搜档网
当前位置:搜档网 › A vibration-based energy harvester

A vibration-based energy harvester

A vibration-based energy harvester
A vibration-based energy harvester

Original Article
Journal of Intelligent Material Systems and Structures 2016, Vol. 27(5) 642–665 ó The Author(s) 2015 Reprints and permissions: https://www.sodocs.net/doc/3d16101116.html,/journalsPermissions.nav DOI: 10.1177/1045389X15575088 https://www.sodocs.net/doc/3d16101116.html,
A vibration-based energy harvester suitable for low-frequency, highamplitude environments: Theoretical and experimental investigations
Reza Ramezanpour, Hassan Nahvi and Saeed Ziaei-Rad
Abstract This article presents theoretical and experimental investigations of a vibration-based energy harvester which is suitable to extract energy from low-frequency, high-amplitude environments. The proposed device consists of a rotating proof mass and eight piezoelectric bimorph beams. A magnet, mounted on the rotating pendulum, actuates the tips of the piezoelectric beams due to magnetic interaction. The free oscillations of the piezoelectric beam generate energy each time the pendulum passes over the beams. Based on energy principles, the nonlinear ordinary differential equations governing the electromechanical behavior of the system are derived and solved numerically. Using the proposed model, the effects of angular velocity of the rotating mass on the generated voltage are investigated. It is shown that the harvester with a relatively high angular velocity generates more voltage than the one with a low angular velocity. The performance of the proposed device in the attractive and the repulsive cases is compared to each other and it is concluded that the generated voltage of the attractive case is more than that of the repulsive case. The overall generated power of the harvester under harmonic external excitations is investigated for various amplitudes and frequencies. Using theoretical model, it is shown that the proposed device can be used for harvesting the out-of-plane vibrational energy. A model of the system has been devised and tested. The obtained experimental results show good qualitative agreements with the theoretical ones. Keywords Energy harvesting, rotating proof mass, high-amplitude low-frequency environments, frequency up-converting mechanism
Introduction
The field of energy harvesting has attracted explosive attention during the last decade. Energy harvesters are designed to extract energy from ambient and transform it into electrical energy which can be used by many critical electronic devices such as wireless sensors (Arms et al., 2005; Roundy et al., 2003; Roundy and Wright, 2004), health monitoring sensors (Du Plessis et al., 2005; Inman and Grisso, 2006), and pacemakers (Sanders and Lee, 1996). The generation of electrical energy from available sources such as mechanical vibrations requires a mechanical coupling between a moving body and a physical device capable of generating electricity (Lhermet et al., 2008). For the case of mechanical vibrations, the ambient energy can be transformed to the electrical one via electrostatic (Roundy et al., 2003), electromagnetic (El-hami et al., 2001), piezoelectric (PZT) (Anton and Sodano, 2007), and magnetostrictive (Lei and Yuan, 2008) mechanisms.
Regardless of the conversion mechanism, the resonant inertial energy harvesters are capable of extracting noticeable amount of energy when they are excited at their resonance frequency. However, the majority of environmental energy sources have spectral content distributed over a broader range of frequencies, and therefore, many methods have been proposed to broaden the usable bandwidth of linear harvesters. In this way, the concept of improving energy harvester performance using the intentional nonlinearities has become the main aim of many researches. Among the first who focused on this concept were Cottone et al. (2009) and
Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran Corresponding author: Hassan Nahvi, Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran. Email: hnahvi@cc.iut.ac.ir
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al. Erturk et al. (2009) in which the effects of deliberately inducing nonlinearities on the frequency bandwidth and the generated voltage of the energy harvesters were investigated. Beside the mentioned efforts on both increasing the generated power and broadening the frequency bandwidth, there are a number of researches that dealt with harvesting energy from low-frequency, high-amplitude excitations such as Michael et al. (2009). In their article, in order to determine the parameters influencing the device performance in terms of energy harvesting, an alternative design based on the impact of a moving mass on PZT bending structures is proposed and analyzed. An inertial power generator for scavenging lowfrequency nonperiodic vibrations called the parametric frequency-increased generator (PFIG) is presented by Galchev et al. (2011). Their device operates more effective than resonant generators, especially when the ambient vibration amplitude is higher than the internal displacement limit of the device. An energy harvesting device in which a low-frequency resonator impacts a high-frequency resonator was investigated theoretically and experimentally in the work of Gu and Livermore (2011). It is shown that the efficiency of transferred electrical power is significantly improved with the coupled vibration approach. A harvester consists of a hung mass and two stiff PZT cantilever beams has been proposed by Ye and Cai (2012). In their model, a series of impacts between the mass and cantilever beams occurr during vibration of the mass which triggers high-frequency vibrations. In the harvester presented by Pillatsch et al. (2012), a cylindrical proof mass actuates an array of PZT bimorph beams through magnetic attraction. After initial excitation, the beams are left to vibrate at their fundamental frequencies. The same authors, later, presented the experimental results for a rotational PZT harvester which works based on the beam plucking mechanism (Pillatsch et al., 2014). In their device, magnetic coupling between two permanent magnets mounted on a piezoelectric beam and an eccentric proof mass were utilized. Considering the device proposed by Pillatsch et al. (2014), it seems that the rotational devices which may accept linear and rotational excitations are more suitable for low-frequency, highamplitude excitations. An investigation on the use of gyroscopic proof masses for energy harvesting can also be found in the work of Yeatman (2008). The device in Pillatsch et al. (2012) works well on an oscillating host structure, but if the device is tilted by 90 °, no voltage can be extracted. Later, this problem has been solved in Pillatsch et al. (2014), but unlike their previous device, only one PZT beam has been used. In this work, a configuration is presented that uses eight PZT beams in a circular configuration. Due to extraction of energy from the full rotational course of
643 the proof mass, using a higher number of PZT beam can increase the overall generated power of the device. This, itself, can decrease the sensitivity of the device to its positioning relative to the direction of excitations. At this point, it is noteworthy that the multi-PZT transducers have been used in some researches for enhancing the overall generated power of the harvester especially those which focused on the wind energy harvesting (Bressers et al., 2011) and (Karami et al., 2013). However, unlike this study, in those devices, the motion of the rotating magnet(s) is caused by the direct external excitation (i.e. the wind stream) while in this study the excitation is exerted to the whole proposed device. In this article, the electromechanical behavior of a coupled energy harvester is investigated. The energy harvester comprises eight discontinuously laminated PZT beams and a rotating proof mass with a mounted magnet on its tip. Mathematical model of the harvester is derived using energy principles. The electromechanical responses of the system under harmonic external excitations are obtained applying numerical simulations. Moreover, the performance of the proposed harvester under excitations with different amplitudes and frequencies is examined. The accuracy of the modeling is qualitatively examined by the experimental results.
Theoretical description of the model
The PZT energy harvester considered in this study is shown in Figure 1. This system consists of eight elastic PZT cantilever beams with nonlinear magnetic interaction between the neodymium magnet mounted on their free ends and a magnet which is attached on the tip of a rotating cylindrical mass. The material of the rotating cylinder is not sensitive to the magnetic fields. Nine identical magnets are used to provide either attractive or repulsive force in between. The beams are equally positioned around the center of a circular plate. The horizontal distance between the tip magnets and the center point of the circular plate is equal to the length of the rotating cylinder. This guarantees that there is no contact between the tip of the moving mass and the beams’ tip during vibration. In repulsive case, while the cylindrical mass is rotating, the nonlinear magnetic interaction between the moving magnet and beam tip magnets enforces the beams to deflect downward. As rotation continues, the beams are left to vibrate at their natural frequencies. The system (shown in Figure 1) is excited by a harmonic acceleration in the form a(t) = A cos (Ot) with various amplitudes and frequencies. The two partially PZT laminates located above and below the neutral axis of the cantilever beam (known as bimorph configuration) are assumed to be perfectly bounded and embedded on either side of the beam. It is also assumed
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

644
Journal of Intelligent Material Systems and Structures 27(5)
Figure 1. Schematic diagram of the proposed nonlinear piezoelectric energy harvester.
that the first mode of vibration is dominant. Other assumptions are as follows:  Deformations of the clamped-free Euler– Bernoulli beams which are considered to be inextensible are assumed to be small. The shear deformation and the effects of rotary inertia are neglected based on thin beam assumptions. Magnetic interaction between the two magnets is based on the dipole assumption. The force acting on the beam due to air particles (air damping) is neglected. Series connection between the two PZT laminates (PZT-5A) is considered. Magnetic interactions between PZT beams are assumed to be small. All beams are identical and the only difference is in their locations on the circular plate. The friction between the rotating mass and the central bar which is fixed at the center of the circular plate is assumed to be negligible. It is assumed that the nonlinear interaction between the rotating magnet and the beam tip magnets has negligible effect on the dynamics of the rotating mass. In practice, this can be achieved using a rotating cylinder with a noticeable amount of mass.
to the electric field generated within a layer as (according to Institute of Electrical and Electronics Engineers (IEEE) standard for piezoelectricity)
Tx = cE xx Sx à ezx Ez Dz = ezx Sx + eS zz Ez e 1T

     
E where eS zz , ezx , and cxx are the PZT material permittivity constant at zero strain, the electromechanical coupling coefficient, and the elastic stiffness, respectively.
Energy description of the system
The kinetic energy of a PZT cantilever system shown in Figure 2 can be written as
L L e ep 1 2 _ (x, t)? dx + rp Ap ?w _ (x, t)?2 dx T = r s A s ?w 2 0 0
e 2T
+
1 _ (L, t)?2 m A ?w 2

PZT modeling
PZT energy harvesting employs active materials that generate charges when stressed mechanically. The relationship between strain Sx , stress Tx , electric field Ez , and displacement Dz of a bimorph cantilever beam is governed by equations that relate the mechanical stress
where Lp , L, and w(x, t) are the length of PZT layers, the length of substrate and transversal deflection of the PZT beam, respectively, and eá T indicates ?=?t. Moreover, A, r, and mA are the cross-sectional area, the material density (s: substrate and p: PZT), and mass of the magnet A, respectively. The total kinetic energy of the system, Tt , is the summation of kinetic energies of all PZT cantilever beams. In equation (2), the first and second terms show the kinetic energy within each layer of the PZT and substrate and the third term shows the kinetic energy of the end mass (magnet A). Using Hook’s law, the potential energy expression for a PZT beam can be written as
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
645
Figure 2. Parameters used for modeling nonlinear interaction due to permanent magnets.
L e 1 2 Us = Es Is ?w00 (x, t)? dx 2 0
e 3T
MA = MA VA sin ni cos uo i + MA VA sinni sin uo j + MA VA cosni k MB = à M B V B k
e 6T e 7T
where Es and Is are the Young’s modulus and the area moment of inertia for the substrate, respectively, and double prime denotes ?2 =?x2 . The total potential energy of the system, Ust , is the summation of potential energies for all PZT cantilever beams. Considering one PZT beam, the bending enthalpy for electrically active layers is (Stanton et al., 2010)
1 2 _ (t) Hp = Ep Ip ?w00 (x, t)? dx à ezx bp (hp + hs )w0 (Lp , t)l 2
0 L ep
where the angles ni and uo are shown in Figure 2 and the index i indicates the ith beam. At any moment, the the vector from the center of magnet B to the center of magnet A is given by
r = ?eLR + a(2 à cos ni )Tcos uo à (LR à b)cos g?i + ?eLR + a(2 à cos ni )Tsin uo à (LR à b)sin g?j + ?wi (L, t) + a sin ni à ZR ?k e 8T
à
1 eS zz bp Lp _ l(t)2 4 hp
e 4T
where Ep is the Young’s modulus of the PZT material _ (t) are the laminate thickness, width, and hp , bp , and l and flux linkage (which its time derivative has units of Volts), respectively. In equation (4), the PZT area moment of inertia is given by 2 + 6 h h + 3 h ) = 12 . Ip = bp hp (4h2 p s p s The total enthalpy, Hpt , is the summation of enthalpies of all PZT beams. The potential energy in the magnetic field generated by two dipoles (magnets A and B) is given by (Yung et al., 1998)
Um =   mo MA á r r 3 á MB r 4p   m M A á MB (MA á r)(MB á r) = o à 3 r5 4p r3
e 5T
where LR and ZR are the length of the rotating cylinder and the height of the rotating magnet, respectively, relative to an imaginary plane passing through the PZT beams at their initial positions. In equation (8), uo is the angular position at which the PZT beams are fixed. In this study, uo = p(i à 1)=4, i = 1, 2, 3, . . . , 8 for the ith cantilever beam. Considering a PZT beam, the nonlinear magnetic potential between the tip magnet and the moving magnet can be obtained by substituting equations (6)–(8) into equation (5). To calculate the total nonlinear magnetic potential between the tip magnets and the magnet on the rotating cylinder, Umt , the mentioned procedure should P be repeated for all beams. In other words, Umt = 8 i = 1 Umi for the ith cantilever beam. Using this potential function, the presented mathematical model is capable to consider the interactions between the rotating magnet and all tip magnets, simultaneously. The Lagrangian functional, L, the difference between the kinetic and the potential energy, is
L = Tt à Ust à Hpt à Umt e 9T
where mo is the vacuum permeability, r is the vector from the center of magnet A to the center of magnet B and r is its two-norm. MA and MB are the magnetic moment vectors oriented as shown in Figure 2 and, according to Stanton et al. (2010), may be considered as a multiplication of the magnet volume V and the magnetization vector M. For permanent magnets, the magnitude of the magnetization vector, M, can be estimated using magnets residual flux density, Br , as M = Br =mo . Hence, according to Figure 2, the magnetic moment vector for the two magnets can be written as
In the next subsection, this functional will be used to obtain electromechanical equations of the system.
Discretized model of the energy harvester
After plucking by the moving magnet, the cantilever beams of the proposed device vibrate at their resonance frequency. In this way, a single eigenfunction expansion of the deflection for the mode of interest is assumed.
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

646 As such, we presume wi (x, t) = fi (x)ri (t) where r(t) is the time-varying function and f(x) is the mode shape of oscillation. Moreover, ni in equations (6) and (7) can be written as ni = f0i (L)ri (t). As mentioned, before, the length of the PZT laminate is not equal to the length of the beam; therefore, computing f(x) requires an extra step. A framework for computing non-uniform modes for continuous systems with abrupt material property or geometric changes is provided by Koplow et al. (2006). Their results are used later for modeling of a nonlinear bistable energy harvester by Stanton et al. (2010). The total beam was considered as two separate Euler– Bernoulli beams satisfying continuity and compatibility conditions at their intersection. By incorporating wi (x, t) = fi (x)ri (t) into equation (9), the Lagrangian functional can be discretized as
L=
8  à X 1 i=1
Journal of Intelligent Material Systems and Structures 27(5)
Figure 3. Top view of the cylindrical mass.
2
á 2 _ _ i (t)2 à v2 r i ri (t) + ui ri (t)li (t)  e10T
1 _ i (t)2 à Um eri (t), gT + Cpi l 4
where vi is the first natural frequency of the ith beam and Cp and u are the equivalent capacitance through one layer and the electromechanical coupling term, respectively; given for one PZT cantilever as
Cp = u= eS zz bp Lp hp
rotating cylindrical mass. In the following, the rotating mass differential equation of motion which is coupled with the rest 16 equations is derived. The coupling is related to the parameter g that denotes the angular position of the rotating mass. In Figure 3, top view of the cylindrical mass is shown. In this figure, G and LG represent the gravitational center point of the cylindrical mass and the distance between this point and the central axis (point o) of the central bar, respectively. Denoting the acceleration vector of point o as ao , the acceleration vector of point G, aG , can be written as
_ 2 er + LG g € eu aG = ao + aG=o = a(t)ey à LG g e13T
1 ezx (hp + hs )bp f0 (Lp ) 2
The governing ordinary differential equations can be found by applying the Euler–Lagrange equations given as
  d ?L ?L = Qi (t), à _i dt ?r ? ri d ?L _i dt ?l   à ?L = Ii (t) e11T ? li
where aG=o is the acceleration of point G relative to point o. Therefore, the acceleration vector of point G can be obtained as
à á _ 2 er + eLG g € à a(t)cos gTeu e14T aG = àa(t) sin g à LG g
In equation (11), Q(t) is a generalized force and I (t) is a generalized current which, in electrical dynamics, is represented by an equivalent resistive load, that is, _ (t)=RL (Stanton et al., 2010). Substituting I (t ) = à l equation (10) into equation (11) leads to
_ € _ i (t ) + v 2 r i ( t ) + 2z i v i r i ri (t) à ui li (t) + ?U m = 0 e12aT ?ri e12bT
Using Newton’s second law in the direction perpendicular to the cylinder, the equation of motion for the cylindrical mass can be found as
€ à a(t)cos g = à g sin g LG g e15T
1 € 1 _ _ i (t ) = 0 Cpi li (t) + li (t) + ui r 2 RL
where z is the modal damping ratio and RL is the resistive load that is assumed to be 150 kO. The last term of equation (12a) indicates the repelling force between two magnets. In general, the theoretical model of the proposed system consists of 17 coupled ordinary differential equations for eight PZT cantilever beams and the
where g is the acceleration of gravity. Obviously, if the term a(t) that represents the horizontal acceleration of the device is set to 0, equation (15) reduces to a nonlinear equation describing the oscillations of a simple pendulum. Table 1 lists the parameters used for calculating the potential energy in this section and the forced response of the proposed energy harvester which is investigated in the next section. The symbolic manipulation software Maple was used to derive the potential field. The simulations in the next section are carried out using MATLAB Simulink environment. Using the parameters listed in Table 1, the magnetic potential, U, caused by two identical permanent
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
Table 1. System parameters. PZT cantilever beam properties (all PZT beams are the same) Substrate Parameter Length Width Thickness Density Young’s modulus Coupling coefficient Laminate permittivity Permittivity of free space Damping ratio Magnets’ properties Parameter Mass Length Width Height Residual flux density
PZT: piezoelectric.
647
PZT laminate Value 55:01 mm 6:2 mm 0:23 mm 1290 kg=m3 2:41 GPa — — — 0:01 Symbol Lp bp hp rp Ep d31 eS 33 e0 — Value 26:10 mm 3:8 mm 0:254 mm 7700 kg=m3 63 GPa à285310à12 C=N 3200e0 8:854310à12 F=m —
Symbol L b hb rs Es — — — z
Symbol mA i and mB 2a and 2b dA i and dB hA i and hB Br
Value 5 :3 g 9:52 mm 6:01 mm 2:2 mm 1:48 T
magnets are calculated for different angular positions (from àp to p) of the cylindrical mass and different beam tip displacements. The results are shown in Figure 4(a) to (d) for beam numbers 1–4. For beam numbers 5–8, the trend of the magnetic potential, U, is similar to the trend of Figure 4(a) to (d), and therefore they are not shown here. Figure 4 clearly shows that whenever the angular position of the cylindrical mass, g, is equal to the angular position of a PZT beam, the (repulsive) magnetic potential rapidly increases and reaches its maximum value. The maximum of magnetic potential for the first beam occurs at g = 0 (Figure 4(a)) and for the second, third, and fourth beams occurs at g = p=4, g = p=2, and g = 3p=4, respectively (Figure 4(b) to (d)). Figure 4 shows that any increase in the distance between the magnets located at the tips of the moving mass and a particular PZT beam decreases the potential in between. In other words, from Figure 4(a) to (d), it is observed that if the position of the magnet located at the tip of a PZT beam, wi (L), is positive (negative), the magnetic interaction increases (decreases).
time step option and ode45 solver (Runge–Kutta method) are used in the simulations. Without losing the generality of the problem, all simulations are done for the following three cases: Case I. In this case, as shown in Figure 5, the energy harvester consists of one PZT beam. The effect of angular velocity of the rotating cylinder on the generated voltage is investigated and some remarks about the damping ratio of the PZT beam are expressed. Case II. The electromechanical responses of the proposed energy harvester with eight PZT beams are simulated under a predetermined rotational motion of the rotating cylinder. The overall effects of the rotating cylinder angular velocity on the generated voltage are investigated in this case. Moreover, the performance of the harvester for two repulsive and attractive cases is compared to each other. Case III. In this case, the electromechanical responses of the energy harvester under harmonic external excitations, exerted in y direction, are simulated. The effect of gravity on the performance of the harvester is investigated. Finally, the performance of the device in low-frequency, highamplitude environments is examined.
Time-domain numerical simulations of the electromechanical response
Due to strong nonlinearity of equation (12) caused by magnetic interactions between the two magnets, numerical simulation is used to obtain the system timedomain responses. In this way, the electromechanical equations are built in MATLAB Simulink environment considering the parameters listed in Table 1. Variable
Case I: the performance of the energy harvester with a PZT beam under a predetermined motion
The simulations in this section are performed for the repulsive configuration and time period of 6 s. A Ramp
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

648
Journal of Intelligent Material Systems and Structures 27(5)
Figure 4. Static potential energy between two magnets attached to the tip of PZT beam and cylindrical mass, LR = 60 mm, and ZR = 35 mm: (a) first beam, (b) second beam, (c) third beam, and (d) fourth beam.
Figure 5. Schematic of the harvester with one PZT beam.
block is used in Simulink environment to simulate a predetermined rotational motion with a constant angular velocity denoted by g t which implies that the angular position of the rotating cylinder can be written as g (t) = g o + gt t (g o is the initial position). It is assumed that at the initial time, the cylindrical mass is located at g 0 = à p=2 (Figure 5). When the rotating proof mass reaches the position g = 0, due to interaction between the magnets, the PZT beam is actuated. Figure 6 shows the tip displacement and the generated voltage of an individual beam for three angular velocities of the cylindrical mass; g t = 1, 3, and 5 rad/s. According to this figure, if the angular velocity increases, the number of actuations in the PZT cantilever beam increases. This results in an increase in the maximum tip displacement and the maximum generated
voltage. It can be explained that when the rotating mass reaches the PZT beam with a low angular velocity, it enforces the beam to deflect slowly, whereas, at a high angular velocity, the magnetic force exerts rapidly and, consequently, increases the initial velocity of the PZT tip in its downward motion. On the other hand, at a high angular velocity, the rotating mass leaves the beam faster, results in a lower repulsive force, and therefore, the PZT beam oscillates with a higher amplitude. This can be seen in Figure 6(a) and (b). Figure 7 shows the generated voltage across the resistive load for two damping ratios 0.01 and 0.05. It can be seen that for smaller values of damping ratio, the oscillations of an individual beam do not completely die off before the next actuation begins, while higher values of damping ratio shorten the duration of after-actuation oscillations as well as maximum generated voltage. At this point, it should be noted that the general scheme of Figure 7, which is drawn using theoretical simulations, is qualitatively in good agreement with the experimental results in Pillatsch et al. (2012, 2014) and Gu and Livermore (2011).
Case II: the performance of the proposed energy harvester under a predetermined motion
The same as previous section, a Ramp block is used in Simulink environment to simulate the predetermined motions in cylindrical mass but, here, the analyses are performed for the attractive and repulsive configurations. The electromechanical behavior of the harvester with eight PZT beams is governed by 16 coupled
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
649
(a) 3 γ =1 rad/sec 2 1
t t t
γ =3 rad/sec γ =5 rad/sec
W (L, t) (mm)
0 -1 -2 -3 -4 -5 -6 0
1
1
2
3
4
5
6
Time (sec)
(b) 2 1.5 1 0.5 γ =1 rad/sec
t t
γ =3 rad/sec =5 rad/sec
Figure 7. Effects of damping ratio on the generated voltage across the resistive load; ZR = 0:02 m and g t = 7 rad=s.
V (volt)
0 -0.5 -1 -1.5 -2 -2.5 -3 0 1 2 3 4 5 6
Time (sec)
Figure 6. Effects of different angular velocities on the tip displacement (a) and the generated voltage (b) of an individual beam, ZR = 0:02 m and z = 0:01; continuous line for gt = 1 rad=s, dash-dotted line for gt = 3 rad=s, and dashed line for gt = 5 rad=s.
nonlinear ordinary differential equations. The solution of these equations is obtained numerically. The results for the repulsive configuration are depicted in Figure 8(a) and (b), which show the tip displacements and the generated voltages, respectively, for the angular velocities 1 and 5 rad/s. The initial value of the angular position is g 0 = à p=2 rad, implying that at the initial time the rotating cylindrical mass is located over the beam number 7 which leads to an initial tip displacement for this beam (Figure 8(a7) and (b7)). After passing over the beam number 7, as is evident in Figure 8(a8) and (b8), the rotating mass reaches the position of beam number 8 and actuates it. In fact, in this case, the first plucking occurs in beam number 8. The plucking mechanism is repeated for beam numbers 1, 2, 3, and so on. For higher angular velocities, more plucking mechanisms are observed which lead to higher overall generated voltages. The sequence of plucks in Figure 8, especially those drawn for gt = 5 rad=s, can be seen in Pillatsch et al. (2012) and Gu and Livermore (2011). A comparative study on the tip displacements and the generated voltages of the harvester in the repulsive and attractive cases is conducted and the results are shown in Figure 9. The repulsive and attractive magnetic interactions can be introduced into the model by
changing the direction of magnetic moment vector of the moving magnet. From Figure 9, it can be observed that the tip displacements and the generated voltages in the case of attractive configuration are significantly more than those in the repulsive configuration. This can be justified by considering the magnetic force between the tip magnets and the moving magnet. In the attractive case, when a PZT tip magnet is pulled up to the moving magnet, the distance between the magnets decreases which leads to an increase in the attractive force and, subsequently, to a higher tip displacement. On the other hand, in the repulsive case, the distance between the tip magnets increases which leads to a lower force. Hence, as shown in Figure 9(b), higher harvested voltages are expected for the attractive configurations rather than the repulsive configurations.
1
Case III: the performance of the proposed energy harvester under a harmonic external excitation
A Sine block is used in MATLAB Simulink environment to produce harmonic external excitations. The responses of 17 coupled nonlinear differential equations are obtained for the attractive configuration and time period of 100 s while the initial angular position, g 0 , is set to be 0 (at t = 0, the cylindrical mass is supposed to be located at the top of the first PZT beam). Furthermore, it is assumed that LR = 60 mm and ZR = 30 mm. The horizontal and vertical coordinates attached to the device are depicted in Figure 10. For ease of discussion, it is assumed that the external excitation is exerted along the horizontal coordinate. When the device is horizontally positioned (Figure 10(b)), the effect of gravity on the dynamics of the cylindrical mass is assumed to be negligible. Although, always, the vibrations of the PZT beams will be under the influence of gravity, it is assumed that the effect of gravity on the vibrations of PZT beams is also negligible. This
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

650
Journal of Intelligent Material Systems and Structures 27(5)
W 4(L, t) (mm) W 3(L, t) (mm) W 2(L, t) (mm) W 1(L, t) (mm)
5 0 -5 5 -1 -10 10 0 1 2 3 (a2) 5 0 -5 5 -10 -1 10 0 1 2 3 (a3) 2 0 -2 2 -4 4 6 -6 0 2 0 -2 2 -4 4 -6 6 0 1 2 3 4 5 6 1 2 3 (a4) 4 5 6 4 5 6 4 5 6
W 6(L, t) (mm) W 5(L, t) (mm)
(a1)
(a5) 5 0 -5 5 -1 -10 10 0 1 2 3 (a6) 5 0 -5 5 -10 -1 10 0 1 2 3 (a7) 10 0 -10 -10 4 5 6 4 5 6
W 8(L, t) (mm) W 7(L, t) (mm)
0
1
2
3 (a8)
4
5
6
2 0 -2 2 -4 4 -6 6 0 1 2 3 4 5 6
Time (sec)
(b1) 2 2
Time (sec)
(b5)
V 1 (volt)
0 -2 2 -4 0 2 1 2 3 (b2) 4 5 6
V 5 (volt)
0 -2 2 -4 0 2 1 2 3 (b6) 4 5 6
V 2 (volt)
0 -2 2 -4 0 2 1 2 3 (b3) 4 5 6
V 6 (volt)
0 -2 2 -4 0 10 1 2 3 (b7) 4 5 6
V 3 (volt)
0 -2 2 -4 0 2 1 2 3 (b4) 4 5 6
V 7 (volt)
0 0 -10
0
1
2
3 (b8)
4
5
6
2
V 4 (volt)
0 -2 2 -4 0 1 2 3 4 5 6
V 8 (volt)
0 -2 2 -4 0 1 2 3 4 5 6
Time (sec)
Time (sec)
Figure 8. Effects of different angular velocities on (a) tip displacements and (b) generated voltages of the proposed harvester in repulsive configuration, ZR = 0:02 m; continuous line for gt = 1 rad=s and dashed line for g t = 5 rad=s.
assumption is acceptable, especially when the mass of the beams (including tip magnets) is small enough and/ or the magnetic force between the moving magnet and the tip magnets is much more than the gravitational force. As an example, the electromechanical behavior of the device under the influence of a harmonic external excitation with amplitude of 10 m/s2 and a frequency of 5 Hz is presented in Figure 11. It is assumed that the device is vertically positioned, that is, the dynamics of the rotating mass is affected by the gravitational force. Figure 11(a) shows the angular position of the rotating cylinder. The horizontal and vertical coordinates of
its tip are shown Figure 11(b). At the beginning of excitation which is in the positive horizontal direction ( + y), the rotating mass goes to the negative angular positions or to the negative horizontal coordinates (Figure 11(a)). When the direction of the external excitation reverses, the rotating magnet moves toward the positive directions. During the excitation, this oscillation is repeated several times and the path curve of the cylinder tip is obtained as shown in Figure 11(b). Hence, the rotating mass oscillates around its initial position while its tip magnet traces the curve as shown in Figure 11(b). Higher external excitations may lead to a complete circular motion of the rotating mass. In
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
651
W (L, t) (mm) W (L, t) (mm) W (L, t) (mm) W 1(L, t) (mm) 4 3 2
20 10 0 -10 -10 0 1 2 3 (a2) 20 10 0 -1 0 -10 0 1 2 3 (a3) 20 10 0 -1 -10 0 0 1 2 3 (a4) 20 10 0 -10 -10 0 1 2 3 4 5 6 4 5 6 4 5 6 4 5 6
W (L, t) (mm) W (L, t) (mm) 6 5
(a1)
(a5) 20 10 0 -1 -10 0 0 1 2 3 (a6) 20 10 0 -1 0 -10 0 1 2 3 (a7) 20 10 0 -10 -10 0 1 2 3 (a8) 20 10 0 -10 -10 0 1 2 3 4 5 6 4 5 6 4 5 6 4 5 6
Time (sec)
(b1) 10
W 8(L, t) (mm) W (L, t) (mm) 7
Time (sec)
(b5) 10
V 1 (volt)
0 -10 0
V 5 (volt)
1 2 3 (b2) 4 5 6
0 -10 0
0
0
1
2
3 (b6)
4
5
6
10
10
V 2 (volt)
0 -10 0
V 6 (volt)
1 2 3 (b3) 4 5 6
0 -10 0
0
0
1
2
3 (b7)
4
5
6
10 0 -10 0
20
V 7 (volt)
1 2 3 (b4) 4 5 6
V 3 (volt)
0 -20 0
0
0
1
2
3 (b8)
4
5
6
10
10
V 4 (volt)
0 -10 0
V (volt)
1 2 3 4 5 6
0 -10 0
0
8
0
1
2
3
4
5
6
Time (sec)
Time (sec)
Figure 9. (a) Tip displacements and (b) generated voltages of the proposed harvester in repulsive (dashed line) and attractive (continues line) configurations, ZR = 0:02 m.
other words, for the amplitude of 10 m/s2 and frequency of 5 Hz, the rotating cylinder is unable to reach beam numbers 3–7 as is evident in Figure 11(b). For this excitation, the rotating mass oscillates near the tip of the beam numbers 8, 1, and 2, and therefore, it is expected that the tip displacements and the generated voltages of these beams are considerably higher than those of the other beams (Figure 12). According to this figure, while beam numbers 8, 1, and 2 oscillate with maximum amplitude of approximately 8 mm, the amplitudes of oscillations for other beams are less than
0.2 mm (Figure 12 (a1), (a2) and (a8)). For a time interval of 10 s, the beam number 5 (Figure 12 (a5)) has the minimum amplitude which is due to the relatively high distance between its tip magnet and the rotating magnet. Plucking mechanism can be observed as consecutive jumps in Figure 12(a) and (b). In order to investigate the performance of the device in the horizontal and vertical situations, the electromechanical equations of the system are solved for different values of the amplitude and frequency of external excitations. The considered values for amplitudes are 0.1g,
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

652
Journal of Intelligent Material Systems and Structures 27(5)
Figure 10. Vertical and horizontal coordinates in two situations; device in the (a) vertical and (b) horizontal situations.
Figure 11. (a) Angular position and (b) tip path curve of the rotating mass when the device is vertically positioned; LR = 60 mm and ZR = 30 mm.
0.25g, 0.5g, 1g, and 2 g where g = 9.81 m/s2. The values of frequencies are 1, 2,..., 5, 7, 9,..., 15 Hz. All solutions are obtained for 100 s. To eliminate the effects of transient responses on the results, only second half of the responses is included, that is, between t = 50 s and t = 100 s. At first, the root mean square (RMS) of the generated voltage of each beam is calcu2 lated. Then, considering Prms = Vrms =RL , the RMS of the generated power of each beam is calculated. Finally, the overall generated power of the device which
is the sum of the generated power of all beams is determined. Hence, the performance of the harvester under a particular external excitation can be expressed by a single quantity. The overall generated power of a horizontally positioned harvester for different amplitudes, A, and frequencies of external excitations is shown in Figure 13. As can be seen, for a certain value of the amplitude of excitation, generally, it is expected that increasing the excitation frequency to values more than 5 Hz decreases
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
653
Figure 12. (a) Tip displacements and (b) generated voltages across the resistive load when the device is vertically positioned; LR = 60 mm and ZR = 30 mm.
the overall generated power. In other words, when the device is horizontally positioned, more power can be harvested in low frequencies rather than in high frequencies. Figure 14 shows the overall generated power of a horizontally positioned harvester for different frequencies and amplitudes of external excitations. According to this figure, in general, the generated power of the device at frequencies lower than 5 Hz is considerably higher than those at higher frequencies. For a certain excitation frequency, it is also expected that increasing
the excitation amplitude increases the overall generated power. The overall generated power of a vertically positioned harvester for different amplitudes (A) and frequencies of external excitations is shown in Figure 15. Unlike Figure 13, in this position, the harvester can produce noticeable amount of power at high frequencies such as 13 Hz (Figure 15(d)). However, the device is still capable of harvesting energy at low frequencies. Figure 16 shows the overall generated power of a vertically positioned harvester for different frequencies
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

654
Journal of Intelligent Material Systems and Structures 27(5)
(a) 0.07 0.06 0.05
A = 0.1g 0.15
(b)
A = 0.25g 0.4
(c)
A = 0.5g 0.35 0.3
(d)
A = 1g 0.4 0.35 .35 0.3 0.25 .25 0.2 0.15 .15 0.1
(e)
A = 2g
0.3 0.1 0.2
0.25 .25 0.2 0.15 .15
Power (mW)
0.04 0.0 04 0.03 0.0 03 0.02 0 0 0.01 0 0 5 10 Frequency (Hz) 15
0.05 0.1
0.1 0.05 .05
0 0
5 10 Frequency (Hz)
15
0 0
5 10 Frequency (Hz)
15
0 0
5 10 Frequency (Hz)
15
0.05 .05
0
5 10 Frequency (Hz)
15
Figure 13. Overall generated power of the horizontally positioned harvester for different amplitudes of external excitations, A, with the range of frequencies from 1 to 15 Hz; LR = 60 mm and ZR = 30 mm: (a) A = 0.1 g, (b) A = 0.25 g, (c) A = 0.5 g, (d) A = 1 g, and (e) A = 2 g.
Figure 14. Overall generated power of the horizontally positioned harvester for different frequencies of external excitations over a range of amplitudes from 0.1 to 2 g; LR = 60 mm and ZR = 30 mm: (a) frequency = 1 Hz, (b) frequency = 2 Hz, (c) frequency = 3 Hz, (d) frequency = 4 Hz, (e) frequency = 5 Hz, (f) frequency = 7 Hz, (g) frequency = 9 Hz, (h) frequency = 11 Hz, (i) frequency = 13 Hz, and (j) frequency = 15 Hz.
and amplitudes of external excitations. The same as Figure 14, when the frequency of excitation is constant, generally, it is expected that increasing the excitation amplitude increases the overall generated power. Considering Figures 13 to 16, it can be concluded that the proposed configuration can be used for harvesting vibration energy at low-frequency and highamplitude excitations and its capability is not restricted to the mentioned types of excitations, especially in vertically positioned situations. It seems that the generated
power is highly influenced by the amplitude of excitation rather than its frequency. As mentioned in section ‘‘Introduction,’’ in comparison to the device presented by Pillatsch et al. (2014), seven more PZT beams have been used in the proposed harvester to extract vibrational energy even when the rotating proof mass is rotating at angles far from the angular position of the first PZT beam. To demonstrate the effect of using a higher number of generators on the overall generate power, in Figures 17 and 18 the
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
655
Figure 15. Overall generated power of the vertically positioned harvester for different amplitudes of external excitations, A, with the range of frequencies from 1 to 15 Hz; LR = 60 mm and ZR = 30 mm: (a) A = 0.1 g, (b) A = 0.25 g, (c) A = 0.5 g, (d) A = 1 g, and (e) A = 2 g.
Figure 16. Overall generated power of the vertically positioned harvester for different frequencies of external excitations over a range of amplitudes from 0.1 to 2 g; LR = 60 mm and ZR = 30 mm: (a) frequency = 1 Hz, (b) frequency = 2 Hz, (c) frequency = 3 Hz, (d) frequency = 4 Hz, (e) frequency = 5 Hz, (f) frequency = 7 Hz, (g) frequency = 9 Hz, (h) frequency = 11 Hz, (i) frequency = 13 Hz, and (j) frequency = 15 Hz.
overall generated power of the device when it has only one PZT beam is compared to that with eight PZT beams. The excitation characteristics are the same as those in Figures 14 and 16. The initial conditions are _ = 0 which implies that whether the still g = 0 and g device consists of one or eight PZT beams, the rotating proof mass is initially located at the top of the first PZT beam. It should be noted that when the device is considered with only one PZT beam, the obtained configuration is still different from the model proposed by Pillatsch et
al. (2014). In their model, the vibrations of PZT beam and the motion of rotating proof mass occur at the same plane, while in our model, the PZT beam oscillates in a plane perpendicular to the plane of rotating mass. The following comparisons show the effect of using higher number of PZT beams on the performance of the harvesting system. The overall generated power of the horizontally and vertically positioned harvesters for different frequencies of external excitations over a range of amplitudes is shown in Figures 17 and 18, respectively.
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

656
Journal of Intelligent Material Systems and Structures 27(5)
Figure 17. Overall generated power of the horizontally positioned harvester for different frequencies of external excitations over a range of amplitudes from 0.1 to 2 g; continuous line: the device with eight PZT beams; dashed line: the device with one PZT beam; LR = 60 mm and ZR = 30 mm: (a) frequency = 1 Hz, (b) frequency = 2 Hz, (c) frequency = 3 Hz, (d) frequency = 4 Hz, (e) frequency = 5 Hz, (f) frequency = 7 Hz, (g) frequency = 9 Hz, (h) frequency = 11 Hz, (i) frequency = 13 Hz, and (j) frequency = 15 Hz.
Figure 18. Overall generated power of the vertically positioned harvester for different frequencies of external excitations over a range of amplitudes from 0.1 to 2 g; continuous line: the device with eight PZT beams; dashed line: the device with one PZT beam; LR = 60 mm and ZR = 30 mm: (a) frequency = 1 Hz, (b) frequency = 2 Hz, (c) frequency = 3 Hz, (d) frequency = 4 Hz, (e) frequency = 5 Hz, (f) frequency = 7 Hz, (g) frequency = 9 Hz, (h) frequency = 11 Hz, (i) frequency = 13 Hz, and (j) frequency = 15 Hz.
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al. According to Figures 17 and 18, regardless of the positioning, the harvester with eight PZT beams can generate more power than the harvester with one PZT beam. It can be seen that in general, regardless of the excitation frequency, there is a small difference between the generated powers of these two configurations in low-amplitude excitations. According to Figure 17, for a specific excitation frequency, when the amplitude of excitation increases, the difference between the amplitude of generated powers of these two models becomes noticeable. However, as can be seen in Figure 18, when the excitation frequency increases to values higher than 9 Hz, the generated power of two configurations becomes close to each other. This can be explained by considering the dynamics of the proof mass. When the harvester is vertically positioned, for these values of excitation frequencies and amplitudes, the proof mass oscillates at the top of beam number 1 while the other beams are not actuated. Therefore, for these excitations, there is no considerable difference between the generated powers of the harvester with eight PZT beams and the one with only one PZT beam. It should be mentioned that using a large number of PZT beams increases the number of magnets in the device which itself can increase the possibility of the internal magnetic coupling among the magnets.
657 During excitation, whether the harvester is positioned horizontally or vertically, almost always the beams are not actuated in the same way. Therefore, due to the difference in the actuations, it is expected that the optimum resistance of a particular beam can be different from that of the other beam. Two cases are considered at this point: (a) it is supposed that each of beams is connected to the same load resistance, RL , and objective is to find RL so that the overall RMS of the generated power is maximized and (b) it is assumed that each beam has its own resistive load, and the objective is to find eight values of RL for eight beams so that the overall generated power is maximized. Expectedly, the second case should lead to higher values of power rather than the first one because in later case all beams generate their maximum powers. All results in this section are obtained for the excitation frequency and amplitude of 3 Hz and 9.81 m/s2, respectively.
Optimum load resistance
In order to maximize the power output of the system, it is necessary to determine the best load resistance for the harvester. The simulation model is used to calculate the RMS power for a large range of resistor values.
Case a: eight PZT beams with the same resistive loads. In this section, the resistive loads attached to the beams are the same. Using the simulation model, the overall RMS of the generated power of the harvester is calculated for a range of load resistance from 0.1 to 4 MO. Figure 19(a) and (b) show the results of horizontally and vertically positioned device, respectively. According to Figure 19, the maximum power delivered to the resistive load occurs at the load resistances of 2 and 1.9 MO for the horizontal and vertical positioning and the optimum generated powers for these positions are obtained as 0.93 and 0.86 mW, respectively.
Figure 19. Overall output power versus load resistance at frequency of 3 Hz and amplitude of 1g: (a) horizontally and (b) vertically positioned harvester, ZR = 30 mm.
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

658
Journal of Intelligent Material Systems and Structures 27(5)
Figure 20. Output power of each beam versus its load resistance at frequency of 3 Hz and amplitude of 1g for horizontally positioned device, ZR = 30 mm.
Case b: eight PZT beams with different resistive loads. In this case, eight resistive load values should be found so that the overall RMS of power of each beam and, consequently, of the harvester is maximized. In Figures 20 and 21, the generated power of each beam is drawn versus the load resistance for the horizontal and vertical positions, respectively. By comparing Figures 19(a) and 20, it can be seen that the optimum resistive load for the harvester is not necessarily equal to the optimum resistive load of any of the eight beams. Furthermore, the summations of the maximum generated powers in Figures 20 and 21 are 0.94 and 0.87 mW, respectively, which are slightly bigger than 0.93 and 0.86 mW obtained from Figure 19. As expected, the generated power of the second case is higher than that of the first case, but the difference between the obtained power values is not significant for this excitation characteristic.
Theoretical description of the model for out-of-plane vibrations
If the clamp point of the PZT beam shown in Figure 2 is subjected to a vertical excitation, its kinetic energy can be written as
L L e ep 1 2 _ (x, t) + z _ (x, t) T = r s A s ?w _ (t)? dx + rp Ap ?w 2 0 0
e16T
+z _ (t)?2 dx +
1 _ (L, t) + z m A ?w _ (t)?2 2
In equation (16), if the term z _ (t) is assumed to be 0, this equation will be identical to equation (2). Using equation (16), the discretized form of the Lagrangian functional is obtained as
L=
8 X á 1à 2 _ i (t ) _ i (t)2 à v2 _ (t)2 + ui ri (t)l r i ri (t) + mz 2 i=1 ! 1 2 _ _ i (t )z + Cpi li (t) + G i r _ (t) à Um eri (t), g T e17T 4
Out-of-plane vibration of the harvester
As mentioned before, the oscillation of PZT beams occurs in a plane perpendicular to the motion plane of pendulum. Therefore, it is claimed that the presented configuration can be used for harvesting the out-ofplane vibrational energy. In this section, the ability of this device to harvest the out-of-plane vibrational energy is demonstrated through an example. In this way, the previously obtained electromechanical equations of each PZT beam (equation (12)) are modified to simulate the out-of-plane excitations (denoted by € z(t)).
where the total mass of the PZT beam (including tip mass), m, and the coefficient G are defined as follows
m = rs As L + 2rp Ap Lp + mA
L ep L e
G = (rs As + 2rp Ap )
0
f(x)dx + rs As
Lp
f(x)dx + mA f(L)
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
659
Figure 21. Output power of each beam versus its load resistance at frequency of 3 Hz and amplitude of 1g for vertically positioned device, ZR = 30 mm.
Applying Euler–Lagrange equations to the functional, L, leads to
?Um _ € _ i (t ) + v 2 = à G i€ z( t ) ri (t) + 2zi vi r i ri (t) à ui li (t) + ? ri e18aT 1 € 1 _ _ i (t ) = 0 C p li ( t ) + li (t) + ui r 2 i RL e18bT
The last term in the left-hand side of equation (18a) represents the effect of rotating magnet on the tip magnets and the term in the right-hand side of equation (18a) denotes the effect of out-of-plane vibrations.
Time-domain response
Again, MATLAB Simulink environment is used to obtain the time-domain response of the electromechanical equations. It is supposed that the horizontally positioned harvester is under the influence of an out-of-plane excitation and also the magnetic interactions due to the pendulum movement. For simplicity, it is also assumed that the out-of-plane excitation is a pulse function with constant amplitude as shown in Figure 22(a). To produce this pulse in Simulink, a Pulse Generator block is used with the following parameters: amplitude of 3 g, period of 5 s, and pulse width (% of period) of 0.005. At first, it is assumed that the rotating pendulum is removed and the system is only under the influence of
the out-of-plane excitation. The generated voltage of first PZT beam is drawn versus time in Figure 22(b). It should be mentioned that the generated voltage of other PZT beams is exactly the same as that of the first PZT beam and therefore is not shown here for the sake of brevity. According to Figure 22(b), expectedly, whenever a pulse is exerted to the system, a jump appears in the generated voltage. Due to the fact that the excitation is applied in the +Z direction (refer to Figure 2), once the excitation occurs, the tip mass of PZT beam goes downward, and therefore, the initial values of the generated voltage are negative. Next, it is presumed that the pendulum rotates with a constant speed of p rad/s, while the out-of-plane excitation is applied. The effects of out-of-plane vibrations on the generated voltage of each PZT beam, in the presence of rotating magnet, are shown in Figure 22(c). To eliminate the transient response, the first 15 s of the signals are excluded. The highamplitude jumps in the figure (e.g. at t = 17 s or at t = 19 s for the fourth beam) are due to the magnetic interaction between the rotating magnet and the tip magnet of PZTs, while the low-amplitude ones (e.g. at t = 20 s or at t = 25 s for the first beam) are due to the external pulses. According to Figure 22(c), although the out-of-plane excitations can lead to a higher value of generated voltages (e.g. at t = 20 s or at t = 25 s for the first beam), but sometimes it can suppress the amplitude of
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

660
Journal of Intelligent Material Systems and Structures 27(5)
(a)
(b)
(c)
Figure 22. (a) Out-of-plane excitation versus time, (b) the generated voltage of the first PZT beam in the absence of the rotating pendulum, and (c) the generated voltage of the system in the presence of the rotating pendulum.
generated voltages (e.g. at t = 25 s for the third beam or at t = 20 s for the seventh beam). At this point, it is demonstrated that the presented configuration is capable to respond to the external excitations which are applied alongside the central bar. Considering the capabilities of the proposed device for harvesting energy, it is worth mentioning that the harvested power can be doubled by adding eight more PZT beams to the device as shown in Figure 23.
Experimental apparatus and instrumentation Excitation
This section describes the experimental equipment and tests performed to examine the electromechanical behavior of the device. All tests are performed in the horizontal position. A conventional mechanism that is able to produce harmonic motion is the Scotch yoke mechanism.
Figure 23. An alternative design of the proposed energy harvester for enhancing the generated power.
Figure 24 shows a graphical layout of this mechanism in which the rotational motion of the wheel (motor) turns into the linear motion in the yoke part. According
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

Ramezanpour et al.
661
Figure 24. (a) Graphical layout of Scotch yoke mechanism and (b) schematic design of the mechanism.
to Figure 24(a), the displacement and acceleration of yoke are x = e cos(vt) and a = à ev2 cos(vt), respectively. In these two relationships, v is the angular frequency of the wheel (motor) and e indicates the eccentric distance of the pin. The Scotch yoke mechanism is used to produce external excitations with various amplitudes and frequencies. In this way, as shown in Figure 24(b), a plate moves freely over a pair of rails using four concave rollers that prevent its motion perpendicular to the rail direction. In this work, this plate is considered as the yoke part of the mentioned mechanism and, at the same time, as a base plate (main tray) for the harvester (shown in Figure 25). Two kinds of harmonic excitations can be generated by means of the Scotch yoke mechanism: constant frequency excitations and constant amplitude ones. Constant frequency excitations are easily obtained when the angular frequency is kept constant and the eccentric distance varies. In order to produce constant amplitude excitation, the multiplication of ev2 should be kept constant. In this manner, when v varies from v1 to v2 , the eccentric distance should vary from e1 to 2 e2 where e2 is equal to e1 v2 1 =v2 . Therefore, the amplitude remains constant whereas the frequency is varied. A servo motor produces required rotational motions for the Scotch yoke mechanism (Figure 24(b). Its rotational speed, which can be controlled by a PC, varies in the range of 3–33 Hz.
Figure 25. Proposed harvester.
Experimental device
As can be seen in Figure 25, eight clamp supports are attached to the main tray which is an aluminum plate with the dimensions of 0:6 cm 3 38 cm 3 39 cm. The harvester consists of eight bimorph PZT beams ′ Corporation). The effective length of (V22BL; Mide each PZT beams is 52 mm. Using a double-sided adhesive tape, a neodymium magnet is attached to the tip of each beam. A similar magnet is attached to the tip of
the rotating proof mass. The magnets are cylindrical shape with the diameter of 5 mm and height of 2 mm. Residual flux density of each magnet is 0.6 T. The rotating proof mass is made of brass because this material is non-ferrous and therefore does not affect the magnetic field of the attached magnet. The experimental setup is shown in Figure 26. The proof mass is initially positioned at the top of beam number 1 (Figure 10(b)), and when the data logger is recording, the motor starts its rotational motion. To stabilize the plate on the rails, especially when the motor is rotating in relatively high speeds, four added weights are fastened to the main tray (Figure 26). However, despite these weights, when maximum eccentricity is used, we failed to reach the angular speeds higher than approximately 100 rev/min. Once the motor is started, the main tray starts its motion on the rails in an oscillating manner. At the same time, the signal obtained from the accelerometer which is attached to the main tray is sent to the data logger while the signals generated by PZT beams are sent to the resistor box through eight connectors. The resistive load in this
Downloaded from https://www.sodocs.net/doc/3d16101116.html, at East China Jiaotong University on March 1, 2016

一生励志的正能量短句子大全

一生励志的正能量短句子大全 一生励志的正能量短句子摘抄 1. 不经历风雨,长不成大树,不受百炼,难以成钢。 2. 耐心和恒心总会得到报酬的。 3. 宝剑锋从磨砺出,梅花香自苦寒来。 4. 表示惊讶,只需一分钟;要做出惊人的事业,却要许多年。 5. 不放弃!决不放弃!永不放弃! ——邱吉尔 6. 不积跬步,无以至千里;不积小流,无以成江海。——荀子 7. 苟有恒,何必三更起五更眠;最无益,只怕一日曝十日寒。——毛泽东 8. 成功最终属于耐心等待得人。 9. 凡是新的事情在起头总是这样一来的,起初热心的人很多,而不久就冷淡下去,撒手不做了,因为他已经明白,不经过一番苦工是做不成的,而只有想做的人,才忍得过这番痛苦。——陀思妥耶夫斯基 10. 放弃时间的人,时间也会放弃他。——莎士比亚 11. 斧头虽小,但经历多次劈砍,终能将一棵最坚硬的

橡树砍刀。 12. 告诉你使我达到目标的奥秘吧,我惟一的力量就是我的坚持精神——巴斯德 13. 一个人最痛苦的时候不是吃不上饭的时候,而是想努力奋斗没有机会。 14. 与其做一个有价钱的人,不如做一个有价值的人;与其做一个忙碌的人,不如做一个有效率的人。 15. 没有目标的人,永远为有目标的人打工。 16. 智者创造机会,强者把握机会,弱者坐等机会。 17. 说出的苦不叫苦,说不出的苦才叫苦。 18. 人若把自己框在一定的范围内,就容易限制了自己的思维和格局。 19. 人往往年轻时用健康换财富,老时再用财富换健康。发达国家的人们是透支金钱,储存健康;我们国家的人是透支健康,储存金钱。 20. 人因为有理想、梦想而变得伟大,而真正伟大就是不断努力实现理想、梦想。 一生励志的正能量短句子精选 1. 一件事被所有人都认为是机会的时候,其实它已不是机会了。 2. 天上最美的是星星,人间最美的是真情。 3. 活鱼会逆流而上,死鱼才随波逐流。 4. 怕苦的人苦一辈子,不怕苦的人苦一阵子。

工作励志正能量句子

工作励志正能量句子 1)对于攀登者来说,失掉往昔的足迹并不可惜,迷失了继续前时的方向却很危险。 2)奋斗者在汗水汇集的江河里,将事业之舟驶到了理想的彼岸。 3)含泪播种的人一定能含笑收获。 4)很多失败不是因为能力有限,而是因为没有坚持到底。 5)机会不会主动找到你,必须亮出你自己。 6)驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。 7)困难和挫折都不可怕,可怕的是丧失做人的志气和勇气。 8)漫漫长路,你愿一人独撑,忍受着孤独与寂寞,承受着体力与精神的压迫,只任汗水溶于泪水,可脚步却从不停歇。好样的,纵然得不了桂冠,可坚持的你,定会赢得最后的掌声。 9)莫找借口失败,只找理由成功。 10)世上没有绝望的处境,只有对处境绝望的人。 11)每一发奋努力的背后,必有加倍的赏赐。 12)赚钱之道很多,但是找不到赚钱的种子,便成不了事业家。 13)大多数人想要改造这个世界,但却罕有人想改造自己。 14)当一个人先从自己的内心开始奋斗,他就是个有价值的人。 15)即使爬到最高的山上,一次也只能脚踏实地地迈一步。 16)穷人缺的是钱而不是时间,富人缺的是时间而不是钱。

17)好心不一定会换来感恩,但千万不要因此而灰心。 18)若不给自己设限,则人生中就没有限制你发挥的藩篱。 19)最有效的资本是我们的信誉,它小时不停为我们工作。 20)人生不是一种享乐,而是一桩十分沉重的工作。 1)忙于采集的蜜蜂,无暇在人前高谈阔论。 2)你追我赶拼搏争先,流血流汗不留遗憾。 3)懦弱的人只会裹足不前,莽撞的人只能引为烧身,只有真正勇敢的人才能所向披靡。 4)勤奋是你生命的密码,能译出你一部壮丽的史诗。 5)人生伟业的建立,不在能知,乃在能行。 6)你的上司越忙,你的饭碗越危险。 7)如果你最近的工作很闲,注意了,这可能是危机的先兆。 8)到处都是有才华的穷人,千万别觉得自己无可替代。 9)每一个成功者都有一个开始。勇于开始,才能找到成功的路。 10)当一个人用工作去迎接光明,光明很快就会来照耀着他。 11)如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。 12)漂亮的脸孔是给别人看的,而有智慧的头脑才是给自己利用的。 13)人只有在布满陡峭的路上,才能使自己的脚跟变的更稳;人只有在布满荆棘的路上,才能使自己的身体变的不怕伤痕;人只有在布满危险的路上,才能使自己的战斗力变的无比之强! 14)选择自信,就是选择豁达坦然,就是选择在名利面前岿然不动,就是选择在势力面前昂首挺胸,撑开自信的帆破流向前,展示搏击的风采。

正能量励志短句子(精选300句)

正能量励志短句子(精选300句) 2021-02-28 正能量励志短句子(精选300句) 1、当你尽了自我的最大努力时,失败也是伟大的。 2、生命力的意义在于拼搏,因为世界本身就是一个竞技场。 3、荆棘的存在是为了野草不轻易地任人践踏。 4、少一点预设的期盼,那份对人的关怀会更自在。 5、当你能梦的时候就不好放下梦。 6、以往拥有的,不要忘记;已经得到的,更要珍惜;属于自我的,不要放下;已经失去的,留着回忆;想要得到的,必须努力;但最重要的,是好好爱惜自我。 7、留心记下自我平常所说的话,看看其中有多少是陈述性的,有多少是询问性的。假如你总是向别人发问,你就是在寻求赞许。 8、学习是苦根上长出来的甜果。 9、我们一向以为最艰难的总是当下,却发现人生从来不曾有最艰难,只会有更艰难。唯一还值得庆幸的是,所有打不倒你的都将使你变得更强大,所有打倒了你的也并没将你彻底击垮。风是无常的,人,也是无常的,我的忙碌,也是无常,世事无常。 10、生活中若没有兄弟姐妹,就像生活中没有阳光一样。 11、不要因为没有掌声而放下你的梦想。 12、人生就是一般此刻时和此刻进行时,没有一般过去时。 13、拒绝严峻的冶炼,矿石并不比被发掘前更有价值。 14、人生的路经历过,才知道有短有长;岁月,在无憾中微笑,才美丽;回过头,想着明天抱一抱。那些年最初的梦想在我们心中依旧完美,我们只需要记住那些完美。把握此刻,活在当下才是真理。 15、此岸,彼岸,终究是尘归尘,土归土。一季绯红也只是一季花凉,几许艳丽,几许妩媚,几经风雨,尘埃落地。活着,就要慢慢老去,途径坎坷,感受

悲喜,生命最终是寂灭。缘有长短,人有来去,再深的情也会淡泊,再浓的意也会无痕,初见永远不会再见。 16、命是弱者的借口,运是强者的谦词。 17、要假设你融不到一分钱的情景去做事业。 18、人生如逆旅,我亦是行人。 19、就算全世界都说我漂亮,但你却说我不漂亮,那么我就是不漂亮。 20、如果我们能够改变情绪,我们就能够改变未来。 21、拥有的,要珍惜,要知足;做人必须要有一颗平常心,肤浅的羡慕,无聊的攀比,笨拙的效仿,只会让自我整天活在他人的影子里面。我们应当认清自我,找到属于自我的位置,走自我的道路,过自我的生活。 22、一些伤口之所以总会痛,那是因为你总是去摸。 23、一个人变强大的最好方式,就是拥有一个想要保护的人。 24、欲望得不到满足痛苦;欲望一旦满足就无聊,生命就是在痛苦和无聊之间摇摆。 25、萤火虫的光点虽然微弱,但亮着便是向黑暗挑战。 26、人格的完善是本,财富的确立是末。 27、若不尝试着做些本事之外的事,你就永远不会成长。 28、名利都是虚幻的,自我的心才是最实在的。[由https://www.sodocs.net/doc/3d16101116.html,整理] 29、要诚恳,要坦然,要慷慨,要宽容,要有平常心。 30、做一名自信者,牢牢把住自我生命的罗盘,让生命充畅。做一名自谦者,慢慢拓展自我生命的容量,让生命充实。做一名自爱者,深深领会自我生命的价值,让生命充美。做一名自安者,悄悄抚平自我生命的伤痕,让生命充悦。做一名自洁者,时时清除自我生命的淤积,让生命充盈。 31、经过云端的道路,只亲吻攀登者的足迹。 32、单纯是我追求的一种生活方式,也是我持续的一种创作心态,但追求单纯需付出许多代价,你必须要有勇气承担因为单纯而带来的被他人利用欺瞒及孤立。但我觉得人生本来就该尽可能坚持一种单纯的状态,因这种状态是最接近自我的内心,一个纯静的内心会把许多事情导入正向,让你拥有一个物质之外的丰富人生。

50条超励志的正能量经典句子

50条超励志的正能量经典句子 1、当你觉得自已充满斗志,充满信心,别人就会觉得你就是值得相信的你。 2、当你觉得没有人来爱你,别人看见的就是可怜兮兮,毫无魅力的你。 3、当你觉得自己满怀希望,对未来充满信心,别人看到的就是有魅力,风华绝代的你。 4、人生与其说你有不幸的事实存在,倒不如说是你的悲观的观念所带来的。 5、有一则谚语说,绵羊每"咩咩"叫上一次,它就会失掉一口干草,如果你的心态是沉重的,总是抱怨你的苦恼,那么每说一次你便失掉一个快乐的机会。 6、相信自已。 不要妄加评判自已,也不会把自已交给别人评判,更不会贬低自已。 7、你想要别人是你的朋友,你必须是别人的朋友,心要靠心来交换,感情只有用感情来博取。 8、人生的游戏不在于拿了一副好牌,而在于怎样去打好坏牌,世上没有常胜将军,勇于超越自我者才能得到最后的奖杯。 9、既然时间是最宝贵的财富,那么珍惜时间,合理地运用时间就很重要,如何合理地花费时间,就如同花钱的规划一样重要,钱花

完了可再挣,时间花完了就不能再生,因此,更要利用好你的时间。 10、解铃还需系铃人,躲避责任会解决不了任何问题,它只导致一个失败的人生。 11、人不怕走在黑夜里,就怕心中没有阳光。 12、逃避不一定躲得过,面对不一定难受.转身不一定最软 弱.13、话多不如话少,话少不如话好。 14、曾经拥有的不要忘记,已经得到的要珍惜,属于自已的不要放弃。 15、永远都不要停止微笑,即使是在你难过的时候,说不定哪一天有人会因为你的笑容面爱上你。 16、因为某人不如你所愿爱你,并不意味着你不被别人所爱。 17、一个真正的朋友会握着你的手,触动你的心。 18、也许上帝让遇见那个适合你的人之前,会遇见很多错误的人,所以当一切发生的时候,你应该心存感激。 19、勇敢的面对不一定成功,但你不面对就一定不成功。 20、黑夜的转弯是白天,愤怒的转弯是快乐,所以有的时候让心情转个弯就好了。 21、一天要做三件事,第一要笑,第二要微笑,第三要哈哈大笑。 22、小树会大,大树会老,老树会凋零。 23、如果你不想做,你可以找一个理由,如果你肯做,你也可以

(励志句子)激励自己奋斗的正能量励志句子

激励自己奋斗的正能量励志句子 励志句子 1、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 2、人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,只要一个人的心中还怀着一粒信念的种子,那么总有一天,他就能走出困境,让生命重新开花结果。 3、幻想一步成功者突遭失败,会觉得浪费了时间,付出了精力,却认为没有任何收获;在失败面前,懦弱者痛苦迷茫,彷徨畏缩;而强者却坚持不懈,紧追不舍。 4、进步和成长的过程总是有许多的困难与坎坷的。有时我们是由于志向不明,没有明确的目的而碌碌无为。但是还有另外一种情况,是由于我们自己的退缩,与自己亲密的妥协没有坚持到底的意志,才使得机会逝去,颗粒无收。 5、决不能习惯失败,因为你要知道,身体的疲惫,不是真正的疲惫;精神上的疲惫,才是真的劳累。 6、理想是什么?它不是口上说的计划,也不是敷衍的借口,它是自己的心,理想的最终汇集地,是幸福,为了自己有了理想,为了恋人有了理想,为了家人有了理想,有了理想才有梦,梦想与理想,一字之差千里之遥。

7、路是自己选的,后悔的话,也只能往自己的肚子里咽。 8、没有钱、没有经验、没有阅历、没有社会关系,这些都不可怕。没有钱,可以通过辛勤劳动去赚;没有经验,可以通过实践操作去总结;没有阅历,可以一步一步去积累;没有社会关系,可以一点一点去编织。但是,没有梦想、没有思路才是最可怕的,才让人感到恐惧,很想逃避! 9、每颗珍珠原本都是一粒沙子,但并不是每一粒沙子都能成为一颗珍珠。想要卓尔不群,就要有鹤立鸡群的资本。忍受不了打击和挫折,承受不住忽视和平淡,就很难达到辉煌。年轻人要想让自己得到重用,取得成功,就必须把自己从一粒沙子变成一颗价值连城的珍珠。 10、每一个人的成功之路或许都不尽相同,但我相信,成功都需要每一位想成功的人去努力、去奋斗,而每一条成功之路,都是充满坎坷的,只有那些坚信自己目标,不断努力、不断奋斗的人,才能取得最终的成功。但有一点我始终坚信,那就是,当你能把自己感动得哭了的时候,你就成功了!

正能量励志的句子经典短句50个

正能量励志的句子经典短句50个 1、经历,只是让我们在下一次面对困难时更加淡定和从容! 2、十年前,你周围的人会根据你父母的收入对待你。十年后,你周围的人会根据你的收入对待你的父母和你的孩子!这就是人性和人生,除了努力别无选择。记住:没有伞的孩子,必须努力奔跑! 3、成功没有快车道,幸福没有高速路,一份耕耘一份收获,所有的成功都来自不倦的努力和奔跑,所有幸福都来自平凡的奋斗和坚持。 4、立志越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。 5、人活着不是要用眼泪博得同情,而是用汗水赢得掌声。 6、认定了的路,再痛也不要皱一下眉头,再怎么难走都是你自己选的,你没有资格喊疼。 7、该来的自然来,会走的留不住。不违心,不刻意,不必太在乎,放开执念,随缘是最好的生活。 8、有句话说的好,不打没有准备的仗,做事之前要修炼自己,有能力才会有魄力,有魄力才会有勇气,有这样的胆色才能把能力发挥到极致,那么你就成功了! 9、人生是一种承受,我们要学会支撑自己。人的成长,在于学习,也在于经历。人的修养,在于领悟,也在于静修。人的幸福,在于得到,也在于放下。人生秘诀,在于别人,也在于自己。

10、世界那么大,你的野心再大,它也一定装得下。 11、走过的路成为背后的风景,不能回头不能停留,若此刻停留,将会错过更好的风景,保持一份平和,保持一份清醒。 12、多和优秀的人在一起,他们就像一团光芒,呆久了,就再也不想走回黑暗了。 13、每天提升正能量,心中充满小太阳。 14、没有太晚的开始,不如就从今天行动。总有一天,那个一点一点可见的未来,会在你心里,也在你的脚下慢慢清透。生活,从不亏待每一个努力向上的人。 15、如果你真的想做一件事情,那么就算障碍重重,你也会想尽一切办法去办到它。但若是你不是真心的想要去完成一件事情,那么纵使前方道路平坦,你也会想尽一切理由阻止自己向前。 16、过去的事,交给岁月去处理;将来的事,留给时间去证明。我们真正要做的,就是牢牢地抓住今天,让今天的自己胜过昨天的自己。 17、做事不需要人人都理解,但你要尽心尽力;做人不需要人人都喜欢,但你要坦坦荡荡。梦想的坚持注定有孤独彷徨,因为少不了他人的质疑和嘲笑,但那又怎样,哪怕遍体鳞伤,也要活得漂亮! 18、人的一生不长,今天的辛酸经历,就是明天最美好的回忆,今天的努力将成为明天更多的收获!错过的就让它永远的错过。要珍惜眼前的生活,活出自己的人生,为自己的人生加油! 19、你走过的每一条弯路,其实都是必经之路,你要记住的是,

关于唯美励志充满正能量的句子和图片.doc

关于唯美励志充满正能量的句子和图片 在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。下面是我精心整理的唯美励志充满正能量的句子和图片,希望能给大家带来帮助! 1.你不喜欢我,我一点都不介意。因为我活下来,不是为了取悦你! 2.要成功,就要长期等待而不焦躁,态度从容却保持敏锐,不怕挫折且充满希望。 3.行走红尘,别被欲望左右迷失了方向,别被物质打败做了生活的奴隶,给心灵腾出一方空间,让那些够得着的幸福安全抵达,攥在自己手里的,才是实实在在的幸福。 4.所谓成长,就是逼着你一个人,踉踉跄跄的受伤,跌跌撞撞的坚强。 5.如有谁让你难过,一定不要难过太久,因为太多时候,都是被自己编织故事困扰,只是从自己的角度看了事实的一角,只是需求没有满足的夸大,只是习惯于按自己的模式判断,远离事实真相的结果。真相往往没有你想像的悲壮和恶劣,真相中,多有你的误解,和自以为是的受伤,而真心伤人的人真不多见。 6.有时候不是不懂,只是不想懂;有时候不是不知道,只是不想说出来;有时候不是不明白,而是明白了也不知道该怎么做,于是就保持了沉默。 7.人生的每一场相遇,都是缘分,没有对错。人生的每一个清晨,

都该努力,不能拖延。 8.有些人、有些话、说不说、理不理都无所谓。因为看清了,也就看轻了。 9.爱上一个人,会从高傲变成卑微。一举一动,一句话,都会小心翼翼如履薄冰。但对方若爱你,肯定会将这卑微慢慢扳平,变成毫无拘束的相处。如果一段感情让你只能处在下风才能进行,那一定不是真正相互深爱的感情。 10.不管脚步有多慢都不要紧,只要你在走,总会看到进步。 11.如果我在意的人对我忽冷忽热,而我又为此感到了患得患失,那么我便会选择不辞而别,因为我没那么多耐心去品尝患得患失的感觉。 .一辈子不长,只有珍惜了,才不至于后悔。 13.人生是坎坷的,人生是崎岖的。我坚信:在人生中只有曲线前进的快乐,没有直线上升的成功。只有珍惜今天,才会有美好的明天;只有把握住今天,才会有更辉煌的明天!人生啊,朋友啊!还等什么?奋斗吧! 14.没有伞的孩子,必须努力奔跑! 15.当我觉得我倒霉了,我就会想:这是在挥洒我的霉运,挥洒之后,剩下的就全都是幸运了! 16.如果你的面前有阴影,那是因为你的背后有阳光。 17.心情的颜色是活泼热烈的红色,是生机盎然的绿色,是尊贵华丽的黄色,好好地,用这种种颜色做心情,来书写生活,不要让它变得灰暗...... 18.你向我张开手臂,我会小跑几步;你向我微笑,我会驻足聆听;

精品-关于拼搏正能量励志句子大全100句

关于拼搏正能量励志句子大全100句 关于拼搏正能量励志句子大全100句 1、没有人陪你走一辈子,所以你要适应孤独,没有人会帮你一辈子,所以你要一直奋斗。 2、我们自己选择的路,即使跪着也要走完;因为一旦开始,便不能终止。这才叫做真正的坚持。 3、不如意的时候不要尽往悲伤里钻,想想有笑声的日子吧。 4、把困难举在头上,它就是灭顶石;把困难踩在脚下,它 就是垫脚石。 5、思路决定出路,气度决定高度,细节决定成败,性格决定命运。 6、后悔是一种耗费精神的情绪,后悔是比损失更大的损失,比错误更大的错误,所以不要后悔。

7、我们比较容易承认行为上的错误、过失和缺点,而对于思想上的错误、过失和缺点则不然。 8、相信朋友的忠诚。相信自己的勇气。相信敌人的愚蠢。 9、每一枝玫瑰都有刺正如每个人的性格里都有你不能容忍的部分。 10、为自己选择的跑道去冲刺,即使很漫长,即使有阻碍,即使会跌倒;但是,坚定的信念会一直陪伴着我欢笑的、努力地、飞快地奔跑。即使非常非常的辛苦,只要有坚持下去的勇气,再大的山、再阔的海都可以跨越,努力的奔跑,天空的那一边就不再遥远! 11、在人生的道路上,谁都会遇到困难和挫折,就看你能 不能战胜它。战胜了,你就是英雄,就是生活的强者。 12、顺境的美德是节制,逆境的美德是坚韧,这后一种是 较为伟大的德性。 13、一个社团的基本努力或许就是设法使其成员平等,但 其成员个人的自尊心却总是希望自己出人头地,在某处形成某种对自己有利的不平等。

14、在青春的世界里,沙粒要变成珍珠,石头要化作黄金,青春的魅力,应当叫枯枝长出鲜果,沙漠布满森林,这才是青春的美,青春的快乐,青春的本分! 15、穷人缺什么:表面缺资金,本质缺野心,脑子缺观念,机会缺了解,骨子缺勇气,改变缺行动,事业缺毅力。 16、人终归是要生活着的,“不要以为你的努力徒劳无功,权当做磨练你的意志”,只要努力去做事了,多多少少会有收获,一直坚持做下去,就会走向成功! 17、成功不是将来才有的,而是从决定去做的那一刻起, 持续累积而成。 18、只有感受饥饿,才能知道温饱幸福;只有经历风雨,才能见到七彩虹;只有历尽崎岖,才能全力奋起拼搏。在以后的 生活中,我不知道我会遇到多少坎坷但是我相信,我会用全力征服挫折。 19、在世界的前进中起作用的不是我们的才能,而是我们 如何运用才能。 20、人世间,比青春再可宝贵的东西实在没有,然而青春

鼓励上班族努力上班,激励拼搏的正能量句子合集

鼓励上班族努力上班,激励拼搏的正能量句 子合集 征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。今天还在努力上班的你真的很棒! 1、每一个成功者都有一个开始。勇于开始,才能找到成功的路。 2、一个今天胜过两个明天。蓝天属于你,白云属于你,东南西风属于你。 3、征服畏惧建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 4、不是井里没有水,而是挖的不够深;不是成功来的慢,而是放弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气! 5、伟大的事业是根源于坚韧不断的工作,以全副的精神去从事,不避艰苦。 6、人有一种能力叫潜能,它像一粒种子能发挥人的超常遐想,只要我们努力在知识的宇宙中探索寻求,挖掘出自身潜能,充分发挥自己的创新能力,对待工作一丝不苟。积极地面对自己人生,就会开始察觉自己,理解自己,接受自己,再去激励自己,发展自己,从而活出最好的自己。 7、你要多去经历,使你更多方面的了解自己,别因为贪求那些无法拥有的,有些事,尽力不成,无奈,只好走开;有些人,苦

等不来,无缘,只好离开;有些情,苦恋不明,无果,只好割舍。处不住的,只能遗弃;盼不来的,只能放弃;留不住的,只能终止。 8、人生本该如此:勇敢地面对挑战,坚定地去实践自己的梦想,不要怕。作出了选择,就要勇敢地承担责任和后果,不要后悔。对于那些害怕危险的人,危险无处不在。 9、生命需要奋斗,奋斗与不奋斗,造就的结果截然不同。生无所息,保持奋斗的姿态,让世界变得如此灿烂,让你的人生绚烂多姿。千万不能满足小溪的平缓,否则你也就满足了自己的平庸,只有欣赏到山峰的险峻,才有机会欣赏自己。 10、再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。 11、征服畏惧、建立自信的最快最确实的方法,就是去做你害怕的事,直到你获得成功的经验。 12、穷人由于缺乏教育,使得人穷的同时,不仅志穷还有着更多的智穷。 13、人们总是在努力珍惜未得到的,而遗忘了所拥有的。 14、吹嘘自己有知识的人,等于在宣扬自己的无知。 15、人活的是一种心情,我们怀着美好的希望,勇敢的走着,跌倒了再爬起,失败了就再努力,永远相信明天会更好,永远相信不管自己再平凡,都会拥有属于自己的幸福,这才是平凡人生中最灿烂的风景。 16、不管雨下了多久,雨后都是将会有彩虹,不管你是有多悲伤,你都要坚信,幸福是在等你!在人生的道路上,人就是要有所追求的,又是要有所满足。越有故事的人越有软肋。生活,就

正能量工作励志短句子

正能量工作励志短句子 1.我走得很慢,但我从不后退! 2.微笑拥抱每一天,做像向日葵般温暖的女子。 3.待人对事不好太计较,如果太计较就会有悔恨! 4.仅仅活着是不够的,还需要有阳光自由,和一点花的芬芳。 5.世上没有绝望的处境,只有对处境绝望的人。 6.有人问我,如果看不到确定的未来,还要不好付出。我只能说,并不是每一种付出都是在追寻结果。有时在付出的路上,能够收获的,是清楚地看到了自我想要的,或者不想要的,这又何尝不是一 种宝贵的结果。命运会厚待温柔多情的人,好过冷漠的一颗心。 7.没有伞的孩子务必发奋奔跑! 8.失败是什么?没有什么,只是更走近成功一步;成功是什么?就 是走过了所有通向失败的路,只剩下条路,那就是成功的路。 9.坚信梦想是价值的源泉,坚信眼光决定未来的一切,坚信成功的信念比成功本身更重要,坚信人生有挫折没有失败,坚信生命的 质量来自决不妥协的信念。 10.人的生命要疯狂一次,无论是为一个人,一段情,一段旅途,或一个梦想。 11.只有十分十分年轻时,人们才能那么用力地,去喝酒交朋友 打人耳光,往人脸上泼酒,才能如此猛烈地摧残自我。青春期的人,动作总是变形的,每一样感情的流露都放大了一百倍,爱和恨,孤 独与喜悦,都是。 12.天再高又怎样,踮起脚尖就更接近阳光。

13.自我选取的路跪着也要把它走完。 14.不乱于心,不困于情,不畏将来,不念过往。如此,安好。 15.不好去追一匹马,用追马的时刻种草,待到来年春暖花开之时,就会有一批骏马任你选取。 1.只有经历过地狱般的折磨,才有征服天堂的力量。只有流过血的手指才能弹出世间的绝唱。 2.世界愈悲伤,我要愈快乐。当人心愈险恶,我要愈善良。当挫折来了,我要挺身应对。我要做一个乐观向上,不退缩不屈不饶不 怨天尤人的人,勇敢去理解人生所有挑战的人。 3.人生没有彩排,每一天都是现场直播。 4.每个人的性格中,都有某些无法让人理解的部分,再完美的人也一样。因此不好苛求别人,不好埋怨自我。玫瑰有刺,正因是玫瑰。 5.前有阻碍,奋力把它冲开,运用炙热的激情,转动心中的期盼,血在澎湃,吃苦流汗算什么。 6.人生太短,岁月太长。生活是公平的,要活出精彩,需要一颗奋进的心。以勤为本,以韧为基,尽自己的全力,求最好的结果, 行动成就梦想,奋斗成就人生。人生苦短,财富地位都是附加的, 生不带来死不带去,简单的生活就是快乐的生活。 7.“我羡慕你,但我还是做我自我!”——成熟的人生态度。 8.必须要有你所向往的生活,那将会是你最终得到的生活。 9.沉默不是冷漠,只是不想再让那些无关痛痒的人看到真实的自我。热闹的日子看不清未来,一个人也能独自盛开。 10.沉默不是冷漠,只是不想再让那些无关痛痒的人看到真实的 自我。热闹的日子看不清未来,一个人也能独自盛开。 11.没有一种不透过蔑视忍受和奋斗就能够征服的命运。

正能量的励志句子100条

正能量的励志句子100条 1.踩着垃圾到达的高度和踩着金子到达的高度是一样的。 2.每天告诉自己一次:我真的很不错。 3.人生最大的挑战没过于战胜自己! 4.愚痴的人,一直想要别人了解他。有智慧的人,却努力的了解自己。 5.生命的道路上永远没有捷径可言,只有脚踏实地走下去。 6.只要还有明天,今天就永远是起跑线。 7.火把倒下,火焰依然向上。 8.认真可以把事情做对,而用心却可以做到完美。 9.宁可自己去原谅别人,莫等别人来原谅自己。 10.如果我们一直告诫自己要开心过每一天,就是说我们并不开心。 11.天气影响身体,身体决定思想,思想左右心情。 12.不论你在什么时候结束,重要的是结束之后就不要悔恨。 13.你把思考交给了电视,把联系交给了手机,把双腿交给了汽车,把健康交给了药丸。 14.不是某人使你烦恼,而是你拿某人的言行来烦恼自己。 15.人生要用简单的心境,对待复杂的人生,最无情的不是人,是时间;最珍贵的不是金钱,是情感;最可怕的不是失恋,是心身不

全;最舒适的不是酒店,是家里;最难听的不是脏话,是无言;最美好的不是未来,是今天。 16.在一切变好之前,我们总要经历一些不开心的日子,这段日子也许很长,也许只是一觉醒来。有时候,选择快乐,更需要勇气。 17.不要因为众生的愚疑,而带来了自己的烦恼。不要因为众生的无知,而痛苦了你自己。 18.如果你的生活已处于低谷,那就,大胆走,因为你怎样走都是在向上。 19.你可以哭但不能输,你可以难过但不可以落魄,你不努力怎么会知道自己可以赢得多少掌声?如果你能每天呐喊遍“我用不着为这一点小事而烦恼”,你会发现,你心里有一种不可思议的力量,试试看,很管用的。 20.我不敢休息,因为我没有存款。我不敢说累,因为我没有成就。我不敢偷懒,因为我还要生活。我能放弃选择,但是我不能选择放弃。坚强、拼搏是我唯一的选择。 21.生活不是用来妥协的,你退缩得越多,能让你喘息的空间就越有限。日子不是用来将就的,你表现得越卑微,一些幸福的东西就会离你越远。 22.过去的事,就让它过去吧,我们错过了昨日的日落,再也不能错过今日的日出,保持平衡的心态,以最美好的心情来对待每一天,每一天都会充满阳光,洋溢着希望。 23.一粒尘埃,在空气中凝结,最后生成磅礴的风雨;一粒沙石,

关于拼搏的人生的正能量励志句子合集

关于拼搏的人生的正能量励志句子合集 大家要始终相信一句话:只要更好,不求最好!奋斗是成功之父! 1.人生有几件绝对不能失去的东西:自制的力量,冷静的头脑,希望和信心。 2.买得起自己喜欢的东西,去得了自己想去的地方,不会因为身边人的来或走损失生活的质量,反而会因为花自己的钱,来得更有底气一些,这就是应该更努力的原因。 3.最珍贵的不是你现在有多好,而是经过努力,每一天的自己都比之前更好。 4.你是老师的百分之一,是父母的百分之五十,但却是你自己的百分之百,所以要非常非常努力,去追求自己想要的一切。 5.不要去拒绝忙碌,因为它是一种充实;不要去抱怨挫折,因为它是一种坚强;不要去拒绝微笑,因为爱笑的女孩最美。你的优秀,不需要任何人来证明。 6.人有两条路要走,一条是必须走的,一条是想走的,你必须把必须走的路走漂亮,才可以走想走的路。 7.愿你沉稳又执着,对热爱的事情都全力以赴,又满载而归。 8.一件事如果想做,就早点下定决心。拖一天就纠结一天,早一天就多赚一天。 9.自己喜欢的日子,就是最美的日子;适合自己的生活,是最好的活法。

10.安全感不是别人给的,它取决于你有多爱自己,吃饱穿暖,手机有电,钱包永远不扁。 11.成功的人懂得熬,失败的人懂得逃,卓越的人懂得迎风前行并思考!其实放弃和坚持就在一瞬间,扛住了,世界就是你的。 12.做人要抬头有勇气,面对现实。低头有底气,面对自己。做事要有骨气,据理力争。做人要有志气,铮铮铁骨。凡事要争气。 13.在哪里跌倒,就在哪里站起来,所有不能打败你的,都会促成你的成长。 14.不要用自己的时间去见证别人的成功,愿你走过的所有弯路,最后都成为美丽彩虹! 15.没有谁的幸运,凭空而来。只有当你足够努力,你才会足够幸运,这世界不会辜负每一份努力和坚持。 16.有能力的人影响别人,没能力的人受人影响;不是某人使自己烦恼不安,而是自己拿某人的言行来烦恼自己;树一个目标,一步步前行,做好自己就好。 17.雄鹰,不需鼓掌,也在飞翔;小草,没人心疼,也在成长;野花,没人欣赏,也在芬芳;做事不需人人都理解,只需尽心尽力;做人不需人人都喜欢,只需坦坦荡荡。 18.努力到无能为力,拼搏到感动自己;吃过的苦,受过的累,会照亮未来的路;没有年少轻狂,只有胜者为王。 19.真正成功的人生,不在于成就的大小,而在于你是否努力地去实现自我,喊出自己的声音,走出属于自己的道路。 20.选一个方向,定一个时间;剩下的只管努力与坚持,时间

正能量激励人奋斗上进的好句子

正能量激励人奋斗上进的好句子也许你想成为太阳,可你却只是一颗星辰;也许你想成为大树,可你却是一棵小草。于是,你有些自卑。其实,你和别人一样,也是一片风景:做不了太阳,就做星辰,在自己的星座发光发热;做不了大树,就做小草,以自己的绿色装点希望…… 行走红尘,别被欲望左右迷失了方向,别被物质打败做了生活的奴隶,给心灵腾出一方空间,让那些够得着的幸福安全抵达,攥在自己手里的,才是实实在在的幸福。 如果寒暄只是打个招呼就了事的话,那与猴子的呼叫声有什么不一样呢?事实上,正确的寒暄务必在短短一句话中明显地表露出你对他的关怀。 人活着,要有所追求,有所梦想,要生活得开心,快乐,这才是理想的人生。上天给我们机会,让我们来到世间走一遭,我们要珍惜,因为生命是如此的短暂,如果我们不知道珍惜,它将很快的逝去,到头来我们将一事无成。 要成功,就要时时怀着得意淡然失意坦然的乐观态度,笑对自己的挫折和苦难,去做,去努力,去争取成功!

人生是坎坷的,人生是崎岖的。我坚信:在人生中只有曲线前进的快乐,没有直线上升的成功。只有珍惜今天,才会有美好的明天;只有把握住今天,才会有更辉煌的明天!人生啊,朋友啊!还等什么?奋斗吧! 认定了的路,再痛也不要皱一下眉头,你要知道,再怎么难走都是你自己选的,你没有资格喊疼。到最后,你总会明白,谁是虚心假意,谁是真心实意,谁为了你不顾一切。不去期望,失去了不会伤心,得到了便是惊喜。对于过去,不可忘记,但要放下。因为有明天,今天永远只是起跑线。 敏感之人,遭遇一点风声也会千疮百孔。命运给每个人同等的安排,而选择如何经营自己的生活,酿造自己的情感,则在于自己的心性。人生应该活得舒心。人生,就是不断的面对,人生很残酷,错过的,不要奢望还会重来,放下了,才知道它的沉重,今天不做的事,往后可能永远没有机会。 恐惧自我受苦的人,已经正因自我的恐惧在受苦。 夫妇一条心,泥土变黄金。 用心的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。

工作正能量励志句子心情说说 激励上班族的心灵寄语

工作正能量励志句子心情说说激励上班族的心灵寄语 不管迎面来的是什么,我们都能坦然面对。且不管前路如何,今天有阳光,那么我们就拥抱温暖;当风雨来临的时候,我们已经储备了迎接寒冷的能量。等待生命的即便是命运的魔咒,至少我们享受了现在,珍惜了拥有!当生命的繁华落幕之时,我们应会少了几许惶恐,而多了一份坦然。下面由小编与大家分享工作正能量励志句子心情说说,希望你们喜欢!欢迎阅读! 2019工作正能量励志句子心情说说 1、谁肯认真地工作,谁就能做出许多成绩,就能超群出众。 2、一个有信念者所开发出的气力,大于99个只有爱好者。 3、挫折实在就是迈向成功所应缴的学费。 4、即使爬到最高的山上,一次也只能脚踏实地地迈一步。 5、通过辛勤的工作获得财富才是人生的大快事。 6、人生伟业的建立,不在能知,乃在能行。 7、不是境况造就人,而是人造就境况。 8、立志工作成功,是人类活动的三大要素。 9、日日行,不怕千万里;常常做,不怕千万事。 10、一个有信念者所开发出的力量,大于99个只有兴趣者。 11、所谓天才,只不过是把别人喝咖啡的功夫都用在工作上了。 12、所谓天才,那就是假话,勤奋的工作才是实在的。 13、学校要求教师在他的本职工作上成为一种艺术家。 14、值得自豪的是工作,而不是漂亮的脸蛋儿。 15、珍惜今天的拥有,明天才会富有。 16、旁观者的姓名永远爬不到比赛的计分板上。 17、那里有天才,我是把别人喝咖啡的工夫都用在工作上的。 18、只工作不玩耍,聪明的孩子也变傻。 19、从工作里爱了生命,就是通彻了生命最深的秘密。 20、把工作当乐趣看,那么我们天天有乐趣。 21、任何的工作本身都是没有未来的,工作的未来掌握在工作者自己的手中。

激励励志正能量句子50个

激励励志正能量句子50个 导读:1、哪有什么错过的人,会离开的都是路人。愿你脚踏实地,也愿你仰望星空,往事不回头,未来不将就! 2、小黄人没有肩膀照样穿背带裤,没耳朵照样戴眼镜啊,别老埋怨你的世界缺点什么。 3、环境永远不会十全十美,消极的人受环境控制,积极的人却控制环境。 4、我不怕别人在背后捅我一刀,我怕回头后看到背后捅我的人,是我用心对待的人;我不怕把心里话告诉最好的朋友,我怕回过头他把它当成笑话告诉别人。 5、走不下去到时候停下来想想,总会找到坚持下去的理由。 6、这世界上最强大的人,就是那些能一个人孤单生活的人。 7、人与人之间的距离,要保持好,太近了会扎人,太远了会伤人。 8、别总是抱怨生活不够幸运,是你欠了生活一份努力,每一个你讨厌的现在,都有一个不够努力的曾经,未来美不美,取决于你现在拼不拼。 9、高一步立身,退一步处世。 10、人生没有如果,只有后果和结果。少问别人为什么,多问自己凭什么。现在不玩命,将来命玩你,现在不努力,未来不给力。现在不努力,将来拿什么向曾经抛弃你的人证明它有多瞎!

11、不管失败多少次,都要面对生活,充满希望。竹根即使被埋在地下无人得见,也决然不会停止探索而力争冒出新笋。希望,只有和勤奋作伴,才能如虎添翼。 12、世上没有白费的努力,也没有碰巧的成功,一切无心插柳,其实都是水到渠成。人生没有白走的路,也没有白吃的苦,跨出去的每一步,都是未来的基石与铺垫。 13、其实,没有过不去的事情,只有过不去的心情。很多事情,我们之所以过不去,是因为我们心里放不下。比如被欺骗了,报复放不下,被讽刺了,怨恨放不下,被批评了,面子放不下。 14、做个内心向阳的人。不忧伤,不心急。坚强、向上,靠近阳光。 15、成功不是将来才有的,而是从决定去做的那一刻起,持续累积而成。 16、梦想不会让一个人瞬间伟大,而是让生活拥有色彩和希望。只要你愿意努力,只要你相信,总有一天你会同样熠熠发光。 17、每个人的背后都会有心酸,都会有无法言说的艰难。每个人都会有自己的泪要擦,都会有自己的路要走。 18、人生的路漫长而多彩,在阳光中我学会欢笑,在阴云中我学会坚强;在狂风中我抓紧希望,当我站在终点回望,我走出了一条属于我的人生之路。 19、坚持不一定成功,但不坚持一定不会成功,并不是井里没水,

人生正能量励志句子

人生正能量励志句子 。 人生正能量励志句子【一】一、思想如钻子,必须集中在一点钻下去才有力量。 二、即使我们只会拥有一个短暂的相遇和短暂的默契,有我们也便是永恒了。 三、如果真苦,你哪有时间喊累。如果真惨,你哪有时间觉得丢脸。因为承受得还不够,所以你才有时间抱怨。 四、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 五、天上最美的是星星,人间最美的是真情。 六、善待他人,体谅他人,热爱生命,努力生活。 七、心有多大,世界就有多大! 八、宁可自信,也不要盲目悲观。 九、人既不是天使,又不是禽兽;但不幸就在于想表现为天使的人却表现为禽兽。 十、朋友是路,家是树。别迷路,靠靠树。 十一、如果你坚信自己最优秀,那么你就最聪明。 十二、劳动是知识的源泉;知识是生活的指南。 十三、生活在这个城市,很多爱,等待,理想,关怀最后都输

给了时间。其实这个城市什么都不缺少,就是缺少时间。我们来不及恋爱,来不及等待,来不及等你拼搏,也来不及陪你走到未来。我们总是想在极短的时间里找到某种安全感——那种你明知不是最好,却又不得不妥协的安全感。 十四、奋斗者在汗水汇集的江河里,将事业之舟驶到了理想的彼岸。 十五、愿你在平凡的岗位上,创造出不平凡的业绩来,直到实现远大的理想。 人生正能量励志句子【二】一、岂能尽人如意,但求无愧于心! 二、生命对某些人来说是美丽的,这些人的一生都为某个奋斗。 三、人生最大的失败,就是放弃。 四、生命本身就是奇迹,大自然的奇迹,宇宙间存在的奇迹。每一个人从诞生到成长,整个过程,生命的本身就值得我们去欣赏。也许,每一个人个体,就是一处风景,不同的风景。 五、在成功的道路上,激情是需要的,志向是可贵的,但更重要的是那毫无情趣的近乎平常的坚守的毅力和勇气。 六、生命如自助餐厅,要吃什么菜自己选择。 七、幸福和幸运是需要代价的,天下没有免费的午餐! 八、勤奋者总感到夜长日短,安逸者总认为夜短日长。 九、你被拒绝的越多,你就成长得越快;你学的越多,就越能成功。

2020正能量励志句子_励志拼搏句子大全

2020正能量励志句子_励志拼搏句子大全 能让自己登高的,不是借用他人的肩膀,而是自身的学识;能让自己站立的,不是终日卑微的苟活,而是不屈的抗争;下面是小编为大家带来的有关2020正能量励志句子_励志拼搏句子大全,希望大家喜欢。 2020正能量励志句子【篇一】 1、人生重要的不是所站的位置,而是所朝的方向。 2、怠惰是贫穷的制造厂。 3、成功靠朋友,成长靠对手,成就靠团队。创意是金钱,策划显业绩,思考才致富。知道是知识,做到才智慧,多做少多说。积极激励我,多劳多收获,汗水育成果。梦想聚团队,团队铸梦想,激-情快乐人。 4、抱的希望,为的努力,做最坏的打算。 5、把你的脸迎向阳光,那就不会有阴影。 6、人总是珍惜未得到的,而遗忘了所拥有的。 7、经验是由痛苦中粹取出来的。 8、美好的生命应该充满期待、惊喜和感激。 9、觉得自己做得到和做不到,其实只在一念之间。 10、如果你曾歌颂黎明,那麽也请你拥抱黑夜。把你的脸迎向阳光,那就不会有阴影。 11、孤单寂寞与被遗弃感是最可怕的贫穷。 12、人生的错误是不断担心会犯错。 13、红五月里拜访忙,业绩过半心不慌 14、本周举绩,皆大欢喜,职域行销,划片经营 15、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。 16、目标明确,坚定不移,天道酬勤,永续经营. 17、当你能飞的时候就不要放弃飞。当你能梦的时候就不要放弃梦。当你能爱的时候就不要放弃爱。

18、美好的生命应该充满期待、惊喜和感激。 19、得意时应善待他人,因为你失意时会需要他们。 20、今天付出,明天收获,全力以赴,事业辉煌 21、把握真人性、洞悉真人心、成就真人生。做事先做人,销售先销己,挣钱先夺心。心态要祥和,销售传福音,服务献爱心。吃得苦中苦,受得气中气,方为人上人。争气不生气,行动先心动,助人实助己。 22、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。 23、不如意的时候不要尽往悲伤里钻,想想有笑声的日子吧。 24、人只要不失去方向,就不会失去自己。 25、即使是不成熟的尝试,也胜于胎死腹中的策略。(什么是尝试?什么是策略?尝试着成功,策略的失败。 2020正能量励志句子【篇二】 1.他不爱你了,你哭着转身,挥泪奔跑,边跑边回头看,看看他是否还在那儿。 2.毕竟,你不属于我。不眠的夜,思念的夜,像是在奔跑的梦,又婉如追月的嫦娥,流连着,那绵绵不绝的感伤。此时月华如水,有了多少落地尘埃的惆怅。 3.没有伞的孩子必须努力奔跑! 4.用快乐去奔跑,用心灵去倾听,用思维去发展,用努力去奋斗,用目标去衡量,用大爱去生活。 5.一个人无所顾忌奔跑大笑,一个人说走就走的旅行,一个人慢慢挑选喜欢的书籍…… 6.奔跑,留下的是脚印,不会有伤痕… 7.奔跑,不一样的步伐,我愿意配合你们的脚步… 8.青春就是疯狂的奔跑,然后华丽地跌倒。 9.婴儿直立难,少年却能奔跑。 10.不知道你是否还记得,那个篮球场上笨拙奔跑的我。 11.xx的走狗,在有骨头的时候,会帮着主人狂吠,偶尔也穷凶极恶一番。只是这种穷凶极恶是没有底气的,因为走狗不是猎犬,不善于打斗,不假于奔跑,

正能量励志句子经典100句

正能量励志句子经典100句 1、忘掉昨天的烦恼。新的一天。用新的态度。来面对! 2、多一分心力去注意别人,就少一分心力反省自己,你懂吗? 3、老板只能给一个位置,不能给一个未来。舞台再大,人走茶凉。 4、我想要的并不多,可我想证明我能够得到的比任何人都多。 5、放下已经走远的人与事,放下早已尘封的是与非。 6、意外和明天不知道哪个先来。没有危机是最大的危机,满足现状是最大的陷阱。 7、灰白色的天空,不是天要下雨的预兆,而是晴空的安宁。 8、没有伞的孩子,必须努力奔跑! 9、每天肩上新增的不是痛苦,是沉稳的素养。 10、感谢黑夜的来临,我知道今天无论有多失败,全新的明天仍然等待着我去证明自己。 11、人生,没有永远的伤痛,再深的痛,在切之时,伤口总会痊愈。 12、毁灭人只要一句话,培植一个人却要千句话,请你多口下留情。 13、你希望掌握永恒,那你必须控制现在。 14、世间成事,不求其绝对圆满,留一份不足,可得无限美好。 15、没有不会干的事,只有不去干的人。

16、我们怀着美好的希望,勇敢的走着,跌倒了再爬起,失败了就再努力,永远相信明天会更好! 17、也许今天我们一事无成,但难保明天一统天下。 18、知足是富人,平常是高人,无心是圣人。 19、贫穷并不可怕,可怕的是缺少自强自立的精神。 20、仇恨永远不能化解仇恨,只有宽容才能化解仇恨,这是永恒的至理。 21、是非和得失,要到最后的结果,才能评定。 22、无论如何选择,只要是自己的选择,就不存在对错后悔。 23、遭遇挫败痛苦时,告诉自己:不过是归零了,不过是从头再来! 24、抬头看清属于自己的那一片天空,炫耀别人没有的快乐。 25、爱家人,爱朋友,爱伴侣,爱孩子,然而,要真正为自己活。 26、怕苦的人苦一辈子,不怕苦的人苦一阵子。 27、每个人都有潜在的能量,只是很容易被习惯所掩盖,被时间所迷离,被惰性所消磨。 28、这个世界太多的幻想,但幻想却始终不能变成现实。 29、永远对生活充满希望,对于困境与磨难,微笑面对。 30、人生只有出走的美丽,而没有等出来的辉煌。 31、浮夸的语言,疲倦的笑容和迷离的眼神。 32、没有不进步的人生,只有不进取的人! 33、与其等到以后再来缅怀、追忆,不如好好地珍惜现在。 34、有勇气并不表示恐惧不存在,而是敢面对恐惧、克服恐

相关主题