除钢筋、铁丝、铁件、预留压浆孔道和螺栓所占的体积。 ㈢预制混凝土 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量以在预算基价中考虑。 预制空心构件按设计图尺寸扣除空心体积,以实体积计算。空心板梁的堵头板体积不计入工程量内,其消耗量已在定额中考虑。 预制空心板梁,凡采用橡胶囊做内模的,考虑其压缩变形因素,可增加混凝土数量,当梁长在16m以内时,可按设计计算体积增加7%,若梁长大于16m时,则增加9%计算。如设计图以注明考虑橡胶囊变形时,不得再增加计算。 预应力混凝土构件的封锚混凝土数量并入构件混凝土工程量计算。 安装预制构件已m3为计量单位的,均按构件混凝土实体积(不包括空心部分)计算。 ㈣砌筑 砌筑工程量按设计砌体尺寸以立方米体积计算,嵌入砌体中的钢管、沉降缝、伸缩缝以及0.3m3以内的预留孔所占体积不予扣除。 ㈤挡墙、护坡 1.块石护底、护坡以不同平面厚度按m3计算。 2.浆砌料石、预制块的体积按设计断面以m3计算。 3.浆砌台阶以设计断面的实砌体积计算。 4.砂石滤沟按设计尺寸以m3计算。 ㈥立交箱涵 1.箱涵滑板下的肋楞,其工程量并入滑板内计算。 2.箱涵混凝土工程量,不扣除0.3m3以下的预留孔洞体积。 3.顶柱、中继间护套及挖土支架均属专用周转性金属构件,预算基价中已按摊销量计列,不得重复计算。(www.https://www.sodocs.net/doc/3d15031139.html,) 4.箱涵顶进预算基价分空顶、无中继间实土顶和有中继间实土顶三类,其工程量计算如下: 空顶工程量按空顶的单节箱涵重量乘以箱涵位移距离计算;

桥梁工程课程设计计算书

一、设计资料 1、桥面净空:净—7+2?1.0m人行道; 2、主梁跨径和全长: 主梁:标准跨径:L b=25m 计算跨径:L=24.50m(支座中心距离) '=(主梁预制长度)预制长度:m 24 . L95 横隔梁5根,肋宽15cm。 3、材料 4、结构尺寸 参照原有标准图尺寸,选用如图所示: 桥梁横断面图(单位:cm)

T形梁尺寸图(单位:cm) 桥梁纵断面图(单位:cm) 5.设计依据 1、《桥梁工程》教材,刘龄嘉主编,人民交通出版社。 2、《结构设计原理》教材。 3、《公路桥涵设计通用规范》(JTG-D60-2004)。 4、《公路桥涵钢筋混凝土和预应力混凝土桥涵设计规范》(JTG-D60-2004)。 5、公路设计丛书《桥梁通用构造及简支梁桥》胡兆同,陈万春编著。 6、《桥梁计算示例集》混凝土简支梁(板)桥.易建国编著。 7、T型梁有关标准图。

二、行车道板内力计算 计算图如下图: 图1 T 形梁尺寸图(单位:cm) 1 、恒载及其内力(以纵向1m 宽的板进行计算) (1)、每延米上的恒载g 的计算见表1: (2)、每米宽板条的恒载内力为 弯矩m KN gl M g ?-=??-=-=76.18.05.52 1 21220min, 剪力KN l g V Ag 40.48.050.50=?=?= 2、车辆荷载产生的内力 将车辆荷载的后轮作用于铰逢轴线上(见上图),后轴作用力标准值P=140KN ,轮压分布宽度如下图2所示,后轮着地宽度为,6.02m b =着地长度为 ,2.02m a =则 m H b b m H a a 80.01.026.0240.01.022.022121=?+=+==?+=+=

桥梁工程设计计算书

T 形梁桥上部结构设计说明书 一、设计目的: 课程设计是本专业集中实践环节的主要内容之一,是学习专业技术课程所需的必要教学环节,学生运用所学的基础理论和专业知识通过课程设计的实践,巩固和掌握专业知识,并为今后的毕业设计作必要的准备。通过课程设计使同学接触和了解,局部设计从收集资料、方案比较、计算、绘图的全过程。培养学生的计算和绘图的设计能力。 设计要求: 熟悉简支梁桥的构造,熟练掌握混凝土简直梁桥的设计过程、桥梁行车盗版的设计计算方法、荷载横向分步计算及主梁的设计计算方法。 二、设计资料: 1 结构形式及基本尺寸: 公路装配式简支梁桥,双车道,桥面宽度为净-9+2?0.75m,净-9+2?1m ,主粮为装配式钢筋混凝土简支T 梁,桥面由五片T 梁组成,主梁之间的桥面板为铰接,沿梁长舌至3~5道横隔梁(横隔梁平均厚度为16m )。 2 桥面布置: 桥梁位于支线上,两侧设人行道,宽度为0.75m,1m,桥面铺装为2cm 厚的沥青混凝土,其下为C25混凝土垫层,设双面横坡,坡度为1.5%。横坡由混凝土垫层实现变厚度,两侧人行道外侧桥面铺装厚度8cm(2cm 厚沥青混凝土和6cm 混凝土垫层)。 3 桥面净宽 净—9m+2*1m 人行道 4 主梁跨径与全长 标准跨径:lb=20.00m (墩中心距离) 计算跨径:l=19.50m (支座中心线距离) 主梁全长:l 全=19.96m(主梁预制长度) 5 设计荷载 汽车荷载:公路—Ⅱ车道荷载和车辆荷载; 人群荷载:3.0(kN/m )。 6 主要材料 桥面铺装:C25 T 形梁: C25 钢筋: Ⅰ级? R235 Ⅱ级?HRB335 Ⅰ、Ⅱ 级钢筋应分别符合 GB13013和 GB1499?98的规定。凡钢筋直径大于12 mm ,除伸缩缝预埋钢筋外其余均采用Ⅱ级热轧螺纹钢筋;凡钢筋直径小于12mm ,采用Ⅰ级钢筋 7 设计依据 ⑴《公路桥涵设计通用规范》 ⑵《公路钢筋混凝土及预应力混凝土桥涵设计规范》 ⑶《桥梁工程》 ⑷《混凝土结构设计原理》 ⑸《结构力学》 ⑹《桥梁通用构造及简支梁桥》 桥梁工程设计计算书 第一部分 主梁的计算 一 计算荷载横向分布系数: 1跨中截面计算:(偏心压力法) 此桥在跨度内设有横隔梁具有强大的横向连接刚性,且承重结构长度比为:l/B=19.5/5?2.20=>2 顾可按偏心压力法来绘制荷载横向影响线并计算横向分布系数mc 。 N=5 梁间距为2.20m 5 22222 22222 12341 2(2 2.20) 2.200( 1.60)(2 2.20)48.40() i i a a a a a m ==+++=?+++-+-?=∑ 号梁: 222 1111142 2 1 1 11(2 2.20)1 0.60 0.20 548.4n n i i i i a a n n a a ηη==?=?=+==?=-∑∑ 由 11η和14η绘制的(1)号梁横向影响线: 由11η和14η计算横向影响线的零点位置,设零点至(1)号梁伟的距离为x,则:4 2.2 6.60() 0.60.2x x x m ?-=?= 设人行道缘石至(1)号梁轴线的距离为?; 9.004 2.20.1() 2m -??==

桥梁工程预算和工程量清单报价

桥梁工程预算及工程量清单报价 2010-08-21 22:18:10| 分类:公司桥梁技术管理 | 标签:混凝土基价施工计算围堰 |字号大中小订阅 桥梁工程预算及工程量清单报价讲义 桥梁专业造价员培训 桥梁说明 本章包括桥梁护岸工程的桩基,现浇混凝土,预制混凝土,砌筑,挡墙护坡,立交箱涵,装饰和其他等计8节,共57个工程量清单,444条基价子目 工程计价时应注意的问题 桩基 n 预算基价均为打直桩,如打斜桩(包括俯打、仰打)斜率在1:6以内时,人工乘以1.33,机械乘以1.43。 n 打桩预算基价均考虑在已搭置的支架平台上操作,但不包括支架平台。 n 陆上打桩采用履带式柴油打桩机时,不计陆上工作平台费,可计20cm碎石垫层,面积按陆上工作平台面积计算。 n 船上打桩预算基价按两艘船只拼搭、捆绑考虑。 n 打板桩预算基价中,均已包括打、拔导向桩内容,不得重复计算。 n 陆上、支架上、船上打桩预算基价中均为未包括运桩。运桩套用预制混凝土中构件运输相应项目。 n 送桩预算基价按送4m为界,如实际超过4m时,按相应预算基价乘以下列调整系数: n ⑴送桩5m以内乘以1.2系数; n ⑵送桩6m以内乘以1.5系数; n ⑶送桩7m以内乘以2.0系数; n ⑷送桩7m以上,按已调整后7m为基础,每超过1m递增0.75系数。 n 本节预算基价支架平台适用于陆上、支架上打桩及钻孔灌注桩。 n 搭、拆水上工作平台预算基价中,已综合考虑了组装、拆卸船排及组装、拆卸打拔桩架工作内容,不得重复计算。 n 灌注桩预算基价中不包括在钻孔中遇到障碍必须清除的工作,发生时另行计算。 打桩机械锤重的选择如下表: ⑵现浇混凝土 n 预算基价中混凝土按常用强度等级列出,如设计要求不同时可以换算。

桥梁工程课程设计计算书

《桥梁工程》课程设计 专 业:土木工程(道桥方向) 班 级: 2011班 学生姓名: 周欣树 学 号: 指导教师: 一、确定纵断面、横断面形式,选择截面尺寸以及基本设计资料 1. 桥面净宽:净—72 1.0+? 荷载: 公路—Ⅱ级 人群—23.0kN m 人行道和栏杆自重线密度-5.0kN m 2. 跨径及梁长:标准跨径13b L m = 计算跨径12.40L m = 主梁全长 ' 12.96L m = 3. 材料 钢筋:主筋用HRB400级钢筋,其他用HPB335级钢筋 混凝土:C40,容重325kN m ; 桥面铺装采用沥青混凝土;容重323kN m 4.构造形式及截面尺寸 梁高: 1.0h m = 梁间距:采用5片主梁,间距1.8m 。 采用三片横隔梁,间距为6.2m

梁肋:厚度为18cm 桥面铺装:分为上下两层,下层为C25砼,路缘石边处厚6.0cm ;上层为沥青砼,5.0cm 。桥面采用1.6%横坡。 桥梁横断面及具体尺寸:(见作图) 二、确定主梁的计算内力 (一)计算结构自重集度(如下表) (二)计算自重集度产生的内力(如下表) 注:括号()内值为中主梁内力值 根据计算经验,边梁荷载横向分布系数大于中梁,故取边梁进行计算分析。 (三)支点处(杠杆原理法) 由图可求得荷载横向分布系数: 汽车荷载:1 0.3332oq m η==∑ 人群荷载: 1.222or r m η== (四)跨中处(修正刚醒横梁法) 1、主梁的抗弯惯性矩I x 平均板厚:()1 1012112H cm =+= 22 3344 1111 100162111621127.86181001810027.861221223291237.580.03291x I cm m ?? ?? =??+??-+??+??- ? ????? == 2、主梁的抗扭惯性矩Ti I 对于T 形梁截面,抗扭惯性矩计算如下:见下表. 3.计算抗扭修正系数 主梁的间距相等,将主梁近似看成等截面,则得

桥梁工程 盖梁抱箍及模板计算书

盖梁抱箍及模板计算书 本标段盖梁长a=10.8m,宽b=2.2m,高h=1.5m,砼34.9m3,共31个。施工方法采用抱箍型钢支架法,盖梁模板支架采用两根I36工字钢纵梁,横向用槽钢次梁[12@60cm,在横梁上铺设10×10cm木方@50cm,底模面板采用2cm厚胶合板;侧模采用大块钢模板。 一、计算依据 1、《建筑施工手册》—模板工程 2、《建筑工程大模板技术规程》(JGJ74-2003) 3、《路桥施工计算手册》 4、《钢结构设计规范》(GB50017—2003) 5、《建筑施工模板安全技术规范》(JGJ162-2008) 6、《公路桥涵钢结构及木结构设计规范》(JTJ025-1986) 7、《公路桥涵施工技术规范》(JTG/T F50-2011) 8、《钢筋混凝土工程施工及验收规范》(GBJ204-1983) 9、施工图纸 二、设计参数取值及要求 1、混凝土容重:26kN/m3; 2、混凝土浇注速度:1.5m/h; 3、浇注温度:15℃; 4、混凝土塌落度:16~18cm; 5、混凝土外加剂影响系数取1.2; 6、设计风力:8级风; 7、模板整体安装完成后,混凝土泵送一次性浇注。 三、抱箍计算 3.1荷载分析 (1)盖梁砼自重:34.9*26=907.4kN (2)模板及支架自重:80kN (3)施工人员及设备荷载(1.5kN/m2):1.5*10.8*2.2=35.6 kN (4)倾倒砼是产生的竖向荷载(2kN/m2):2*10.8*2.2=47.5 kN (5)振捣砼是产生的竖向荷载(2kN/m2):2*10.8*2.2=47.5 kN 组合荷载: G 1 =(907.4+80)×1.2+(35.6+95+47.5)×1.4=1367.72kN(用于强度验算) G 2 =(907.4+80)×1.2=1184.88kN(用于刚度验算) 每个盖梁按墩柱设两个抱箍体支承上部荷载,则每个抱箍承受的上部荷载为: F 1=G 1 /2=683.86 kN(用于强度验算)

相关主题