搜档网
当前位置:搜档网 › 大机组振动原因分析与处理

大机组振动原因分析与处理

大机组振动原因分析与处理
大机组振动原因分析与处理

大机组振动原因分析与处理

摘要简述了引起大型机组振动的几种原因,并对部分原因以现场实际工作经验为例进行了剖析,附以解决方案,对从事该类型工作的设备管理人员解决现场振动问题,具有一定的借鉴意义。

关键词大型机组;振动;轴承;底脚

1 引言

大型压缩机组因其单位效率高,在石油化工行业被越来越多的用户使用,而且朝着大型化,模块化的趋势发展。与此同时,因化工行业连续生产的特殊性,大型机组必须满足长周期、安全、稳定运行的条件。保证大型机组安全稳定的首要条件则是对大型机组的运行状态进行跟踪监控,并实时做好记录,分析机组的状态是否正常,以此来判断机组是否能够继续运行或者确定机组的检修时间等。其中,机组状态检测中首要跟踪的参数便是机组的振动、温度等,很多情况下,振动与温度是有关联的。因此,在测得振动参数后,对比温度参数需要进行深入的分析才能准确判断出原因。

大型机组的振动问题是比较复杂的一个课题,涉及到许多方面。比如,转子动静平衡不好,联轴器不对中,地脚螺栓存在虚脚,轴承间隙不合适,管线应力等其它非机组本身的附加振动源等。一个机组振动超标后,首先要找出振动源,并分析排除可能的情况。有些时候引起振动的原因并不是唯一的,可能存在多项引起振动的原因,这个时候判断问题就比较困难一些,但是只要我们仔细排查,便能最终找到问题所在。

2 引起振动的几种原因

现以某厂5台大型制冷压缩机组为例简要分析一下振动产生的原因以及在现场实际排查的过程和最终解决方案。该厂有汽轮机驱动的离心式制冷压缩机1台,6000V高压电机驱动的喷油双螺杆压缩机4台。这些制冷压缩机组为聚合反应提供冷媒,鉴于生产的连续性,这五台机组必须同时保持高效稳定的运行。监测振动对跟踪与分析机组的运行状态至关重要。振动分为三个方向的振动,水平,垂直,轴向。这三个方向的振动分别能反应机组的不同状态。水平方向振动大,一般反应的是机组转子不平衡或者是联轴器对中不好。垂直振动大则一般反应机组有虚脚,找正不好。轴向振动大从通俗的解释上是存在较大的轴向波动力,如果是压缩机轴向振动大,则可能是由于平衡组件存在问

题或者是压缩机排出压力发生间歇性的波动。如果是电机轴向振动大,则可能是电机联轴器在连接时没有将电机磁力中心线的位置定位准确导致电机轴向来回的窜动。但是,振动问题往往都是互相关联的,水平振动可能由于垂直方向的问题而间接影响到水平方向的振动超标,因此,在判断问题的时候需要综合考虑,方能不被表象所蒙蔽。

3 联轴器及轴承瓦背过盈量大导致的振动

2009年11月3日,该厂一台汽轮机调速器漏油,停车检修。检修完成后,机组振动变大,汽轮机带上100%负荷后,联轴节端轴承的垂直振动值已经达到了6.2mm/s,而上限值是7.1mm/s。经过近4个月的跟踪监测,发现汽轮机的振动没有减小的趋势,而是螺旋式上升,则进行检修处理。以下是这4个月的振动趋势图:

其中2009年12月15号,汽轮机因锅炉供气压力降低而导致连锁停车。再次启动后,发现不但汽轮机联轴节端轴承的垂直振动偏大,而且轴向位移也比较大。在2010年3月4号对该汽轮机进行了检修,在检修过程中重新对联轴节进行了找正处理,并打开了联轴节端轴承进行检查,撤出瓦背0.1mm的垫片后,经过压铅丝发现轴承瓦背间隙为0.07mm,则之前瓦背过盈0.03mm。再次启动后,前端轴承垂直振动值下降至1.8mm/s,经过一段时间的观察,该汽轮机能够稳定运行,以下是近4个月的振动趋势图:

在检修处理前,现场技术人员跟踪测试了轴承的振动以及温度,获取了大量的数据,并对数据进行了分析处理。其中,从频谱分析仪上查看的结果是1倍频偏大,这说明可

能是联轴器对中不好或者是转子不平衡。然该机组在09年4月份检修时转子已经做过动平衡实验并进行转子的探伤处理,所以推测可能是由于联轴器的对中不好。经过检修验证,证实了该结论。

4 轴承润滑油粘度过低及机壳刚度引起的振动

2009年6月份,该厂增加两台喷油双螺杆制冷压缩机组。两台压缩机组为同一厂家产品,各种参数型号均相同。驱动机均为1400KW,6000V高压电机,轴承为自润滑滑动轴承结构,润滑油牌号为32#汽轮机油。但是该机组自投用以来,其中一台电机的振动一直偏大,振速峰值达到4.5mm/s,而上限值为2.8mm/s,并且轴承温度一直偏高,其中该电机在运行不到3年时间内,烧瓦2次。该电机的一个显著特点是随着环境温度的升高,轴承振动值显著增大。以下是3年来对该电机跟踪监测的结果趋势图:

从该图上可以显著发现轴承振动随着月份的变化趋势,曲线图的峰值产生在一年里最热的月份,谷值产生在一年里最冷的月份。因负荷增加,振动会少许变大,但是最冷的月份和最热的月份,该电机的负荷相差不到10%,因此可以排除负荷是引起振动变大的主因。在2011年5月18日发生烧瓦事故后,该厂对电机轴承进行了检查,并做了详细的分析。因该电机是自润滑滑动轴承,且功率较大,则轴承的散热是个很大的问题,轴承温度最高时接近90℃,因此在此种条件下,很有可能由于润滑油的油膜变薄导致轴承烧瓦,经过分析讨论后,将该电机的润滑油牌号从32#汽轮机油更换为粘度更大的46#汽轮机油。更换润滑油以后,机组的振动明显好转。使用32#汽轮机油时,测得的振动值多在2.2mm/s~4.0mm/s之间波动,而且使用听诊棒能明显感觉到转子出现抖动的状态,这说明在重载、高油温下,轴承的润滑油膜建立不好,当振动变大且当油温达到油膜破裂的临界点时,就会出现抱轴现象。更换润滑油牌号到46#汽轮机油以后,测得的轴承振动值在3.7mm/s~4.0mm/s之间波动,以上均在同一环境温度下测试,这说明油膜的建立比以前好很多,转子不再出现强烈的抖动现象,但是振动大的问题依然没有解

决。以下是2011年5月19日该电机检修完成以后测得的相关振动值:

从以上数据可以看出,该电机在自由状态和把紧地脚螺栓后,振动值出现了显著的变大,说明该电机在地脚把紧后产生的应力较大,足以影响到轴承座的移位或者变形,从而导致轴承间隙的变化或者是转子的平衡发生变化,最后影响到振动变大。地脚把紧后产生的应力来源于两种可能:第一,基础的弹性变形;第二,电机机壳的弹性变形。但在此之前,机器在运转状态下做过试验,使用千斤顶对四个地脚下的基础分别受力,电机振动均无变化,所以排除地脚基础刚度问题。则,最大可能是电机本身的刚度问题。因电机机壳较长,且电机机壳中部无加强筋,所以在绕组高温情况下(90℃~100℃)势必对电机机壳产生温度应力,导致轴承等部位出现移位变形。

针对以上问题,我们给出了可能的试验方案:

①因该电机轴承座与电机机壳为螺纹连接,所以我们在机器运转状态下拧紧螺栓看其效果;

②使用测振仪测得四个底脚同一方向的振动,单位为mm/s,分别记为a

1,a

2

,a

3

,a

4

令a=(a

1+a

2

+a

3

+a

4

)/4,求得△a=|max(a

i

-a)|,找出该最大值对应的底脚,缓慢松开底

脚查看电机的振动变化情况,以此来判断电机的振动源。此种方法的原理是考虑到电机的绕组在高温情况下,机壳产生的内应力附加于电机底脚上而无法释放,所以当我们找出底脚最大的振动点,然后从此点将电机本身产生的内应力释放掉,则可减小电机的振动。

5 结论

大机组的振动是一个比较复杂的问题,分析与判断的难点在于机组的重要性,关键性机组在生产中是不轻易停车的,这样分析问题起来就比较困难,这就需要我们对机组进行长期的现场跟踪监测、分析,只有这样方能在实践中积累经验,从而快速准确的解决问题。

[1] 濮良贵纪名刚《机械设计》高等教育出版社

[2] 丁进平刘国微聂建功《高压防爆电机振动实例与原因分析》防爆电机2000年

第3期

[3] 孙建忠刘凤春《电机与拖动》机械工业出版社

[4] 《理论力学》上册(第五版) 高等教育出版社

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

(完整版)水轮发电机组振动标准的探讨

水轮发电机组振动标准的探讨 一、概述 水轮发电机组的振动由于其所具有机组在制造厂不能进行运行试验、各机组构造和支承条件各异的特点,设计单位和制造厂所编制的振动预测往往和机组的振动状态有着较大程度的差异。多年来国际电工委员会(IEC)和国际标准化组织(ISO)也曾组织制定过相关规程,有关国家先后提出过若干提案,但至今都未形成正式的国际标准。 1. 目前,在国内外广泛使用于水轮发电机组的振动判断标准如表1。 表1

二、国际电工委员会(IEC)和国际标准化组织(ISO)汇集各国、各知名标准化协会提案提炼的相关标准铸就了水轮发电机组振动测量、评判标准系列的基石 1.ISO 10816-5(2000)《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》是目前最具权威性的轴承座振动评定标准之一(目前,ISO 10816已替代了ISO 2372 和ISO 3945)。 GB/T 6075.5-2002《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》实际上相当于ISO 10816-5(2000)的中译本,因此,完全可以GB/T 6075.5-2002替代国际标准化组织的相关标准ISO 10816-5(2000)。 相关的主要内容是: 1)对轴承座绝对振动的测量,通常用惯性传感器测量振动速度V rms,单位为mm/s(对于300~1800r/min的中高速机组而言,低于300r/min机组建议测量振动位移S P-P,单位为μm)。在支架振动响应可以忽略的情况下,也可将位移传感器固定在刚性支架上,直接测量振动位移S P-P。 2)上下导轴承座均支撑于基础上的立式机组,水轮机工况的推荐值参见表3、图1。 表3 的推荐值参见表4、图2。

立式高压电机振动故障分析与处理 郝元

立式高压电机振动故障分析与处理郝元 发表时间:2018-01-10T10:05:54.933Z 来源:《电力设备》2017年第27期作者:郝元林享[导读] 摘要:某电厂两台立式高压电机在调试期间,非驱动端轴承径向振动严重超标,多次调整后无明显好转。 (福建福清核电有限公司福建福清 350318)摘要:某电厂两台立式高压电机在调试期间,非驱动端轴承径向振动严重超标,多次调整后无明显好转。经测试分析表明故障为螺栓虚脚及底板结构缺陷等所致。通过消除虚脚及添加减振垫片等方法,最终消除振动故障,为同类机组振动故障处理提供了参考。 关键词:立式高压电机;振动故障;螺栓虚脚;底板缺陷;减振垫片 Abstract:During commissioning of two vertical and high-voltage motors in a power plant, the radial vibrations of the motor non-driving end bearings are found undue. The faults keep the same after being extensively debugged. Through spot tests and analyses, the authors consider the faults are due to the bolt-gap and foundation-plate flaw. By the way of eliminating bolt-gaps and adding damper shims, the vibration faults are removed finally. The methods in the paper can be adopted in other vibration troubleshooting situations. Keywords:Vertical and High-voltage Motor; Vibration Fault; Bolt-gap;Foundation-plate Flaw; Damper Shim 观察表3,可知供货商C版文件(现行采用)的力矩值较小,可能导致电机紧固不足产生松动,从而导致振动故障。 为此,将上述连接板螺栓和地脚螺母力矩增大至供货商A版文件要求重新紧固(M20螺栓保持C版要求)。对电机试车,最大振动值却升至7.8mm/s。由此,排除了螺栓力矩不足的因素。之后,将上述螺栓力矩值减小至供货商C版文件要求,此时最大振动值降低至5.5mm/s (仍超标)。 为进一步探究故障原因,确定先从力矩较小便于施工的电机机座螺栓着手,适当减小紧固力矩(前已验证振动值随螺栓力矩增大而增大),检查振动变化情况。 起动电机A后,将一颗机座螺栓力矩从345N?m减小为100N?m,电机最大振动降为2.7mm/s。然后按该方法处理邻近第二颗螺栓,最大振动变为2.0mm/s。依次处理完最后一颗螺栓后,最大振动降为1.6mm/s。 上述轴承振动值随螺栓力矩增大(减小)而显著增大(降低)的现象比较符合螺栓虚脚或基础缺陷等导致的振动故障特征。综合前述分析,判断电机振动故障原因是螺栓虚脚或电机底板结构缺陷。 3电机振动故障处理 3.1电机A振动故障处理 3.1.1处理过程 现已得出机座螺栓虚脚是导致振动超标的因素,则采取打百分表法测量出电机座的虚脚情况,然后通过添加不锈钢垫片予以消除。主要过程如下: 1)标点。将两法兰面分别等分为若干测量点并标记(两法兰面的测量点应在法兰就位时重叠); 2)架表。架百分表于电机联轴器上并将指向电机座法兰面,然后将电机轴盘车一周记录各测量点的表值。测连接板法兰面虚脚时同理。 3)计算。将电机座法兰和连接板法兰重叠位置的测量点数值分别求代数和Xi,若其中最大值为Xmax,则任一测量点的虚脚(间隙)值Xj。 Xj=Xmax—Xi 4)垫实。根据计算的虚脚值,添加对应厚度(Xj)的垫片。 将电机正确就位后再用塞尺检验,若仍有间隙须补偿,最后将所有螺栓按要求正确紧固。 3.1.2效果验证 为避免不锈钢冷却水管道的应力干扰前述调整结果,将冷却器法兰处更换为橡胶软管后对电机试车,检查最大振动降至1.4mm/s(合格)。然后将橡胶软管换成正式不锈钢管,最大振动增加至3.8mm/s(超标)。分析原因是在消除虚脚过程中,电机位置移动导致冷却器进出口法兰偏移,将冷却水管道连接后,冷却水管道对电机施加过大应力而导致振动增大。 为此,采取以下步骤消除管道应力:拆卸冷却水管道,先将不锈钢冷却水管道连接至冷却器法兰上,再连接好另一端法兰。再次对电机空载试车,非驱动端轴承最大振动降为1.8mm/s。 至此,消除机座螺栓虚脚后,电机A空载振动值合格。 3.2电机B振动故障处理 3.2.1处理过程 参照电机A消除故障的方法处理电机B,振动故障始终无法消除,且无论冷却水管为不锈钢管或橡胶软管,振动值均超标,甚至一度达到11.3mm/s,显示了电机B振动故障的复杂性。 据前文分析,判断电机B存在底板结构缺陷。为此,吊出电机B,检查电机底板等。 检查得出如下两点可能导致振动超标的因素: 1)法兰翘边。检查发现连接板在与电机座配合的法兰面、基础板与连接板配合的法兰面均存在一圈最大0.10mm的翘边,测量电机法兰面平面度合格(如图4示)。测量得电机连接板水平度为0.15mm/m,稍高于0.10mm/m的标准值,但据现场经验该微差不至于造成振动故障。

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

(完整word版)汽轮机异常振动分析及处理

汽轮机异常振动分析及处理 一、汽轮机设备概述 国华宝电汽轮机为上海汽轮机有限公司制造的超临界、一次中间再热、两缸两排汽、单轴、直接空冷凝汽式汽轮机,型号为NZK600-24.2/566/566。具有较高的效率和变负荷适应性,采用数字式电液调节(DEH)系统,可以采用定压和定—滑—定任何一种运行方式。定—滑—定运行时,滑压运行范围40~90%BMCR。本机设有7段非调整式抽汽向三台高压加热器、除氧器、三台低压加热器组成的回热系统及辅助蒸汽系统供汽。 高中压转子、低压转子为无中心孔合金钢整锻转子,高中压转子和低压转子之间装有刚性法兰联轴器,低压转子和发电机转子通过联轴器刚性联接。整个轴系轴向位置是靠高压转子前端的推力盘来定位的,由此构成了机组动静之间的相对死点。整个轴系由 7个支持轴承支撑,高中压缸、低压缸和碳刷共五个支持轴承为四瓦块可倾瓦,发电机两个轴承为可倾瓦端盖式轴承,推力轴承安装在前轴承箱内。推力轴承采用LEG轴承,工作瓦块和定位瓦块各八块。盘车装置安装在发电机与低压缸之间,为链条、蜗轮蜗杆、齿轮复合减速摆动啮合低速盘车装置,盘车转速为2.38r/min。 运行中为提高机组真空严密性,将机组轴封密封蒸汽压力由设计28kp提高至 40kp—60kp(以轴封漏汽量而定)。虽然提高了运行经济性但也增大了轴封漏汽量,可能会使润滑油带水并影响到机组胀差和振动,现为试验中,无法得出准确结论。#1机组大修后启机发生过因转子质量不平衡引起多瓦振动,经调整平衡块后得以改善。正常停机时出现过因胀差控制不当造成多瓦振动,也可能和滑销系统卡涩有一定关系。#2机组正常运行中(无负荷变化)偶尔会出现单各瓦振动上升现象,不做运行调整,振动达到高点之后迅速回落,一段时间后又会恢复正常,至今未查明原因。机组采用顺序阀运行时,在高低负荷变换时会发生#1瓦振动短时增大现象,暂定为高压调阀开关时汽流激振引起的振动。机组异常振动是经常发生又十分复杂的故障,要迅速做出判断处理,才能将危害降到最低。 二、机组异常振动原因 1、机组运行中心不正引起振动 (1)汽轮机启动时,如暖机时间不够,升速或加负荷过快,将引起汽缸受热膨胀不均匀,或滑销系统有卡涩,使汽缸不能自由膨胀,均会造成汽缸对转子发生相对偏斜,机组出现不正常的位移,产生振动。 (2)机组运行中,若真空下降,将使低压缸排汽温度升高,后轴承座受热上抬,因而破坏机组的中心,引起振动。

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

水轮发电机组振动危害性分析及预防

水轮发电机组振动危害性分析及预防 水轮发电机组在运行中产生振动现象是不可避免的,这是由多种因素引发机组振荡的综合效应。在设备运行生产管理工作中,应注意加强对机组振动现象及其危害性的分析与预防。 1 水轮发电机组振动类型 1.1 机械类振动。由于机械部分的平衡力引起的振动称为机械类振动。例如,转动部分重量不平衡、轴线偏差、摆动过大等。其主要特点是振动频率与机组转速一致,有时振幅与转速成正比。 1.2 电气类振动。由于电气方面的原因造成发电机磁场不平衡而引起的振动称为电气振动。例如,发电机在三相电流不对称情况下运行磁场不均匀,发电机短路故障等。其主要特点是振幅与励磁电流大小成正比。 1.3 水施类振动。由于某些原因引起水轮机蜗壳内受力不平衡而造成的振动称为水施类振动。例如,尾水涡带、叶片水卡门涡列、转轮圆圈边间隙不均匀、转轮气蚀等。其特点是振幅与导叶开度有关,往往开度愈大,振幅愈大。 2 水轮机组振动所带来的危害 2.1 引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至断裂损坏而报废。 2.2 使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接部分的振动,促使它们加速损坏。 2.3 加速机组转动部分相互磨损程度。如大轴剧烈摆动可使轴与轴瓦

的温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使电刷火花不断增大。 2.4 尾水管中形成的涡流脉动压力可使尾水管壁产生裂缝,严重时可使整体尾水设施遭到破坏。 2.5 水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂房遭到不同程度的损坏。 3 引起振动的原因及预防措施 3.1 机械方面的因素有:①由于主轴的弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组几何线中心点不准引起空载低速时的振动;②因转轮等旋转件与静止件相碰而引起的振动; ③转动部分重量不平衡引起的振动,且随转速上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换浆叶后更容易发生。 对机械原因引起的振动应采取的措施:通过动平衡、调整轴线或调整轴瓦间隙等来提高相对同心度和精密度。 3.2 水施方面的因素有:①尾水管中水流涡带所引起的压力脉动诱发的水轮机振动,严重的还引起厂房共振;②卡门涡列引起的振动,当水流流经非流线型障碍物时,在其后面尾流中分裂一系列变态旋涡,即所谓卡门涡列,这种涡列交替地作顺时针或反时针方向旋转,在其不断旋转与消失过程中,会在垂直于主流方向发生交变力导致的叶片振动,严重时会发出响声,甚至使叶片根部振裂;③转轮止漏间隙不均匀引起的振动,间隙大处其流速较小而压力较大,其振频与止漏环

关于汽轮机振动分析及处理

关于汽轮机振动分析及处理 火力发电是我们公司主要安装的机组为了保证机组运行稳定,我们安装必须按照图纸施工。汽轮机作为发电系统的重要组成部分,其故障率的减少对于整个系统都有着重要的意义。汽轮机异常振动是发电厂常见故障中比较难确定故障原因的一种故障,针对这样的情况,加强汽轮机异常振动分析,为安装部门提供基础分析就显得极为必要。 一、汽轮机异常振动原因分析。 由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除。 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 (一)汽流激振现象与故障排除(安装不需考虑)。 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50/h 的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除。 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。 与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 (三)摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩

电机常见的振动故障原因

编号:SM-ZD-75861 电机常见的振动故障原因Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电机常见的振动故障原因 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表

水轮发电机组振动分析

水轮发电机组振动分析 水轮发动机组振动有诸多原因以及危害。由于破坏了转轮结构和固定导叶,这种振动现象会威胁水电站运行的安全性和稳定性,降低水电站的经济效益。文章阐述了水轮发电机组原理、原因以及危害等问题,为了提高机组安全稳定运行延长机组使用寿命,我们要减少水轮发电机组振动这种现象。 标签:水轮发电机组振动;原理;振动;危害 1 概述 随着社会的发展,水利工程对人们的生活至关重要,我们应该采取有效措施保障水利工程项目内部机电设备的正常运行。为了提高水轮发电机组的稳定性,对水轮发电机组振动进行分析与研究。 2 水轮发电机组振动原理 在机组运转的状态下,在水轮机作为其原动力的前提下,水能的作用能够直接有效激发水轮发电机组振动,还能够间接维持机组振动。流体、机械、电磁三者是相互影响相互作用的,由于气隙在不对称的状态下,由于发电机定子与转子之间的磁拉力不平衡的情况,当流体激起机组转动部分振动时会造成机组转动部分的振動,而发电机的磁场和水轮机的水流流场也会受到转动部分的运动状态的影响。 3 关于水轮发电机组振动的原因 3.1 机械原因 (1)机组轴线不同心。因为轴心线受到水轮机轴与发电机轴不同心的现象导致不正,因此出现振动,造成机械故障。它的主要振动特征1倍频和2倍频为径向振动的主要频率;2倍频分量与轴系不对中成正比,2倍频分量比例越大,轴系不对中越的现象越显著,一般会超过1倍频分量。 (2)不平衡的转子质量。水轮发电机组转子质量不平衡是是旋转机械最常见的故障,也是导致机组振动的常见原因之一。其转子质量不平衡振动现象表现有三点:随着转速增加振动频率也随之增加;以圆或椭圆为轴心轨迹;以转频为主要振动频率。 (3)轴承缺陷。引起发生干摩擦的原因:导轴间隙过大、松动、润滑不好,或轴承与固定止漏环轴线不正等,这些因素都会使机组横向振动。为了解决机械原因引起的振动等问题不影响精密度和相对同心度的降低,需要利用动平衡来调节轴瓦间隙和轴线等。

振动大实例与原因分析

1倍频振动大除了动平衡还应检查什么? 750KW异步电机,3000V工频,2极,轴长2M6,轴瓦档轴颈80mm,端盖式滑动轴承,中心高500mm。 检修后空载试车,垂直4.6mm/s,水平6.5mm/s,轴向1.2mm/s,振动较大,振感很强。振动频谱1倍频4-5mm/s,2倍频1-2mm/s,断电后1倍频2倍频值一点点降下来的。 据维修技师反应3年前空载试车也是振动大到现场连上机械接手在转就好了,于是到现场安装试车,结果振动还是大。 重新拆回车间,转子在动平衡机上做了动平衡,装配时轴瓦间隙也重新复测了。再试车振动比原来还大了点,频谱和原来一样。 我问了维修人员,动平衡配重2面都加了,轴瓦间隙都在标准里面。 请问做动平衡时是在1300-1500左右做的,有无可能在3000转时平衡改变了? 除了动平衡还要检查其他什么? 可能是共振问题,这个规格的电机转子固有频率接近5ohz,本案例中应大于50hz 动平衡后单机试转仍大,是由于加重后固有频率下降更接近转频,所以振动有升无减 请注意:动平衡的速度不是工频,平衡本身可能是合格的 联合运行振动值更大,是由于连接上了被驱动设备,形成转子副,电机转子带载后固 有频率下降较多,更接近工频。所以振动愈发的大 其实就一句话:组合转子的固有频率小于原来单体的,好像这么说的,原话不记得了 据统计,有19%的设备振动来自动不平衡即一倍频,而产生动不平衡有很多原因。现场测量的许多频谱结果也多与机器的一倍频有关系,下面仅就一倍频振动增大的原因进行分析。 一、单一一倍频信号 转子不平衡振动的时域波形为正弦波,频率为转子工作频率,径向振动大。频谱图中基频有稳定的高峰,谐波能量集中于基频,其他倍频振幅较小。当振动频率小于固有频率时,基频振幅随转速增大而增大;当振动频率大于固有频率时,转速增加振幅趋于一个较小的稳定值;当振动频率接近固有频率时机器发生共振,振幅具有最大峰值。由于通常轴承水平方向的刚度小,振动幅值较大,使轴心轨迹成为椭圆形。振动强烈程度对工作转速的变化很敏感。 1.力不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,一般水平方向幅值大于垂直方向;振幅与转速平方成正比,振动频率为一倍频;相位稳定,两个轴承处相位接近,同一轴承水平方向和垂直方向的相位差接近90度。 2.偶不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;在两个轴承处均产生较大的振动,不平衡严重时,还会产生较大的轴向振动;振幅与转速平方成正比,振动频率以一倍频为主,有时也会有二、三倍频成分;振动相位稳定,两个轴承处相位相差180度。 3.动不平衡 频谱特征为振动波形接近正弦波,轴心轨迹近似圆形;振动以径向为主,振幅与转速平方成正比,频率以一倍频为主;振动相位稳定,两个轴承处相位接近。

汽轮机异常振动分析与排除 贾峰

汽轮机异常振动分析与排除贾峰 发表时间:2018-11-18T20:20:10.497Z 来源:《防护工程》2018年第20期作者:贾峰王舰[导读] 在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。 抚顺石化工程建设有限公司第七分公司辽宁抚顺 113008 摘要:在我们国家,广大的北方区域因为水少,大多是依靠火力来发电的。只有做好了电力供应才可以确保城市的稳定。为确保供电合理,电厂的维修机构都会在规定的时间中对设备开展详细的分析和维护。然而汽轮机作为发电体系中非常关键的一个构成要素,它的问题率的降低对于综合体系的发展来讲,意义非常多关键。它的不正常振动是目前来讲,非常难以应对的一个问题。对于这种状态,强化对 其不正常振动的探索,为维修机构提供必需的分析就变得非常的关键。 关键词:汽轮机;异常振动成因;排除措施 1汽轮机异常振动的原因 1.1汽流激振现象造成的异常振动 当大型汽轮机在运行过程中出现异常振动问题时,首先应当分析是否是由汽流激振造成的故障问题。由于大型汽轮机的末级较长,当汽轮机在运行时极易出现叶片膨胀造成汽流流道紊乱的情况,从而造成汽流激振现象。汽流激振现象具有两个较为明显的特征:第一,当汽轮机出现汽流激振现象会出现较大值的低频分量;第二,运行参数会突然增大影响汽轮机的振动情况。在判断汽轮机是否出现汽流激振现象时,需要通过大量汽轮机振动记录信息进行判断,通过对汽轮机长时间的振动数据进行分析,可以有效判断汽轮机的汽流激振现象。 1.2转子热变形造成的异常振动 汽轮机在运行过程中会出现转子热变形造成的异常振动情况,需要工作人员对转子热变形的成因进行分析,尽可能避免汽轮机的异常振动情况。造成汽轮机转子热变形的原因有很多,主要原因包括:汽轮机运行引发转子热度过热、汽轮机气缸出现进水情况、气缸中进入冷空气与气缸造成摩擦、汽轮机中心孔进油、汽轮机发电机转子冷却温度出现差异,以上原因均能造成汽轮机转子热变形情况的发生。当转子由于温度过热出现变形问题时,会直接造成汽轮机的异常振动,由于转子热变形情况可能是临时危害,也可能是永久危害,需要工作人员对转子热变形的危害情况进行判断,避免转子热变形对汽轮机的正常运行造成过于严重的影响。 1.3摩擦造成的异常振动 汽轮机由于长时间运行,对各个零部件均会造成不同程度的摩擦损伤,当零部件的摩擦损害过于严重时,则会造成汽轮机的异常振动问题。汽轮机摩擦出现异常振动的特征如下:第一,转子热变形会对汽轮机造成不平衡力,使汽轮机的振动信号受到影响,会出现少量分频、倍频以及高频分量等现象;第二,当汽轮机发生摩擦时,汽轮机的振动会出现波动,波动的持续时间较长。而汽轮机摩擦过于严重时,汽轮机的振动幅度会大幅增加;第三,汽轮机在延缓运行过程中,下降速度超过临界点时,汽轮机的振动幅度会增大。当汽轮机停止转动后,汽轮机的测量轴会出现明显晃动。简而言之,汽轮机由于摩擦出现异常振动是由于摩擦致使汽轮机温度升高,局部温度过热造成转子热变形,产生不平衡力造成的异常振动。 2汽轮机组常见异常振动排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。针对着三个主要方面以下进行了详细的论述。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,如负荷,且增大应该呈突发性。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间(一年以上)记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个“凹谷”,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动。 2.3摩擦振动的特征原因与排除 一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在“削顶”现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。

试论述引起水轮发电机组振动的原因

试论述引起水轮发电机组振动的原因、振动机理及相应振动故障的处理措施 水轮发电机组的振动与一般动力机械振动有一定差异,机组振动的现象是比较明显的,但振源往往是隐蔽的,除了机器本身转动或固定部分引起的振动外,还需考虑发电机电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。引起水轮发电机组振动的原因多种多样,往往是几种振源同时存在,通常认为使机组产生振动的干扰力源主要来自水力、机械和电气三个方面,三者相互影响、相互作用,常常交织在一起,形成耦合振动。 水轮发电机组的一般振动不会危害机组,但当机组振动超过允许值,尤其是长期振动及发生共振时,对供电质量、机组使用寿命、附属设备及仪器是性能、机组基础和周围的建筑物,甚至对整个水电站的安全经济运行等,都会带来严重的危害。 其危害性大致有以下几类: 1)引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至 断裂损坏而报废。 2)使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接 部分的振动,促使它们加速损坏。 3)加速机组转动部分相互磨损程度。如大轴剧烈摆动,可使轴与轴瓦的温度升高,使 轴瓦烧毁;发电机转子振动过大增加滑环与电刷的磨损程度,并使温度升高,使轴瓦烧毁,并使电刷火花不断增大 4)尾水管中形成的涡流脉动压力,可使过水系统发生振荡,机组出力摆动,使尾水管 壁产生裂缝,严重时可使整体尾水设施遭到破坏。 5)水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂 房遭到不同程度的损坏 1、水力方面 水力振动由水轮机水力部分的动水压力的干扰造成的振动叫水力振动。产生振动的水力因素主要有:尾水管内低频涡带、卡门涡列、叶道涡引起的水力不稳定、过度过程中

adams振动分析实例中文版

1.问题描述 研究太阳能板展开前和卫星或火箭分离前卫星的运行。研究其发射振动环境及其对卫星各部件的影响。 2.待解决的问题 在发射过程中,运载火箭给敏感部分航天器部件以高载荷。每个航天器部件和子系统必学设计成能够承受这些高载荷。这就会带来附加的质量,花费高、降低整体性能。 更好的选择是设计运载火箭适配器(launch vehicle adapter)结构。 这部分,将设计一个(launch vehicle adapter)的隔离mount,以在有效频率范围降低发射震动传到敏感部件的部分。关心的敏感部件在太阳能板上,对70-100HZ的输入很敏感,尤其是垂直于板方向的。 三个bushings将launch vehicle adapter和火箭连接起来。Bushing的刚度和阻尼影响70-100HZ范围传递的震动载荷。所以设计问题如下: 找到运载火箭适配器系统理想刚度和阻尼从而达到以下目的: 传到航天器的垂直加速度不被放大; 70-100HZ传递的水平加速度最小。 3.将要学习的 Step1——build:在adams中已存在的模型上添加输入通道和振动执行器来时系统振动,添加输出通道测量响应。 Step2——test:定义输入范围并运行一个振动分析来获得自由和强迫振动响应。 Step3——review:对自由振动观察模态振型和瞬态响应,对强迫振动,观察整体响应动画,传递函数。 Step4——improve:在横向添加力并检查传递加速度,改变bushing的刚度阻尼并将结果作比较。添加频域测量供后续设计研究和优化使用。

3.1需创建的东西:振动执行器、输入通道、输出通道 完全非线性模型 打开模型在install dir/vibration/examples/tutorial satellite 文件夹下可将其复制到工作木录。 加载Adams/vibration模块:Tools/ plugin Manager. 仿真卫星模型:仿真看其是否工作正常,仿真之前关掉重力,这个仿真太阳能板在太空中的位置。 关掉重力:Settings——Gravity ; 仿真:tool面板——simulation ,设置仿真时间是15s,步长为500;点击,将停在仿真后mode 返回最初的模型状态:点击,把重力打开,这时模型回到振动分析准确的发射状态。

汽轮机振动大的原因分析及其解决办法

汽轮机振动大的原因分析及其解决办法 发表时间:2017-09-06T10:38:48.377Z 来源:《电力设备》2017年第14期作者:唐昊 [导读] 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。 (阜新金山煤矸石热电有限公司辽宁省阜新市 123000) 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 前言 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 1.机组异常振动原因 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长。关键部位长期磨损 等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 2.汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振转子热变形、摩擦振动等。 2.1汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 2.2转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是两种不同的故障,但其故障机理相同,都与转子质量偏心类似,因而都会产生与质量偏心类似的旋转矢量激振力。与质心偏离不同之处在于轴弯曲会使两端产生锥形运动,因而在轴向还会产生较大的工频振动。另外,转轴弯曲时,由于弯曲产生的弹力和转子不平衡所产生的离心力相位不同,两者之间相互作用会有所抵消,转轴的振幅在某个转速下会有所减小,即在某个转速上,转轴的振幅会产生一个凹谷,这点与不平衡转子动力特性有所不同。当弯曲的作用小于不衡量时,振幅的减少发生在临界转速以下;当弯曲作用大于不平衡量时,振幅的减少就发生在临界转速以上。针对转子热变形的故障处理就是更换新的转子以减低机组异常振动。没有了振动力的产生机组也就不会出现异常振动[1]。 2.3摩擦振动的特征、原因与排除 摩擦振动的特征:一是由于转子热弯曲将产生新的不平衡力,因此振动信号的主频仍为工频,但是由于受到冲击和一些非线性因数的影响,可能会出现少量分频、倍频和高频分量,有时波形存在削顶+现象。二是发生摩擦时,振动的幅值和相位都具有波动特性,波动持续时间可能比较长。摩擦严重时,幅值和相位不再波动,振幅会急剧增大。三是降速过临界时的振动一般较正常升速时大,停机后转子静止时,测量大轴的晃度比原始值明显增加。摩擦振动的机理:对汽轮机转子来讲,摩擦可以产生抖动、涡动等现象,但实际有影响的主要是转子热弯曲。动静摩擦时圆周上各点的摩擦程度是不同的,由于重摩擦侧温度高于轻摩擦侧,导致转子径向截面上温度不均匀,局部加热造成转子热弯曲,产生一个新的不平衡力作用到转子上引起振动。 3.如何查找汽轮机的异常震动 生产中经常遇到瓦盖振、轴振的异常变化,引起振动异常的原因很多。根据振动产生的集中原因,在查找振动主要来源时要注意下面几个要素:振动的频率是 1X,2X等。振动的相位是否有变化及相邻轴承相位的关系。振动的稳定性如何(指随转速、负荷、温度、励磁电流、时间、等的变化是否变化)。例如汽轮机转子质量不平衡会有下列现象:升速时振动与转速的二次方成正比,转速高振动大。特别过临界时振动比以往大得多。振动的频率主要是1X。振动的相位一般不变化及相邻轴承相位出现同或反相,振动的稳定性好(在振动没有引起磨擦的情况下),且重复性好,根据振动特征与日常检测维修记录多方面分析,找出故障原因最终排除。另外对于一些原本设计上有通病的机组,要做好心理准备并牢记其故障点,一旦出现情况首先要检查设计缺陷部件。 4.在振动监测方面应做好的工作 目前200M W 及以上的机组大都装设了轴系监控装置,对振动实施在线监控,给振动监测工作创造了良好的条件。其他中小型机组有的虽装有振动监测表,但准确度较差,要靠携带型振动表定期测试核对,有的机组仅靠推带振动表定期测试记录。对中小型机组的振动监

相关主题