搜档网
当前位置:搜档网 › 催化加氢技术及催化剂

催化加氢技术及催化剂

催化加氢技术及催化剂
催化加氢技术及催化剂

一、意义

1.具有绿色化的化学反应,原子经济性。

催化加氢一般生成产物和水,不会生成其它副产物(副反应除外),具有很好的原子经济性。绿色化学是当今科研和生产的世界潮流,我国已在重大科研项目研究的立项上向这个方向倾斜。

2.产品收率高、质量好,普通的加氢反应副反应很少,因此产品的质量很高。

3.反应条件温和;

4.设备通用性

二、催化加氢的内容

1.加氢催化剂

Ni系催化剂

骨架Ni

(1)应用最广泛的一类Ni系加氢催化剂,也称Renay-Ni,顾名思义,即为Renay发明。具有很多微孔,是以多孔金属形态出现的金属催化剂,该类形态已延伸到骨架铜、骨架钴、骨架铁等催化剂,制备骨架形催化剂的主要目的是增加催化剂的表面积,提高催化剂的反应面,即催化剂活性。

(2)具体的制备方法:将Ni和Al, Mg, Si, Zn等易溶于碱的金属元素在高温下熔炼成合金,将合金粉碎后,再在一定的条件下,用碱溶至非活性组分,在非活性组分去除后,留下很多孔,成为骨架形的镍系催化剂。

(3)合金的成分对催化剂的结构和性能有很大的影响,镍、铝合金实际上是几种金属化合物,通常所说的固溶体,主要组分为NiAl3, Ni2Al3, NiAl, NiAl2等,不同的固熔体在碱中的溶解速度有明显差别,一般说,溶解速度快慢是NiAl3>Ni2Al3>NiAl>NiAl2,其中后二种几乎不溶,因此,前二种组分的多少直接影响骨架Ni催化剂的活性。

(4)多组分骨架镍催化剂,就是在熔融阶段,加入不溶于碱的第二组分和第三组分金属元素,如添加Sn, Pb, Mn, Cu, Ag, Mo, Cr, Fe, Co等,这些第二组分元素的加入,一般能增加催化剂的活性,或改善催化剂的选择性和稳定性。

(5)使用骨加镍催化剂需注意:骨架镍具有很大表面,在催化剂的表面吸符有大量的活化氢,并且Ni本身的活性也很,容易氧化,因此该类催化剂非常容易引起燃烧,一般在使用之前均放在有机溶剂中,如乙醇等。也可以采用钝化的方法,降低催化剂活性和保护膜等,如加入NaOH稀溶液,使骨架镍表面形成很薄的氧化膜,在使用前再用氢气还原,钝化后的骨架镍催化剂可以与空气接触。

其它镍系催化剂

从1897年Sabatier将乙烯和氢气通到还原镍使之生成乙烷开始,这是最古老的镍催化剂,工业上几乎没有单独使用镍的,而广泛使用的却是加有各种单体或助催化剂的镍,一般的制法是把硅藻土加进硝酸镍水溶液中,一边搅拌一边加碳酸钠,使碱式碳酸镍(或氢氧化镍)沉淀在硅藻土上。充分地水洗过滤干燥。将制成的催化剂在使用之前,在350-450 ℃的氢气流中进行还原。鉴于还原的催化剂与空气接触会着火而失去活性,使用必须注意。

此外,还有把硝酸镍溶液和硅藻土的混合物蒸干,在400-500 ℃热分解为NiO-硅藻土后,用氢气还原的方法。通常,还把少量金属氧化物作为助催化剂加到NiO-硅藻土中,例如NiO-氧化钍-硅藻土,NiO-Cu-硅藻土等,均属于高活性的催化剂。

可用作载体的物质还有浮石、氧化铝、硅胶、酸性白土、氧化锌、CaSO4、MgSO4、木炭、石墨等。

分解镍

分解镍一般由甲酸镍热分解制得,它是活性低于骨架镍,可以几次反复用于同一反应的非燃烧性催化剂。甲酸催化剂早在1912年的专利中即已出现,它作为工业用的油脂加氢催化剂,久已为人所知。

甲酸镍Ni(HCO3)2?2H2O约在140 ℃开始脱水,无水物约在210 ℃分解,210-250 ℃时分解激烈进行,约在270 ℃分解完毕。关于甲酸镍的分解机理,有以下3种报导。

Ni(HCO3)2?2H2O →Ni+H2+2CO2+2H2O

Ni(HCO3)2?2H2O →Ni+3H2O+CO2+CO

2 Ni(HCO3)2?2H2O →2Ni+H2+3CO2+5H2O+CO

甲酸镍催化剂的性质仅次于骨架镍催化剂,在油脂类加氢中选择性好,甲酸镍催化剂用于其它有机化合物加氢的实例很少,如稀丙醇加氢,芳烃硝基化合物苯酚的加氢等。

甲酸镍催化剂选择性良好,一个分子存在几个可加氢部位,只要选择合适的反应温度,在按阶段进行的反应中,就可以防止发生副反应,以高得率获取所得产物

而且,它不与卤素或磺基反应,所以适用于含有这类成分的化合物加氢。Leicester等研究了Ni的醋酸盐,络酸盐,辛酸盐等的热分解,主要生成物是Ni2O3,极富于多孔性,估计应能作为催化剂使用。草酸镍的研究也很多,它所制得催化剂与甲酸催化剂大体相同,但因其成本高,工业上几乎不用。

漆原镍催化剂是为了避免采用Schwenk等取得的用骨架合金和碱催化剂的制造专利而出现的。它是应用过量的镍粉从镍盐中沉淀出镍,使它与雌酮的碱水溶液混合而还原成功,并取得专利。目前通用的漆原镍有:碱处理沉淀而得的漆原镍B(U-Ni-B),用酸处理而得的漆原镍A(N-Ni-A)。用Al作镍盐的还原剂制得的沉淀镍,再用碱处理而得到的漆原镍BA (U-Ni-BA),用酸处理而得到的漆原镍AA(U-Ni-AA)。

用还原剂处理镍盐制得的催化剂,因为Ni比H的离子化倾向更强,所以不能用氢气使镍盐溶液析出金属镍,但用某些具有还原能力的化合物却可以达到这一目的,如Parl等用NaBH4溶液还原NiCl2制得的硼化镍催化剂,能在常温常压下进行糠醛、苄腈等加氢,通常比骨架镍略低。若以格氏试剂为还原剂,则生成被认为黑色的镍氢化物,据报导对苯乙烯、丙酮等具有加氢活性。

还有范崇正等报道的经化学结构处理后所得含有助剂的超细金属镍(含镍量高于65%wt,比表面积为84 m2/g),对羰基的催化加氢,发现Ni对该体系是双向催化作用,并推测镍催化剂表面的“活性中心”,应该是由一族原子共同作用而形成的。

超细镍

该催化剂是一种超细粒子,粒径大小一般为0.1-0.001微米,具有高表面能和表面活性及易烧结等特点。超细粒子催化剂具有高活性和优良的选择性,但单独存在不稳定,常制成高分散负载型催化剂,其制备方法已有详细综述。当用粒径为300埃的超细镍对环辛二烯加氢制环辛烯的反应时,选择性为210,当用普通镍催化剂时,选择性为24,说明使用超细镍时,环辛烯的加氢被极大地抑制了。

Pt系催化剂

铂是最早应用的加氢催化剂之一,主要是以下几种催化剂

Pt黑

在碱溶液中用甲醛、肼、甲酸钠等还原剂还原氯铂酸,能制得Pt黑催化剂,具体的方法:在80ml氯铂权溶液(含20g铂,难溶时加入汪时的盐酸)中加入150ml35%甲醛水溶液,冷却至-10℃以下激烈搅拌,向其中滴加入420ml50%的KOH,保持4-6℃以下。滴完后在30min内温度上升至55-60℃,使还原进行完毕。冷却后倾泻

法除去不部澄清液,反复操作,去除碱和氯离子再吸滤出沉淀物,在干燥器中干燥。吸滤时如催化剂不被水覆盖,就会起火,在高真空下排气数日后,会失去所含氧而失去活性,但与空气混合后,则又回打电报活性。在常温下,常驻压下,这些催化剂对芳环加氢显示活性。

胶体铂

一般以铂的离子和金属铂的胶体形式存在,如:在1g氯铂酸钾和1g阿拉伯胶的水溶液中加入48.2ml0.1N的氢氧化钠(也可用溶有1g NaCO3的水溶液),于搅拌下煮沸,热至液体呈暗棕色为止,生成胶体的氢氧化铂。用透析法进行精制并于真空干燥后保存,可直接使用,或预先用氢还原后再使用。胶体铂催化剂一般比氧化催化剂活性弱。

Adams氧化铂将3.5g氯铂(4价)酸无水盐置于坩埚中,便溶于10ml水,加入35gNaNO3,激烈搅拌下蒸干,再急剧升温,在350-370 ℃产生NO2,加热至无气体为止,将温度保持在500-550 ℃,加热10min放置冷却,用水洗至不含硝酸盐止,并在干燥器中干燥保存,可得约1.6g的PtO2.H2O,即使充分水洗,催化剂中仍含微量的碱,使这种催化剂在氢气中与溶

液振荡混合,很容易转变成铂黑而表现活性。不进行预还原也可用于加氢反应。这时在反应初期有数秒到2-3min的吸氢阶段,催化剂活性越强,吸收氢的时间越短。此外,加热温度越高,还原所需时间越长。在无载体铂中,以Adams氧化铂活性最强,被用于各种加氢反应。

负载铂

将氯铂(4价)酸溶于水,使渗入适当的载体并进行干燥,用氢或其它还原剂还原后,即得负载铂。

Pt/C:最常用的加氢催化剂之一,广泛应用于双键、硝基、羰基等的加氢,而且效率高、选择性好,就是贵金属催化剂价格贵,但是由于是分散型催化剂,仅含1-5%的贵金属量,相对来讲不是很贵,用起来可以承受,特别对于高附加值产品。制备方法:将1g活性炭与40ml 无水乙醇,1ml 0.2 克分子的氯铂(4价)酸溶液一起充分搅合,在室温下用注射器加入5ml 1克分子的NaBH4溶液。1分钟后加入4 ml 6克分子浓度的盐酸溶液以分解过量的NaBH4,即可供使用。在辛烯-1或硝基苯加氢中,该催化剂活性比Adams氧化铂活性要高出数倍。

铂/石棉

先后用碱和硝酸处理石棉,用温水洗净然后借水浴加热而使氯铂酸(4价)水溶液渗入石棉,冷却后加入35-40%的甲醛水溶液,使深入充分,对每1g铂大约用30ml甲醛水,在冷却的同时,缓慢加入相当于甲醛水重量一半的40-50%NaOH溶液,然后在水浴上加热,使反应完成,用水充分洗净后浸没于稀醋酸中充分洗涤,过滤后再用水洗净,在110℃时干燥,得黑色催化剂,用于苯或吡啶的气相加氢。

铂/氧化铝

它用于粗汽油的改性,即所谓的铂重整。Haensel在AlCl3溶液中加入氨水,将所得的氧化铝凝胶水洗至残留一定量的氯化物,加入氢氟酸或其铵盐,再与通了H2S的氯铂酸溶液搅拌混合,高温下用氢还原后,成型供用。广泛用于双键、硝基化合物、醛酮的加氢,并具有较好的活性和选择性。

均相催化剂:

SnCl3--PtCl42-对多种烯烃加氢具有活性,但该催化剂本身很复杂,因为它的性质取决于两者相对浓度、介质酸度温度等,而对其活性物种如[PtH(SnCl3)4]3-、[HPt(SnCl3)2(Et2P)2]-、HPtCN(Pph3)2都不能做活性测试。其催化行为必定与所溶解的能活化底物的组分有关。现已发现,过量的SnCl3-配体降低加氢速率,HCl、HBr、LiCl或LiBr的添加促进加氢。

SnCl3-是很强的接受者,因为Sn的5d空轨道大小和能量与Pt 5d满轨道相匹配,则配体SnCl3-就减少了Pt上的电子密度,易被亲核物质如H、C=C等所进攻,SnCl3-的强接受π

电子性质稳定了Pt(H)(C=C)Xn络合物的稳定性,阻止了Pt2+的还原。

钯基催化剂

金属钯是催化加氢的能手。在石油化学工业中,乙烯、丙稀、丁稀、异戊二稀等稀烃类是最重要的有机合成原料。由石油化工得到的稀烃含有炔烃及二稀烃等杂质,可将它们转化为稀烃除去。由于形成的稀烃容易被氢化成烷烃,必须选择合适的催化剂。钯催化剂具有很大的活性和极优良的选择性,常用作稀烃选择性加氢催化剂,如Lindlar催化剂(测定在BaSO4上的金属钯,加喹啉以降低其活性)。从乙烯中除去乙炔常用的催化剂是0.03%

Pd/Al2O3

文献报道,在乙烯中加入CO可以改进Pd/Al2O3对乙炔的加氢选择性,并已工业化。甚至有工艺可将稀烃中的乙炔降至1%以下。常用的加氢反应钯催化剂有Pd、Pd/C、Pd/BaSO4、Pd/硅藻土、PdO2、Ru-Pd/C等。

迄今为止,钯催化剂制备的方法有浸渍法、金属蒸汽沉淀法、溶剂化金属原子浸渍法、离子交换法、溶剂—凝胶法等。钯催化剂一般都为负载型催化剂,载体一般为活性炭、γ-Al2O3及目前研究较多的高分子载体和钯基金属膜催化剂。以下主要介绍几类目前研究较多的钯催化剂及相应的催化剂反应现状。

Pd/C

Pd/C催化剂是催化加氢最常用的催化剂之一。因为活性炭具有大的表面积、良好的孔结构、丰富的表面基团,同时有良好的负载性能和还原性,当Pd负载在活性炭上,一方面可制得高分散的Pd,另一方面炭能作为还原剂参与反应,提供一个还原环境,降低反应温度和压力,并提高催化剂活性。

Pd/C主要用于NO2的还原及选择还原C=C。自从1872年钯黑对苯环上的硝基加氢还原反应具有催化作用以来,Pd-C催化加氢以其流程少,转化率高,产率高,三废少等优点,引起了国内外极大的关注,相继有大量的专利及文献报道。如喻素娟等以邻硝基苯胺为原料,以Pd/C为催化剂低压催化加氢还原合成邻笨二胺,收率>90%,产品质量分数>98%,并减少了“三废”污染。申凯华等采用Pd/C催化剂,硝基丁酸混合物不经提纯,催化加氢制备了1-氨基-3,6,8-奈磺酸。而以R-Ni或贵金属硫化物作催化剂,反应剧烈,设备要求高。相对而言,Pd/C条件缓和,收率高,稳定性好,三废少。

另外,还有许多用于C=C双键还原的,特别是与C=O共扼的情况下Pd/C,显示了较好的立体选择性。

Pd/γ-Al2O3

Pd/γ-Al2O3催化剂作为一种工业成品催化剂,具有良好的加氢活性,广泛用于加氢。对于用浸渍法制备的Pd/γ-Al2O3催化剂,Dodg Son详细考察了高温熔烧对催化剂钯分散度的影响。近年来对催化剂的研究主要集中于催化剂的制备及表面性质的研究。如对环戊二稀的选择性加氢反应,选择性不好,表现为深度加氢。从应用角度出发,选择金属铅作为修饰剂的Pd/γ-Al2O3催化剂,该催化剂具有修饰剂不易损失,制备方便等优点,且可以大大提高环戊二稀的选择性(达到98%),环戊二稀亦完全转化,反应空速较大,催化剂寿命较长,可望应用工业生产。

姜恒等发现在少量碱的存在下,PVC-PdCl2(PVC,聚乙烯吡咯烷酮负载)对硝基化合物显示了较多的催化加氢活性。PVC-PdCl2进一步负载到γ-Al2O3上,得到双重负载的钯催化剂。这种双重负载的钯催化剂对硝基化合物的加氢,在常温常压下对硝基苯的催化加氢,即有很高的活性和选择性,又容易从反应体系中分离,实验结果表明,催化剂的制备方法对活性有很大的影响。PVC-Pd/γ-Al2O3对硝基苯和p-甲基硝基苯加氢的TOF max(maximum turnover frequent (H2)/(n(Pd),t)),分别为256/min和234/min,多次累计转化数可达60000以上,说明催化剂的制备方法对活性有很大的影响。

高分子负载钯和高分子络合钯

自从Holy首次报道用改进性聚苯乙烯负载钯催化剂催化硝基苯加氢以来,此领域一直受到研究工作者的重视。负载型催化剂中的载体作为一个复杂的大配体,它对负载型催化剂的活

常会引起催化剂活性中心的结构和配体环境的变化,从而影响到催化剂的活性和选择性。不同主链的高分子载体对催化剂的活性及选择性也有较大的影响。如高汗荣等报导了几种以聚2, 6-二甲基1, 4-苯醚(PPO)和聚砜(PSu)为主链的负载钯催化剂对1-辛稀和条件下的催化加氢活性与选择性。官能团化的PPO负载钯对1-辛稀催化加氢活性大于官能团化的PSu 负载钯催化剂的活性,但前者在加氢过程中的活性下降比后者快的多,官能团化的PPO负载钯催化剂在1-辛稀加氢过程中活性很快下降的原因与其强的异构化性能和异构化产物有关。相同配体的两种负直载钯催化剂对环戊二烯的催化加氢表现在活性上,PPO低于PSu,而选择性PPO高于PSu。表明除了按预计与钯直接配位的配体外,载体主链结构对负载钯催化剂的加氢性能也有显著影响。另外,还有以高分子作为配体的金属钯络合物催化剂。以高分子为配体的金属络合物催化剂具有高活性,高选择性和可重复使用的特点,在以往的研究中

发现,二氧化硅负载聚-γ-氨丙基烷-钯、二氧化硅负载聚硅氨烷-钯络合物等在催化加氢反应中显示了优良的性能,这些配体都是合成高分子,还有以天然高分子作为配体的,如唐黎则等研究一种新型天然高分子催化剂,二氧化硅负载羧甲基纤维素钯络合物(5,-CMC-Pd)的催化加氢性能。结果表明。络合物中COO/Pd摩尔比、溶剂及PH值对催化性能有很大的影响。该催化剂在30 ℃,常压下硝基苯,各种稀烃化合物,苯甲醇和苯乙酮具有很高的加氢活性和选择性。同时,该催化剂还具有优良的稳定性和重复使用性能。

钯基金属膜催化剂

致密钯金属膜是一类重要的无机催化膜,已成为脱氢或选择加氢反应的重要材料。Gryaznov等用致密的钯金属管式膜反应器进行选择加氢,一步合成了维生素K4,产率95%。目前,致密钯基膜的商用仅限于氢的纯化,其原因之一是上述的钯膜较厚,氢的渗透速度降低,膜组件的成本高。近年来,有关工作主要集中在钯基金属复合膜的制备及应用研究上。

人们通常把钯基金属层担载在机械稳定的多孔衬底,目的是通过降低膜的厚度来提高氢的渗透速率。可用此种方法制备钯基金属复合膜,如物理气相沉积、化学气相沉积、热喷和化学镀饰等。物理气相沉积适合制备多组分的钯合金膜,易控制膜的厚度,制备过程较快,膜材料纯度高,但金属与衬底结合力较差。化学气相沉积可在复杂的衬底上制得多组合钯合金膜,金属与衬底结合好,但过程优化复杂。

钯基双金属催化剂

金属Pd被公认为是最出色的快键和双烯键选择加氢催化剂活性组分,但仍存在许多缺点,如齐聚副反应的发生,易被炔键络合,易中毒,稳定性差等等。针对单Pd催化剂的缺点,研究人员从活性组分Pd与反应产物和载体之间,在具体的空间结构与物理化学微环境的相互作用关系上进行了分析,通过添加第二金属助催化组分来进一步改善催化剂功能。Pd基双金属催化剂对炔/双烯加氢的选择性、活性、稳定性和寿命比单Pd催化剂有很大的提高,在6~4烯烃的选择加氢催化剂中形成了一个优势,可视为该领域的第三代催化剂。

如黄小军等。选择金属铅作为修饰剂制得铅修饰Pd/Al2O3催化剂,对环戊火烯的选择性大大提高,催化剂稳定,不易流失;吴琼等合成了均相Pd-Fe负载催化剂,研究了对卤代艿番硝基化合物的催化氢化性能,发现该催化剂的活性和选择性高,寿命较长,减少脱卤。赵维君等合成均相Pd-Mo双核络合物催化剂考察了对1,5,9-环十二碳三烯的选择加氢性能,发现加氢选择性与转化率是很高。

络合钯

PdCl2或其它钯类络合物遇氢不稳定,故很少用作均相催化剂,但若Sn2+存在下,钯络合物就有加氢活性,如(ph3P)2PdCl在SnCl2.2H2O或GeCl2作助剂时,对大豆油脂加氢有活性。不过,最近发现(ph2PCH2Pph2)3Pd2对端烯、环烯烃、共扼双烯和炔有加氢活性,端烯加氢速率随碳链增长而降低。

钌作为加氢反应的催化剂用的较多,在F-T合成,芳烃化合物(特别是芳香族胺类)的加氢等反应中,均发现有良好的活性和选择性。在钌催化剂上进行的液相加氢中,水的存在显著地促进反应。它对醛酮的加氢也有较高的活性,与其他铂系催化剂相比,常能表现某些特异性质。

RuO2

将用碱熔法制得的钌酸盐溶于水中,加以酸化后,所得沉淀用过氧化氢处理,并在空气中强热,便得到在有机化合物的加氢中显示高活性的RuO2。

Ru(OH)4

用盐酸将氯化钌水溶液略加酸化后加热至85-90℃,在激烈搅拌下逐次少量地假加入超过当量的浓度为10%NaOH溶液。将生成的黑色沉淀滤集在滤纸上,用蒸馏水反复洗涤,直至洗液PH值到7.8-8.0为止。然后在室温下真空干燥。Ru(OH)4中含钌量为65%,用该法容易得到碱残留量少的催化剂,这种催化剂可以用于芳烃化合物的加氢,比RuO2的活性高得多。

负载钌

使氯化钌溶液渗透到载体中在加氢还原,或使钌的氧化物或氢氧化物在载体上析出后,再用氢还原,均可制成钌的负载催化剂。Naghara等详细论述了其不同的制备方法,以及选择某些金属氧化物和沸石等多种物质作载体时的钌催化剂的加氢性能。实验证明了疏水物质不宜作载体,而亲水物质则是很好的载体。因此载体的主要作用是提高催化剂的表面亲水性,增大催化剂的有效表面积和防止催化剂的表面积碳。具体载体有SiO2、Al2O3、沸石、锌和镧的复合氧化物,BaSO4,分子筛等,对苯的部分加氢有不同的活性。

在负载钌催化剂中加入K、Fe、Co、Cu、Ag等金属元素作催化剂,可以显著提高催化剂的活性和选择性。另外,水的含量对催化活性也有影响。

氯化钌

自从1960年Halpern等证实RuCl2水溶液对烯烃加氢有活性以来,Adamson系统地研究了RuCl2,RuCl3,RuCl4的活性,认为其中的活性物种是Ru(H2O)2Cl4-,Ru(H2O)Cl52-,RuCl63-,他们认为可能机理如下图所示:

RuCl(ph2P)3是端烯加氢很好的催化剂,能保留90%的立体结构,RuCl2(Pph3)3催化还原查尔酮,C=C选择性100%,且反应极为迅速。RuCl2(BINAP)/[CHPh(NH2)]2氢化不对称α,β-不饱和环酮得手性烯丙酮具有极高的立体选择性。还有利用金属钌,铑络合手性膦、手性碳等配体制成手性催化剂对某些烯酮等化合物进行均相加氢,可以选择性地得到带有光学活性的物质,光学产率几近理论值。当然其中手性膦配体的设计对钌铑的立体选择加氢十分重要,这方面已有详细综述。

另外,均相络合加氢的一个核心问题是过渡金属催化剂的分离和循环使用。为解决该问题普遍采用的均相催化多相化方法,原则上分为2类:一是将钌、铑等催化剂静态固定在高分子或无机载体上的固载均相催化,另一类是采用水溶性膦的配体,将均相催化剂动态负载在与产物互不相溶的水相而实现水/有机两相催化。两者在这方面都已有很大的进展,实现立体均相催化工业化应是指日可待。

铑(Rh)、铱(Ir)、锇(Os)

三种金属催化剂类型差不多,都有氧化物、氢氧化物、负载型、络合型金属催化剂,其制备方法同钌、铂相似。铑的产量和少,极贵重对芳烃加氢具有较高活性和选择性。胶体铑催化剂相当稳定,放置数月活性不下降。常见负载催化剂是Rh/Al2O3,Rh/CeO2,Rh/SiO2

等多用于CO加氢成醇,芳烃和硝基加氢;铱的固体催化剂、均相催化剂形式、活性与铑相近。尤其在均相催化加氢中,也许是三价阳离子d6电子分配相似的原因,但铑加氢活性比铱要高得多,如RhCl(Pph3)3是有效的加氢催化剂,而IrCl(Pph3)3则不是。但RhCl (CO)(Pph2)3、和IrCl(CO)(Pph3)2都具有良好的加氢活性。催化剂活性还取决于实验条件、溶剂极性等。

锇的氧化物易挥发,有刺激性和毒性,不用作催化剂,常用作环氧化物氢解成伯醇的反应,其负载型催化剂有Os-石棉、Os/Al2O3、Os/C等,其络合加氢催化剂研究不多,有报道OsHCl (CO)(Pph3)3、OsHCl2(Pph3)3对烯烃加氢有活性。

Rh、Ir的均相加氢研究与Ru很相近,尤其是`Rh,广泛由于不对称加氢,Ir相对少些,Os 则更不常见。

2.加氢催化反应

随着改革开放,国民经济迅速发展,医药、燃料、农药、日用化工等精细化工行业在规模数量上已跻身世界大国行列,但技术水平与发达国家尚有较大的差距,产品质量不高,物耗与能耗较高,特别是三废治理不完善,严重制约了精细化工的进一步发展。

进几年我国催化加氢技术在技术开发与推广使用上都有了重大脱破,催化加氢技术已不仅仅在石油化工、石油炼制上得到广泛的应用,在精细化工上也得到了不断开发和应用。目前,我国许多企业仍普遍采用五、六十年代的铁粉、硫化碱、水合阱等还原方法组织生产,这与发达国家主要采用催化加氢法生产相比,技术上至少落后20年。因此,用先进的催化加氢技术来来改造传统落后的技术,是化工科技界一项十分迫切的任务。现就催化加氢反应的应用范围、加氢催化剂、加氢催化反应工艺及动力学和机理四个方面作一一阐述。

1.加氢催化反应的应用

1.1硝基化合物加氢

硝基烷烃的加氢活稍逊于烯键。在骨架镍上的加氢活性和铂催化剂相似,甚至稍高一些。在骨架镍上,共扼的硝基烯烃如CH3CH2C(NO2)=CH2的加氢不是选择性的,而非共扼的硝基烯烃可先还原硝基。硝基烷烃的加氢在骨架镍上的活化能比亚当斯铂低,而指前因子却小于后者。这表示在镍上较易活化,在铂上却有较多的吸附氢与之作用。脂肪烃硝基化合物甚至在室温时亦可与产物胺缓缓作用产生复杂的缩聚物,这方面有点似醛。所以要想得到高收率的胺,必须选用低温度加氢的活性催化剂。与芳烃硝基化合物不同,在一定条件下,它先还原成肟:

相对于硝基烷烃,在科研和工业上研究最多的是芳烃的硝基化合物。我国自50年代开始对催化加氢进行研究,1978年成功地自行开发了硝基气相催化加氢制苯技术,催化加氢技术便有了长足的进展,用催化加氢工艺生产了许多产品,如苯胺、邻苯二胺、间苯二胺、对氨基苯酚、3,3`-二氯苯胺、2,4-二氨基甲苯、邻氯苯胺等等,其中3,3`-二氯苯胺、对氨基苯酚、邻氯苯胺由于以前没有生产技术或生产技术落后,导致质量不过关而国内十分紧缺,在近年来却在催化加氢工艺研究上取得了可喜的突破。以上芳胺具体的研究情况如下:

对氨基苯酚

催化加氢制对氨基苯酚方法的研究始于本世纪二十年代。Bamberger提出机理为:

1979年英国的Hartington公司率先将该工艺工业化,目前该方法在美国、日本均已工业化,国内对此工艺也进行了一些研究。北京医科大学的研究已有专利的报道,天津大学等也进行了该工艺的研究开发,但还未见有成功的工业化生产的报道。其合成方法为:由硝基苯在稀硫酸介质中加氢使硝基苯还原成苯基羟胺,同时发生Bamberger重排,制得对氨基苯酚,主催化剂为5%Pd/C,贵金属与硝基苯质量比为:0.0005-0.005:1,三甲基十二烷氯化胺为助催化剂,反应温度维持80℃左右,压力11-12MPa,采用过氧化氢处理后10%的稀硫酸作为

反应介质。收率比传统方法提高5%左右,后处理操作时间及三废大大减少,最为关键的是产品质量明显提高,满足医药生产的要求。

苯胺

苯胺是制造染料、农药、医药、橡胶助剂、聚氨酯等的主要中间体,主要工业化国家其年产量都达到几十万吨。苯胺的耗用于聚氨酯有巨大的潜力。发达工业国家苯胺用于聚氨酯方面要占70%以上,而我国目前还不是1/3。因此,我国的苯胺前景是宽广的。合成方法:

将H2预热至350-400℃,进入蒸发器,同时硝基苯流入蒸发器内与热氢气接触汽化,并过热至180-223℃,混合气体从硫化床底部进入,与装于床内的载于硅胶上的单铜催化剂接触反应。反应产物由床顶排泄后,经冷凝、分离、精馏得成品苯胺。

2, 4-二氨基苯胺

2, 4-二氨基苯胺是制造聚氨酯泡沫塑料、涂料、弹性体、黏合剂的原料,市场需求量大,目前,在国内,加氢还原中试已获得成功,但尚未见工业化大生产的报道。

邻氯苯胺

由邻硝基苯加氢还原生成邻氯苯胺。主要催化剂为0.8%Pa/C,贵金属与硝基苯质量比为0.0001~0.0005︰1,亚磷酸钠为助催化剂,甲苯作为溶剂,反应温度60-80℃,氢压0.6-2MPa,邻氯苯胺纯度为99.7%,收率92%,比传统方法三废量大大减少,其中犹为关键的是加入亚磷酸钠具有抑制脱氯效果,使硝基苯在加氢是避免脱氯现象发生。另外,R-Ni加氢制备邻氯苯胺,收率为93%,产品纯度达99%。

邻苯二胺:是农药、染料中间体,其催化加氢法由湖北省化工研究院开发,经小试、中试、扩试最后获得成功,产品各项质量指标达到了32 BG24001-87标准。工艺以邻硝基苯胺为原料,以软水为溶剂,R-Ni为催化剂,在一定温度、压力下,把邻硝基苯胺还原成邻苯二胺:

该工艺适用于大规模连续生产,后处理简单,三废少,生产能力强,成本低。

间苯二胺

以间二硝基苯为原料,以苯为溶剂,以氢气作为还原剂,在R-Ni作用下,在一定温度和压力下,把间二硝基苯还原成间苯二胺,收率大于96%。反应式如下:

该工艺适用于大规模连续生产,后处理简单,三废少,生产能力强,成本低。

3, 3'-二氯联苯胺

由邻硝基苯在碱性条件下液相加氢制备2, 2'-二氯氢化偶氮苯,它是固-液-气三相反应。主催化剂为0.5%-10%Pt/C,贵金属与硝基物质量比为0.00002-0.001:1,萘醌类为助催化剂,甲苯、二甲苯等为溶剂,反应温度为40-100℃,氢气压275.6KPa,反应时间为10h,碱溶液浓度10%左右。生成2,2'-二氯氢化偶氮苯在稀硫酸介质中,发生分子内重排后得3,3'

-二氯联苯胺,总收率高于80%,比目前国内采用的甲醛水合肼法提高10%以上,废水量减少2/3,质量有明显的提高。

1.2腈的加氢

工业上常用的催化剂是Ni和Co,因为用它们催化加氢腈类时主要生成伯胺,Rh生成较多的仲胺,而Pt和Pd主要生产叔胺,文献上几乎公认腈类加氢最佳催化剂是骨架Co。在二氧六环溶媒下就能得到近于理论值的伯胺,几乎没有副反应。反应Ni时,如果不加NH3,仍有部分的仲胺产生。但Ni远较Co便宜,故工业上大多用骨架N再加适当其它成分来代替Co。由高级脂肪酸衍生物——脂肪烃腈类,或芳香烃腈基化合物的加氢都可应用。Ru的吸附键颇强,其性质Co类似,如用作腈类加氢的催化剂,亦应得到高得率的伯胺。今虽少见这方面的数据,但已知对于下列加氢的类似反应,亦确使N键氢化成高收率的伯胺:

目前,又兴起了非晶态合金催化剂在腈类的应用。王明辉等报道了一种用于乙腈加氢的新型复合型催化剂-超细Co-B非晶态合金,其催化性能显著优于其它Co基催化剂,以此代替工业应用Raney Ni,将会大大提高乙胺的选择性,显著减轻环境污染。

1.3芳烃的加氢

芳香烃的加氢具有很大的意义,这类烃的加氢产物广泛被用作优良溶剂,如环己烷、四氢化萘等等,亦可作为内燃机燃料。苯酚加氢亦是最早实现工业化的加氢发工业之一。产物环己醇用于制造己二酸、增塑剂和洗涤剂,亦可以用作溶剂和乳化剂。苯胺加氢制环己胺,苯甲酸加氢制环己烷羧酸,都具有广泛的应用。

苯加氢

苯加氢制环己烷有好几种方法。其中一种为常压法,在液体空速为1.1-1条件下,以镍—氧化铝为催化剂,反应温度120—170℃,苯与氢气混合经管式固定床反应器,苯转化率达99.9%,环己烷产率96%。

又如苯胺加氢由苯胺催化加氢法制备可分下列两种方法:

a.常压法

苯胺蒸气与氢按1︰20摩尔比混合后进入反应器,钴催化剂存在下,于150—180℃进行常压加氢,副产物为二环己烷。

b.加压法

以钴为催化剂,反应温度240℃,压力14.7-19.6MPa,苯胺与氢的摩尔比为1︰10,经固定床液相加氢制取,该法空速比常压法高3-6倍。另外,用Ni作催化剂,空气与氨气混合气体(摩尔比5︰1)从反应器底部通入,在0.7MPa压力以及225℃温度条件下进行反应。馏出物中除未反应的氢气、氨气外,环己胺占75%,二环己胺15%,苯胺及N-环己苯胺9%,环己烯和环己烷等烃类1%以下,再通过精馏获取环己胺,苯胺及高沸点物仍返回系统中。环己胺主要用于制造环己醇和环己酯,也是合成脱硫剂、橡胶促进剂、乳化剂、染料抗静电剂、石油添加剂、农药杀菌杀虫剂等的中间体。

又如四氢呋喃加氢以Ni为催化剂,呋喃液相加氢,温度80-150℃,压力1-2MPa。四氢呋

喃可用于制造合成纤维、有机玻璃、合成树脂,也是许多聚合材料的溶剂。

芳烃衍生物加氢的一些规律性:

由于芳烃的共轭体系比较稳定,它的加氢除酸、酯类以外,一般比其它不饱和化合物较难

加氢。例如Ni及Pd在室温就有相当高的烯烃加氢活性,而要使苯加氢,Ni催化剂至少要

在50℃以上,Pd则需在100℃以上。各种芳烃及衍生物的加氢活性亦有差别,其活性次序

大致为:

硝基苯的苯核相对于苯来说有较大的活性,所以在硝基苯加氢制苯胺时,在Ni催化剂中亦

长加入少量NiSO4或硫化物使它部分中毒,以免苯核加氢。取代基对苯核加氢活性的影响

主要由于电子因素。

苯的烷基取代物,随着碳数的增加,加氢速度开始降低较为显著,但取代基长链的碳数超

过-4以后就不明显了,如果取代基含有支链,支链越大,支链越接近苯核,氢化速度越慢,

例如丁苯异构物的氢化速度为:

这里,显然空间因素起主要作用。

1.4 烯键的加氢

烯烃及其衍生物的催化加氢在工业上及实验室制备化合物时均有广泛的应用。如异丁烯加

氢制异丁烷,由丁二烯加Cl2,再经腈化而成的1, 4-二腈基丁烯-2(NC-CH2CH=CHCH2-CN)

在V-催化剂上进行加氢制己二腈(75-150℃,液相加氢,收率可达97%)。又如丁烯二酸

酐的摧毁加氢制四氢呋喃,油脂加氢等等都很重要。

乙烯是最易加氢的,在骨架Ni、Pt及Pd上室温时反应即可进行,在还原Ni催化剂上30℃

时虽已开始加氢,但在100-130℃时反应才快速进行。其它烯烃的加氢活性有如下的规律性:

1)直链烯烃,随着碳数增加,反应速度顺次递减;

2)对于取代基乙烯,取代基越多,基团越大,反应速度越弱。但取代基为芳香烃基,Pd

黑及骨架Ni上氢化速度却是(C6H5)2C=CH2>C6H5C=CH2>CH2=CH2 对于互不共轭的双烯烃,取代基最少的双键先加氢,这些可用空间因素及电子因素的适应性

加以解释。

3)对于油脂中烯键的加氢速度亦随不饱和酸分子量的增大而减小。例如下面各酸加氢的相

对速度(在Pt黑上,乙醚溶液中):

十六烯-乙酸-1 CH3(CH2)12-CH=CH-COOH 5.0

十八烯-乙酸-1 CH3(CH2)14-CH=CH-COOH 4.26

二十二烯-乙酸-1 CH3(CH2)18-CH=CH-COOH 2.80

这是因为分子链越长,其热运动易引起C=C键较难吸附,并较大的妨碍了H2的活化吸附。此外,由于羧基-COOH较易吸附在金属表面,就可使附近的烯键翘起,较难与表面接触而被吸附,从而影响加氢速度,所以烯键离羧基越近反应越慢。

如果烯键一旁的取代基很大,又在顺式结构时,二个大取代基R与表面接触,就较易把C=C 键托起,离开表面,减少活化及加氢概率,所以反式结构的异油酸加氢出硬脂酸的速度,要比油酸加氢快2.5-4.0倍。

此外,具有数个双键的羧酸加氢,双键越多,加氢速度越大。例如:

亚麻油酸C2H5-CH=CH-CH2-CH=CH-CH2-CH=CH(CH2)7COOH

亚油酸CH3(CH2)4CH=CH-CH2-CH=CH-CH2-CH=CH(CH2)7COOH

油酸CH3(CH2)7CH=CH-(CH2)7COOH

它们的氢化速度之比约为40︰20︰1,这不单由于双键数较多,与吸附氢作用机会较多,而主要是由于二个双键的共存,可以互相加强吸附,大大增加了在表面活化及加氢的概率。

工业上油脂加氢最常用的催化剂是载在硅藻土上Ni-Cu催化剂(NC=1-3︰1),与载体之比约为1︰1到1︰4,在0.15-0.2MPa的氢压,230-240℃下反应,一般在2-4小时即可反应完毕。有时亦用甲酸镍为催化剂,它在油脂中180-190℃即开始分解,在240-260℃就很快分解出金属镍。此外,亦有应用Cu-Mn-Cr催化剂。

在烯键加氢中常会遇到二类异构化反应:一类顺反异构化,另一类双键转移异构化。因此,在油脂加氢反应中难免都会发生。

顺反异构化途径很多,例如C=C见进行单位吸附或双键吸附后经半脱附后,经过δ键的自旋,再脱附而达到异构化,亦可伴随双键转移过程而发生。不论沿哪种途径进行,它都要求催化剂上吸附氢不能多,而活性中心吸附能力不能强,这样才有利于半脱附或半氢化,而让异构化顺利进行。

所以高温低氢压有利于异油酸的形成,应用Pd、Pt及部分中毒Ni可比应用Ni时生成较多的异油酸。

对于不饱和醛酮及腈等化合物,或共轭双烯要选择性地进行烯键加氢,必须适当的催化剂和反应条件。长选择活性中心数目叫少,吸附键形成较弱的催化剂。例如要使丁烯醛选择加氢成丁醛,可用部分中毒的Ni催化剂。工业上亦用对C=O加氢性能弱的Pd催化剂把丁烯醛加氢成丁醛。

1.5 醛酮的加氢

醛酮的加氢一般比烯键较为困难,它既可加氢成醇,也可加氢成烃。在Pt催化剂上,氢解尤其剧烈,骨架Ni、Co在室温下,对C=O就有良好的活性,但随反应温度的提高,即使是Ni系催化剂,氢解亦越显著。因此,工业上常用活性稍低,负载于硅藻土的Ni系催化剂或Co系催化剂。因为大部分羰基化合物在液相Pd、Pt催化剂作用下还原成烃,故使用时,

需使它部分中毒(用喹啉等毒物)才能提高醇的收率。苯核会使相连的C=O变得较为活泼,C6H5COR容易还原成烃,而C6H5(CH2)nCOR(R=H及烷基)则易加氢成醇。C=O加氢的反应热较小,若为连续床催化加氢,可采用绝热床。

山梨醇

50%葡萄糖水溶液,通常以铝镍合金为催化剂,加氢反应后,再经精制、浓缩,得出山梨醇成品。山梨醇是石油防锈添加剂、农药工业的乳化剂、食品工业调味剂,也是制备VC的重要原料。

生产山梨醇的工艺比较多。目前在国内主要是连续氢化工艺和间歇氢化工艺,大体积釜氢化工艺和小体积釜氢化工艺,釜内沉降工艺和釜外沉降工艺,“一步法”工艺和“二步法”工艺等等。

糠醛

糠醇广泛应用于呋喃树脂合成纤维、橡胶、农药制造等工业。目前糠醇主要采用糠醛催化加氢法生产,有液相和气相加氢法两种工艺,通常使用铜-铬加氢催化剂,糠醛转化率一般在80-90%,收率小于90%。

但Cu-Cr催化剂价格昂贵,废催化剂难以再生,铬污染严重。近年来,国内外对无铬加氢催化剂研究较多,如负载Cu,R-Ni系列,CuO-SO2,Cu-Zn系等。

醛类还原,气相反应在温度180-220℃,选用Cu催化剂最好。因为Cu上活性吸附氢数目较少,而Cu-C吸附键较弱,这就限制了氢解。但如果高于220℃,Cu系催化剂上的醛加氢时主要生成酯。Ni催化剂可在较低温度下(0-160℃)使醛加氢,但有还原成烃副反应,较难控制,尤其对芳香醛,更是这样。

酮的加氢较难,若用Cu催化剂,温度低于200℃,则加氢缓慢,但温度提高,则逆反应变为主要。所以酮的加氢常不用Cu而用Ni。若用Ni催化剂,在180-200℃时,酮可定量地加氢成第二醇,但温度为250-260℃则还原成烃。

醛酮液相加氢时,最常用催化剂是R-Ni,醇生成速度比其它Ni系催化剂快。在反应介质中添加(C2H5)3N可提高反应速度1-9倍,如同时加入少量铂盐H2PtCl4和碱,更可促进反应速度

酸酯的加氢

(1)芳环上硝基的加氢还原生成芳胺

(2)含卤类硝基化合物的催化加氢

(3 硝基苯催化加氢氢合成对氨基苯酚

(4)胺酮缩合加氢反应

(5)氰基的加氢反应

(6)含氧化合物的加氢(如:酮的加氢,酯的加氢,酸的加氢,酰氯的加氢)

(7)烯烃及其衍生物的加氢

(8)炔烃和共轭双烯烃的加氢

(9)含氮化合物的加氢

(10)油脂加氢

(11)加氢裂解、重整等石油化工

(12)杂环化合的加氢

三、催化加氢前沿

1.超临界催化加氢:

间三氟甲基硝基苯的超临界催化加氢反应

《间三氟甲基硝基苯催化加氢及系列化产品开发》获得国家科技进步二等奖

间三氟甲基苯胺是重要的含氟化工中间体,在医药、染料、农药等领域有着广泛用途,合成的方法主要有(1)铁粉还原;(2)液相催化加氢法;第一种方法由于会产生大量的废水及有毒铁泥,对环境有严重影响,且产品质量较差,第二种方法尽管三废很少,但加氢技术要求高,催化剂易中毒,间歇式反应生产效率较低,在蒸溶剂时三氟甲基很容易水解影响产物的收率和质量等。其中超临界催化加氢反应是近年来才发展起来的新型化工反应过程,由于其具有突破液相加氢时的氢气传质限制而反应速度大大加快、无需分离过程可直接得到产物,具绿色化学特征、原子经济性、可打破反应平衡、大幅度改善催化剂的活性、选择性和稳定性,现在还无超临界催化加氢工业化装置,但很具有潜在的重要工业应用价值。

实验原理

将间三氟甲基硝基苯放入混合器中,打开截止阀与反应器相连通,并关闭反应器尾部的流量调节阀,加入二氧化碳和氢气,达到预定超临界条件,充分搅拌,使间三氟甲基硝基苯溶入到超临界二氧化碳混合流体中。打开流量调节阀,超临界混合流体以一定流速流经反应器,在反应器中发生超临界催化加氢反应,并补充氢气和二氧化碳,保持混合器内压力和氢气浓度不变。反应后的混合流体在分离器内降压和升温,达到产物与二氧化碳和氢气完全分离的目的,在分离器的下部取样分析各组分的含量以确定转化率和选择性。

影响因素:

二氧化碳压力对超临界催化加氢反应的影响

二氧化碳压力对间三氟甲基硝基苯超临界催化加氢的影响结果示于图1。由图1可见,在未达到超临界条件下,间三氟甲基硝基苯的转化非常低,只有26%左右。这是由于催化剂表面吸附了产物,占据了催化剂的表面活性中心,但非超临界二氧化碳对产物的溶解能力非常低,移不走催化剂表面的产物,使催化剂部分失活。当二氧化碳压力接近临界点时,转化率有一个突跃,并且当二氧化碳压力达到9.0 MPa时,间三氟甲基硝基苯的转化率达到99.2%,9.5 MPa时,转化率为99.5%,再增加二氧化碳压力,转化率较为稳定,均在99.5%以上。

氢气浓度对超临界催化加氢转化率的影响

以每升超临界混合流体所含氢气摩尔数表示氢气的浓度。氢气浓度影响间三氟甲基硝基苯转化率的结果示于图2。由图2可知,转化率在氢气浓度较低的条件下随氢气浓度的增加而呈线性上升,该结果表明,在低浓度下,氢气浓度在间三氟甲硝基苯的超临界催化加氢反应中呈一级反应,当达到0.5 mol/L时,转化率为99.0%,0.6 mol/L时转化率为99.5%,因此达到0.5mol/L后,氢气已过量,再增加氢气浓度对间三氟甲基硝基苯的转化率的影响不大。在高浓度下呈零级反应。

温度对超临界催化加氢转化率的影响

温度影响反应结果示于图3。由图3可见,温度对加氢反应结果的影响不是很大,只是在较低温度下转化率有所下降。这是由于在低于31℃下,二氧化碳还未呈超临界状态,氢气传质受到限制,影响反应的转化率。达到35℃时,转化率已达96.4%,40℃转化率为99.6%,随后增加温度转化率均能达到99.5%以上,表明40℃后,温度对超临界催化加氢反应的影响不大。

空速对超临界催化加氢转化率的影响

空速在气固相催化反应中是一个非常重要的影响因素,由于超临界催化加氢反应的反应工艺与气固相催化反应具有相似性,空速的影响不容忽然视。本实验对空速进行了条件试验,结果示于图4。由图4结果所示,在较小的空速条件下,转化率能达到99.5%以上,当空速达1.2 min-1时,转化率开始下降,随着空速的增加,转化率直线下降,因此空速应控制在1.0 min-1较为合适。

超临界催化加氢反应速率与液相催化加氢比较

由文献可知,超临界条件下的催化加氢反应速率一般比液相加氢高出2个数量级,本实验的结果也显示了这一优越性。TOF(min-1)代表加氢反应速率,即每摩尔催化剂活性组分在单位时间内转化的氢摩尔数。超临界催化加反速率和液相催化加氢速率的比较结果列于表1。由表1数据显示,超临界催化加氢反应速率大大高于液相加氢速率,45℃时超临界加氢速率是液相加氢速度29倍,但85℃时降为12倍。该结果表明,在超临界点附近,催化加氢反应的优越性更能体现。

2.离子液体环境下的催化加氢:

3.纳米级催化加氢催化剂:

4.非晶态加氢催化剂的加氢

非晶态合金催化剂的研究进展

1.4、非晶态合金镍

自1980年第七届国际催化剂会议上发表第一篇有关非晶态合金的报告以来,非晶态合金作为催化材料的研究获得了广泛的注意。非晶态合金长程无序而短程有序的结构特点,使其成为一种结构均匀和“极端”缺陷的统一体,其表面具有高度不饱和性,具有较高的表面能,因此它可能对反应分子具有较强活化能力和较高的活化中心密度。非晶态合晶可以在很宽的范围内制成各种组成的样品,从而可以在较大范围内调变其电子性质,以次来制备合适的催化活性中心。这些特点使得非晶态合金晶具有较高的表面活性和不同的选择性。近年来对Ni-P, Ni-B, Ni-Cu-B等非晶态合金晶催化剂用于不饱和化合物的加密性能研究较多。

非晶态合金有多种制备方法,一般分为液体急冷法和原子(离子)沉积法两大类。液体急冷法制备非晶态合金是将晶体合金放入石英管中,在惰性气体保护下用高频感应电炉加热使合金熔融,控制入口的惰性气体压力,将熔融的合金液以石英管下端小孔挤出并喷射到高速旋转的金属辊上。合金液接触到金属辊时迅速冷却,并且由于离心作用沿切线方向甩出,从而形成非晶态合金带(比表面0.1-0.2 m2/g)。

原子沉积法是采用各种不同工艺将晶态材料的原子或分子离解出来,再使他们无规则的沉积形成非晶态。根据离解和沉积方式的不同,可分为电解和化学还原沉积,离子沉式射,真空蒸发,辉光效应等,电解和化学还原法工艺简单,成本低,适于制备大比表面的非晶态薄膜和粉末。一般化学还原沉积法是利用强还原剂KBH4和NaH2PO2溶液中的可溶性盐还原得到非晶态沉淀物。这种方法可以得到两种形式的非晶态合金,一种是沉积在平滑面上的膜,另一类是在溶液中形成粉末。

闵恩泽等以骤冷法制备Ni-P非晶态合金的研究出发点,系统的研究了它的结构,组成和预处理条件等与苯乙烯气相加氢活性的关系。初步研究结果证明,非晶态合金的加氢活性和选择性显著的优于相应的合金晶态,但在加氢反应中,虽然反应温度低于其晶化温度,非晶态合金仍逐渐晶化,导致加氢活性逐渐下降。因此,将非晶态合金开发的实用催化剂,其热稳定性是必须解决的问题之一。文献报道,镧引入Ni-P非晶态合金中能提高后者的稳定性,他们通过添加少量钇,提高Ni-P非晶态合金热稳定性。

非晶态合金(Amorphous Alloy)是目前材料科学中广泛研究的一个新领域,也是一种发展迅速的重要的新型材料。

所谓“非晶态”,是相对晶态而言,是物质的另一种结构状态。它不像晶态那样是原子的有序结构,而是一种长程无序,短程有序的结构。非晶态合金的物理、化学性能常比相应的晶态合金更优异,如高强度、耐腐蚀性、超导电性等优良的力学、磁学、电学及化学性质,已广泛用于国民经济各个方面,取得了令人瞩目的成就。

而非晶态合金作为催化剂的研究报道始于1981年国际催化进展会议—Smith等首次报道非晶态合金的催化性能。从那时起,非晶态合金催化材料引起了人们极大的兴趣。由于非晶态合金各向同性,具有表面高度不饱和中心以及化学和结构环境均一的催化中心,故使其不仅作为模型催化剂而且作为实用催化剂都具有十分重要的意义。

1、非晶态合金的主要特征

1.1 长程无序性

众所周知,晶体结构最基本的特点是原子排列的长程有序性。即晶体的原子在三维空间的排列,沿着每个点阵直线的方向,原子有规则地重复出现。而在非晶态结构中,原子排列没有这种规则的周期性。即原子的排列从总体上是无规则的。从结晶学观点看,非晶态合金不存在通常晶态合金中存在的晶界、位错和偏析等缺点。因此,可以把非晶态合金看作是均匀和各向同性的结构。

1.2 短程有序性

一般认为非晶态合金的微观结构中,短程有序区在10-9m范围内,即在非晶态合金中最邻近原子间距离和晶态差别很小,配位数也几乎相同。在短程有序区内原子的排列及原子间的相互作用关系(键长、键角等)与晶态合金的长程有序相似。这种短程有序结构的原子簇性对催化作用具有重要意义。

1.3 亚稳态性

晶态材料在熔点以下一般是处在自由能最低的稳定平衡态。非晶态则是一种亚稳态。所谓亚稳态是指该状态下系统的自由能比平衡态高,有向平衡态转变的趋势。因此,非晶态合金处于热力学不稳定的状态,在催化加氢反应中很容易失活。对非晶态合金的催化活性中结构及失活原因的研究需要不断的深入。

2、非晶态合金的制备

制备非晶态合金的方法很多,应根据实际用途选用不同的制备方法。作为催化剂使用的非晶态合金应以提高其比表面及催化活性为主。

2.1 液体急冷法

这是早期制备非晶态合金的主要方法(图1),它可以实现大规模工业生产而具有较大实用价值。液体急冷的方法很多,但是基本原理都相似:将晶体合金放在一石英管中,在惰性气体保护下用高频感应电炉加热使合金熔融,控制入口的惰性气体压力,将熔融的合金液从石英管下端小孔挤出并喷射到高速旋转的金属锟上。合金液接触到金属锟时迅速冷却,并且由于离心作用而被从切线方向甩出,从而形成非晶态合金带。或者将熔融液体直接连续流入冷却介质中(蒸馏水或者食盐水等)可以制成非晶态合金丝。此外,若用超声气流将熔融合金液体吹成小滴而雾化,可以制成非晶态合金粉末。

但是由液体急冷法制成的非晶态合金不经过预处理是没有催化活性的。烦琐的预处理使人们不断寻求更加方便、易行的制备方法。

提高非晶态镍催化剂活性、选择性和稳定性的途径

2.2 化学还原法

这是目前制备非晶态合金的主要方法。用强还原剂主要以镍系非晶态催化剂为主,也有非晶态铜、非晶态铁等

5.均相催化剂多相化及多相催化剂的均相化

6.不对称催化加氢

7.选择性加氢:对氨基苯酚、含卤硝基物加氢、α,β-酮的选择性加氢(肉桂醛加氢、糠醛加氢等)

8.模拟酶催化加氢

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

浅谈加氢裂化催化剂基本组成

龙源期刊网 https://www.sodocs.net/doc/3e6179708.html, 浅谈加氢裂化催化剂基本组成 作者:刘斌 来源:《中国化工贸易·下旬刊》2018年第04期 摘要:加氢裂化是炼油工业生产轻质油品的重要手段,催化剂则是加氢裂化技术的核 心,催化剂的催化性能与其物理、化学的诸多性质密切相关。加氢裂化催化剂是一种典型的双功能催化剂,具有加氢功能和裂解功能。 关键词:加氢裂化;催化剂 加氢裂化是重油深度加工的主要工艺,它具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点。加氢裂化的核心是催化剂,催化剂的催化性能不仅取决于它的化学组成,而且与其物理、化学的诸多性质密切相关。加氢裂化催化剂是一种典型的双功能催化剂,具有加氢功能和裂解功能。加氢功能和裂解功能两者之间的协同决定了催化剂的反应性能。加氢裂化催化剂中的基本组成包括加氢活性组分、裂化活性组分、载体、助剂。 1 加氢活性组分 加氢功能主要来源于具有加氢活性功能的活性相。加氢裂化催化剂的加氢活性组分的活性由高到低顺序如下:贵金属>过渡金属硫化物>贵金属硫化物。加氢活性组分主要包括ⅥB族和Ⅷ族的几种金属如Mo、W、Ni、Co、Fe、Cr等的硫化物,或贵金属Pt、Pd元素等。裂解功能一般由无定形硅铝、分子筛等酸性载体提供。 2 裂化活性组分 加氢裂化催化剂裂化组分换代顺序为:Al2O3-SiO2(硅铝)、八面沸石、改性的Y分子筛、特种分子筛、介孔纳米材料。裂化组分的酸性按氧化铝、无定形硅铝、分子筛的顺序增强。 2.1 硅铝酸性组分 无定形硅铝中的硅铝含量对其性质有较大影响,低铝含量的硅铝孔径小,孔容低,比表面高。在无定形硅铝中,同时存在Lewis酸和Bronsted酸,其总酸量随铝含量的增加有一最大值,合成方法不同,具体数值有所差别。 2.2 Y型分子筛酸性组分 分子筛具有规整的孔道结构和表面酸性基团,酸性分子筛的酸强度、酸量比无定形硅铝和氧化铝大得多,在加氢裂化催化剂中引入分子筛组分表现出了很多优点:高活性、好的抗氮性和耐硫性、高稳定性、低结焦性、易再生。分子筛是一类具有骨架结构的微孔晶体材料,构成

转化催化剂硫中毒的原因和处理

转化催化剂硫中毒的原因和处理 肖春来(辽宁葫芦岛锦西石化分公司,辽宁葫芦岛125001) 2007-11-14 制氢转化过程中,硫对转化催化剂具有明显的毒害作用,因硫中毒导致转化催化剂失活甚至报废的情况时有发生,给炼厂造成巨大的经济损失。为保证装置安全生产,保证转化催化剂长周期运行,需要高度重视硫对催化剂的危害。 1 硫的来源 硫是转化催化剂最主要的毒物之一,制氢原料中均含有不同量的硫。随着焦化干气制氢技术的普及,原料含硫量也在进一步增加。脱硫单元效果变差,是使硫进入转化系统的最直接来源,大多数时候是由于加氢条件异常使原料中的有机硫氢解不完全,导致脱硫剂出现硫穿透现象;也可能由于原料中的硫含量在短时间内大幅度上升致使加氢脱硫能力不足引起硫穿透。此外,汽包给水也有可能带入一定量的硫酸根。 2 硫对转化催化剂的危害 硫是转化催化剂最常见、也是难以彻底清除的毒物。不同的制氢原料含有不同量的硫,硫存在的形态十分复杂,大致可分为有机硫和无机硫。常用的干法脱硫流程是先用加氢催化剂将有机硫氢解成无机硫H2S,然后用脱硫剂将无机硫脱除。现有工业装置的脱硫精度一般能达到小于0.5×10-6或小于0.2×10-6的水平,残余的微量硫进入转化系统。转化催化剂具有一定的抗硫性能,就目前常用的转化催化剂而言,脱硫气中硫含量小于0.5×10-6时,能够保证转化催化剂正常发挥活性,可以保证转化催化剂长期使用。但是,如果进入转化催化剂的硫含量超标,将会引起转化催化剂中毒。 转化催化剂中毒是可逆的。一般情况下,硫主要引起转化炉上部催化剂中毒,而不易引起整个床层中毒,硫严重超标时也会导致整个系统被污染。硫中毒后的转化催化剂可以通过蒸汽再生而恢复活性。转化催化剂严重硫中毒将使转化催化剂严重失活甚至报废。 3 硫中毒的机理 转化催化剂中毒一般认为是硫化氢与催化剂的活性组分镍发生了反应: 硫化氢使活性镍变成非活性的Ni3S2,因而使转化催化剂活性下降甚至失活。 经过催化剂厂家实验分析,含镍15%的催化剂在775℃的条件下,仅含0.005%的硫已经显示出中毒迹象,当硫达到0.015%时,镍表面硫的覆盖率达到44%,相对活性只剩下20%。因此,镍中毒机理的新理论认为:硫进入转化炉后均氢解成硫化氢,硫化氢在催化剂表面发生强烈的化学吸附过程: 这种化学吸附在硫浓度很低的条件下就能发生,要远远优先于生成固体Ni3S2的条件。即使催化剂吸附少量硫也会降低催化剂的反应活性。 4 硫中毒后转化催化剂的表现 在转化过程中,硫中毒导致催化剂活性下降,首先表现为转化炉管上部温度的升高,转化管中二、三米点温度的升高是判断硫中毒或催化剂活性下降的方法之一。随着硫中毒的不断加深,转化催化剂失活将引起高级烃下移造成转化催化剂上积碳现象的发生。硫中毒还表现为转化气中残余甲烷含量的增加。工艺气中硫含量增加,直接引起转化炉出口转化气中甲烷含量的上升,资料报导:工艺气中每增加0.1×10-6

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

5制氢催化剂的使用

第五章制氢催化剂的性质和使用 制氢过程使用的催化剂有如下几种: (1)钴——钼加氢转化脱硫催化剂; (2)脱氯催化剂; (3)氧化锌脱硫剂; (4)烃类——水蒸汽转化催化剂; (5)中温变换催化剂; (6)低温变换催化剂; (7)甲烷化催化剂; (8)吸附剂。 这些催化剂的使用条件非常苛刻,为了使装置实现安稳长满优生产,确保经济、合理、高效的生产目的,必须严格控制原料杂质的浓度,以避免杂质对催化剂的损害。 制氢所使用的原料一般都是轻油,近年一些装置掺用部份炼厂干气制氢,这些制氢原料中通常含有的对制氢催化剂有影响的杂质是硫、氯、有机金属化合物。 硫对含镍的转化催化剂和甲烷化催化剂,对含铜的低温变换催化剂都会造成毒害,一般转化炉入口原料中硫含量要求小于0.5ppm。硫中毒会使转化炉管产生“热带”,也会促使出口气体甲烷含量增高。 氯离子具有很高的迁移性,可随工艺气流迁移,对下游催化剂及设备造成威胁。许多合金钢受氯侵蚀后产生应力腐蚀,氯的侵蚀导致许多换热器破裂。氯会导致转化催化剂失活,对铜系低温变换催化剂的影响更大,氯与铜形成的新物质的熔点很低,易升华又易熔于水,在低变工艺条件下,这些氯化合物可以穿透整个床层。一般要求原料中含氯应低于5 ppb。 有机金属化合物会沉积在加氢脱硫及转化催化剂表面,导致催化剂活性的永久性衰退,一般要求原料中重金属含量应低于5ppb。 5.1加氢转化催化剂 制氢原料中含有不同数量的有机硫和无机硫,这些硫化物的存在,会增加原料气体对设备的腐蚀,尤其重要的是制氢过程所使用的含镍、含铜的催化剂极容易被硫中毒,失去活性,严重影响生产的顺利进行。但是,有机硫化物性能稳定,不容易被脱除,只有在加氢催化剂的作用下,与氢气反应将有机硫转化生成硫化氢,才能被脱除。传统加氢转化催剂的主要成份是υ-Al2O3担载的C O O和M O O3,即钴——钼加氢转化催化剂,近年来北京海顺德催化剂有限公司生产的加氢催化剂的载体改用钛的氧化物,这种催化剂也取得一定的实用业绩。5.1.1加氢剂的种类及物化性质 5.1.1.1国内常用加氢转化催化剂的型号及性能υ 国内加氢转化催化剂现有十几种型号,经常用于制氢装置上的仅有几种,如表5-1所示。大型氨厂加氢转化催化剂(如T201型)寿命最长超过十年,此类催化剂质量已不亚于国外催化剂的水平,因此,国产化率已达100%。

2015年高校专业代码参考目录汇总

2015年高校专业代码参考目录汇总 01哲学 0101哲学类 010101哲学 010102逻辑学 010103宗教学 010104伦理学 02经济学 0201经济学类 020101经济学 020102国际经济与贸易 020103财政学 020104金融学 020105国民经济管理 020106贸易经济 020107保险 020109金融工程 020110税务 020111信用管理 020112网络经济学 020113体育经济 020114投资学 020115环境资源与发展经济学 020116海洋经济学 020117国际文化贸易 020120经济与金融 03法学 0301法学类 030101法学 030103知识产权 030120监狱学 0302马克思主义理论类 030201科学社会主义与国际共产主义运动030202中国革命史与中国共产党党史0303社会学类 030301社会学 030302社会工作 030303家政学 030304人类学 030305女性学 0304政治学类 030401政治学与行政学 030402国际政治 030403外交学 030404思想政治教育 030405国际文化交流 030406国际政治经济学 030407国际事务 0305公安学类 030501治安学 030502侦查学 030503边防管理 030504火灾勘查 030505禁毒学 030506警犬技术 030507经济犯罪侦查 030508边防指挥 030509消防指挥 030510警卫学

030511公安情报学 030512犯罪学 030513公安管理学 030514涉外警务 04教育学 0401教育学类 040101教育学 040102学前教育 040103特殊教育 040104教育技术学 040105小学教育 040106艺术教育 040107人文教育 040108科学教育 040109言语听觉科学 040110华文教育 0402体育学类 040201体育教育 040202运动训练 040203社会体育 040204运动人体科学 040205民族传统体育 040206运动康复与健康 040207休闲体育 0403其他类 040301农艺教育 040302园艺教育 040303特用作物教育 040306畜禽生产教育 040307水产养殖教育 040308应用生物教育 040311农产品储运与加工教育040312农业经营管理教育040313机械制造工艺教育040314机械维修及检测技术教育040315机电技术教育 040316电气技术教育 040317汽车维修工程教育040318应用电子技术教育040322食品工艺教育 040328建筑工程教育 040329服装设计与工艺教育040330装潢设计与工艺教育040331旅游管理与服务教育040332食品营养与检验教育040333烹饪与营养教育 040334财务会计教育 040335文秘教育 040336市场营销教育 040337职业技术教育管理 05文学 0501中国语言文学类 050101汉语言文学 050102汉语言 050103对外汉语 050104中国少数民族语言文学050105古典文献 050106中国语言文化 050107应用语言学

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

精脱硫系统催化剂与转化催化剂的升温与还原复件

精脱硫转化系统开车方案及操作规程 第一节精脱硫转化系统生产原理及流程 一、原理 1、精脱硫原理 通过铁钼触媒及镍钼触媒将焦炉气中的硫醇(RSR,噻吩(GH4S)、二硫化碳(CS)、硫氧化碳(COS等有机硫加氢转化成无机硫HS、不饱和烃加氢转化为饱和烃;再利用铁锰脱硫剂及氧化锌脱硫剂,除去HS,使焦炉气硫含量w O.lppm。 (1)加氢反应 RSH+H2=RH+H2S +Q;RSR ' +H=RH+R H+HS+Q C4H4S+4H2=C4H10+H2S+Q; CS 2+4H2=CH4+2H2S+Q COS+2H=CO+2HS C 2H4+H2=C2H6+Q 生产中铁钼触媒在进行上述反应的同时还存在以下副反应: CO+3H2=CH4+H2 O+Q (甲烷化反应) 2 H+O=2HO+Q( 燃烧反应) C2H4=C+CH4 +Q(析碳反应) 2CO=C+C2+OQ(析碳反应) 生产中加氢反应及副反应均为放热反应,在操作中应控制好触媒层温度。铁钼触媒主要的副反应是甲烷化反应,因此操作中要注意原料气中CO含量的变化。 (2)脱硫反应

①铁锰脱硫剂对H2S的吸收反应: FeS+H2S=FeS2+H2 MnO+2HS=MnS+2HO Mn S+2S= MnS+H ②氧化锌脱硫剂对硫的吸收反应: Zn O+bS=Z nS+bO 2、转化原理 在焦炉气中加入水蒸汽,在一定压力及温度下,通过催化剂作用, 生成合成甲醇有用的H2、CO及CQ。 转化反应:CH4+H2O= C0+3出Q CO+ H 20= CQ+H2+Q CH 4 = C+2H— Q 二、流程 1 、精脱硫转化系统流程叙述 来自焦炉气压缩机(C201)的焦炉气含H b S< 20mg/Nm有机硫 250mg/Nm其压力为2.5MPa温度100?110C。焦炉气通过两台并联的脱油剂槽(D106a、b)脱除掉焦炉气中的油水之后进入冷热交换器 (E104),被来自铁锰脱硫槽D103a D103b的一级脱硫气第一次加热;然后进入原料气第一预热器(E101)被来自转化气废热锅炉(E105)的转化气第二次加热;再经原料气第二预热器(E102)被来自气气换热器

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

再生资源科学与技术专业毕业实习周记范文原创全套

再生资源科学与技术专业毕业实习周记全 套 (本人在再生资源科学与技术专业相关岗位3个月的实习,十二篇周记,总结一篇,全部原创,共6500字,欢迎下载参考) 姓名:杜宗飞 学号:2011090118 专业:再生资源科学与技术专业 班级:再生资源科学与技术专业01班 指导教师:赵晓明

第1周 作为再生资源科学与技术专业的大学生,我很荣幸能够进入再生资源科学与技术专业相关的岗位实习。相信每个人都有第一天上班的经历,也会对第一天上班有着深刻的感受及体会。尤其是从未有过工作经历的职场大学们。 头几天实习,心情自然是激动而又紧张的,激动是觉得自己终于有机会进入职场工作,紧张是因为要面对一个完全陌生的职场环境。刚开始,岗位实习不用做太多的工作,基本都是在熟悉新工作的环境,单位内部文化,以及工作中日常所需要知道的一些事物等。对于这个职位的一切还很陌生,但是学会快速适应陌生的环境,是一种锻炼自我的过程,是我第一件要学的技能。这次实习为以后步入职场打下基础。第一周领导让我和办公室的其他职员相互认识了一下,并给我分配了一个师父,我以后在这里的实习遇到的问题和困难都可以找他帮忙。 一周的时间很快就过去了,原以为实习的日子会比较枯燥的,不过老实说第一周的实习还是比较轻松愉快的,嘿嘿,俗话说万事开头难,我已经迈出了第一步了,在接下去的日子里我会继续努力的。生活并不简单,我们要勇往直前!再苦再累,我也要坚持下去,只要坚持着,总会有微笑的一天。虽然第一周的实习没什么事情,比较轻松,但我并不放松,依然会本着积极乐观的态度,努力进取,以最大的热情融入实习生活中。 虽然第一周的实习没什么事情,比较轻松,但我并不放松,依然会本着积极乐观的态度,努力进取,以最大的热情融入实习生活中。 第2周 过一周的实习,对自己岗位的运作流程也有了一些了解,虽然我是读是再生资源科学与技术专业,但和实习岗位实践有些脱节,这周一直是在给我们培训那些业务的理论知识,感觉又回到了学校上课的时候。虽然我对业务还没有那么熟悉,也会有很多的不懂,但是我慢慢学会了如何去处理一些事情。在工作地过程中明白了主动的重要性,在你可以选择的时候,就要把主动权握在自己手中。有时候遇到工作过程中的棘手问题,心里会特别的憋屈,但是过会也就好了,我想只要积极学习积极办事,做好自己份内事,不懂就问,多做少说就会有

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

钴钼系耐硫变换催化剂使用注意事项

K8-11系列催化剂使用注意事项 一、催化剂的使用 1.1 催化剂的装填 装填催化剂之前,必须认真检查反应器,保持清洁干净,支撑栅格正常牢固。为了避免在高的蒸汽分压和高温条件下损坏失去强度,催化剂床层底部支撑催化剂的金属部件应选用耐高温和耐腐蚀的惰性金属材料。惰性材料应不含硅,防止高温、高水汽分压下释放出硅。 催化剂装填时,通常没有必要对催化剂进行过筛,如果在运输及装卸过程中,由于不正确地作业使催化剂损坏,发现有磨损或破碎现象必须过筛。催化剂的装填无论采取从桶内直接倒入,还是使用溜槽或充填管都可以。但无论采用哪一种装填方式,都必须避免催化剂自由下落高度超过1米,并且要分层装填,每层都要整平之后再装下一层,防止疏密不均,在装填期间,如需要在催化剂上走动,为了避免直接踩在催化剂上,应垫上木版,使身体重量分散在木版的面积上。 一般情况下,催化剂床层顶部应覆盖金属网和/或惰性材料,主要是为了防止在装置开车或停车期间因高的气体流速可能发生催化剂被吹出或湍动,可能由于气体分布不均发生催化剂床层湍动,损坏催化剂。 由于高压,原料气密度较大,为了尽可能的减小床层阻力降,应严格控制催化剂床层高度和催化剂床层高径比。通常催化剂床层高度应控制在3~5m;催化剂床层高径比控制在1.0~1.8。 1.2 开车 1.2.1 升温 为防止水蒸气在催化剂上冷凝,首次开车升温时,应使用惰性气体(N 2、H 2 、 空气或天然气)把催化剂加热到工艺气露点以上温度,最好使用N 2 。 采用≤50℃/h的升温速度加热催化剂,根据最大可获得流量来设定压力,从而确保气体在催化剂上能很好分布。在通常情况下,气体的有效线速度不应小于设计值的50%,但也不应超过设计值。 当催化剂床层温度达到100℃~130℃时,恒温2~3小时排除吸附的物理水,然后继续升温至200℃~230℃时,进行下一步的硫化程度。如果最初加热选用的是空气,在引入硫化气之前,必须用氮气或蒸汽吹扫系统,以置换残余氧气。硫化气的切换基本上在常压或较高压力下进行,这取决于气流的方便。 1.2.2 硫化 与铁铬系催化剂的还原相似,钴钼系耐硫变换催化剂使用前一般需要经过活化(硫化)方能使用,硫化的好坏对硫化后催化剂的活性有着重要作用。 如果工艺气中的硫含量较高,一般使用工艺气直接硫化时,硫化过程中可能发生下述反应: CoO+H 2S ? CoS+H 2 O ?H0 298 =-13.4KJ/mol (1) MoO 3+2H 2 S+H 2 ? MoS 2 +3H 2 O ?H0 298 =-48.1KJ/mol (2) CO+H 2O ? CO 2 +H 2 ?H0 298 =-41.4KJ/mol (3) CO+3H 2? CH 4 +H 2 O ?H0 298 =-206.2KJ/mol (4) 硫化过程为了使产生的热量尽可能小,便于硫化温度控制,在硫化过程中应尽可能地抑制这后两个反应,特别是反应(4),通常催化剂转化成硫化态后,对反应(3)是有利的,但催化剂为氧化态时,并在较高的压力下,即开车的初期

2018资源循环科学与工程专业就业方向与就业前景分析

2018资源循环科学与工程专业就业方向与就业前景分析 资源循环科学与工程专业面向国家节能减排、循环经济、低碳经济等战略性新兴产业需要,适应未来科技发展,培养系统掌握资源循环科学与工程基础理论知识,具有宽厚的专业知识、实践能力和良好的科学素养,能在资源循环利用、能源开发与利用以及循环经济等领域的高等院校、科研机构、政府机关、工矿企业等部门从事资源循环利用的科学研究、规划管理、技术研发等工作的高级复合型人才。 2、资源循环科学与工程专业就业方向 本专业学生毕业后可从事医药产品的生产、科技开发、应用研究和经营管理等方面工作 从事行业: 毕业后主要在新能源、环保、互联网等行业工作,大致如下: 1新能源 2环保 3互联网/电子商务 4广告 5机械/设备/重工 6非盈利机构 7专业服务(咨询、人力资源、财会) 8中介服务 从事岗位: 毕业后主要从事销售工程师、设备工程师、等工作,大致如下: 1销售工程师

2设备工程师 3研发工程师 4验证工程师 5qa 6工艺工程师 7销售经理 8制剂研究员 工作城市: 毕业后,哈密、南京、深圳等城市就业机会比较多,大致如下: 1哈密 2南京 3深圳 4福州 5上海 6北京 7厦门 8成都 3、资源循环科学与工程专业就业前景 学生就业有多种选择,可以在国家和北京市企事业单位、外资企业、上市公司中就业;通过出国留学、推荐或考取研究生、双学位、工程硕士等多种途径进一步深造。我院已经形成了本科生、硕士研究生、博士研究生培养的完整体系,每年招收硕士研究生约120人,博士研究生约30人,为本科生的学习和深造提供了广阔的空间。学生就业行业分布广泛,本专业毕业的学生可在资源循环、以及与资源综合利用相关的建材、冶金、新材料产业、原材料产业等行业从事工业规划、技术开发、工艺及设备设计、清洁生产评估与咨询等工作。 资源循环科学与工程和它的“同胞兄弟”再生资源科学与技术专业相比,更加重了对实践能力的锻炼。以南开大学为例,该校的资源循环专业主要教授

加氢裂化催化剂的基本组成和性质

加氢裂化催化剂的基本组成和性质 刘卫星刘冬梅高强 (江苏联东化工股份有限公司,江苏丹阳,212300)[摘要] 随着世界燃油规范Ⅳ类标准的实施,以及对化工原料需求的增长, 加氢裂化催化剂引起了更广泛的重视。介绍加氢裂化催化剂的基本组成和性质,深入剖析各组分对加氢裂化催化剂反应性能的影响。 [关键词] 加氢裂化;酸性载体;催化剂 1 加氢裂化催化剂的组成 加氢裂化催化剂是一种典型的双功能催化剂,具有加氢功能和裂解功能。加氢功能和裂解功能两者之间的协同决定了催化剂的反应性能。加氢裂化催化剂中的基本组成包括加氢活性组分、裂化活性组分、载体、助剂。 1.1 加氢活性组分 加氢功能主要来源于具有加氢活性功能的活性相。含Pt、Ni等还原态催化剂一般用氢气还原,而硫化型催化剂的活化,一般是指催化剂的原位预硫化,原位预硫化后,活性金属从氧化态变成硫化态,有利于提高催化剂的活性和稳定性。 各类加氢活性组分的活性顺序是不同的。活性由高到低顺序如下:贵金属>过渡金属硫化物>贵金属硫化物。贵金属组分中,Pt、Pd等元素具有极强的加氢活性,贵金属催化剂主要用于石脑油的催化重整,环烷烃脱氢,环烷烃异构化等反应中,因贵金属极易在硫、氮的环境中中毒,故在工业装置上贵金属加氢催化剂填于两段工艺的第二段。非贵金属组分中,ⅥB族(Mo、W)和Ⅷ族(Ni、Co)的几种金属的硫化物具有强的加氢活性。硫化型催化剂的加氢机理见图1。 图1 DBT在Mo/Al2O3催化剂上HDS机理 由图1可知,催化剂表面上硫原子在氢气作用下形成-SH,相邻的-SH形成H2S后,在催化剂表面形成阴离子空穴,DBT通过硫原子连在催化剂表面的阴离

T202型铁钼有机硫加氢转化催化剂的硫化工艺

T202型铁钼有机硫加氢转化催化剂的硫化工艺 T202型铁钼有机硫加氢转化催化剂的硫化工艺 童庆慧,潘利新 (黑龙江黑化集团有限公司,黑龙江齐齐哈尔161041)摘要:介绍了T202 型铁钼有机硫加氢转化催化剂硫化工艺的应用情况,阐述了以CS2为硫化剂时的操作要点,指出在系统外硫化工艺可以提高经济效益,工艺管线改造后使干法脱硫槽可以根据生产实际情况倒换,无需停车。 关键词:焦炉气;硫化反应;硫化剂 中图分类号:TQ 113 文献标识码:A 文章编号:1004-0935(2013)07-0877-03 黑龙江黑化集团有限公司硝铵厂合成氨系统是以焦化厂副产焦炉气为原料生产合成氨,设计生产能力为55 kt/a, 经过技术改造,生产能力达到65kt/a。焦炉气中硫的存在除了会毒害催化剂外,还会腐蚀设备和管道,因此原料气的净化脱硫是很重要的一步。有机硫的脱除多采用加氢转化脱除方法。加氢转化催化剂的作用在于使烃类原料中所含的有机硫化合物产生氢解反应,转化成易于脱除的无机硫(主要是硫化氢),以便进一步除去。焦炉气中有机硫组份较复杂,多用铁钼催化剂。国内常用的铁钼加氢转化多为T202 型,系用γ-Al2O3 担载2.9%~4.3% Fe2O3 和7.5%~10.5% MoO3。 1·催化剂的装填及升温硫化 1.1 催化剂的装填 在加氢转化反应器中,T202 型有机硫加氢催化剂一般分三段填装。按照触媒装填要求,每一层下面覆二层白钢网,网上压大小瓷球各一层,然后装触媒,触媒上再压大小瓷球各一层。最下面一层装触媒106 桶计4.24 t。中层装触媒130 桶计5.2 t。上层连中心管装触媒161 桶计6.44 t。共计397 桶,总计15.88 t。下层装完瓷球后距人孔100 mm,中层距人孔150 mm,上层距中心管上端100 mm。 1.2 催化剂的升温硫化 T202 型催化剂在未硫化前其金属组分铁和钼为氧化态,对一氧化碳含量高的原料气甲烷化副反应较大,同时,对有机硫化物虽有一定活性,但活性不稳定,而且活性较硫化态的低,因此,T202 型催化剂在使用前必须进行硫化处理。 我公司的硫化方法在2007 年以前用焦炉气中的硫进行硫化,之后用二硫化碳作为硫化剂,加到焦炉气中,由于客观条件限制,无法采用循环方式进行硫化,因此二硫化碳用量比循环方式有所浪费。大多数加氢催化剂完成硫化需用硫(0.06~0.09)kg/kg 催化剂,但实际加入硫量需按过量20%左右考虑,即以(0.07~0.11)kg/kg 催化剂为宜,以确保硫化安全,因此我公司购进2 t 二硫化碳作硫化剂。 1.2.1 硫化流程 焦炉气流程:小铁钼→2#铁钼→放空。CS2 流程:干法冷激气→CS2 贮罐→2#小铁钼。 1.2.2 升温硫化时间表(见表1) 1.3 硫化过程 ⑴置换合格后系统引入焦炉气,按升温要求将床层温度升至200 ℃后恒温,恒温期间将各温度点拉齐。 ⑵当床层温度拉齐后开始向系统加CS2,用针型阀控制加入量。并逐渐将压力提至1.0 MPa 以上。 ⑶硫化初期:CS2 加入少量,以工焦气3 000m3/h,入口CS2 浓度2 000×10-6。通过

2019年再生资源科学与技术专业大学排名

2019年再生资源科学与技术专业大学排名 篇一:2019年大学十大热门专业排行榜 2019年大学十大热门专业排行榜 专业专注度代表着专业的热门程度,关注度越高的专业往往是高考报考的热门专业,本文依据新浪院校库专业的浏览量进行排序,统计出最受考生关注的10大高考专业,供考生和家长报考时参考,这些专业是:金融学、土木工程、国际经济与贸易、机械设计制造及其自动化、会计学、经济学、电气工程及其自动化、临床医学、法学、英语。NO.1金融学 金融学是从经济学中分化出来的应用经济学科,是以融通货币和货币资金的经济活动为研究对象,具体研究个人、机构、政府如何获取、支出以及管理资金以及其他金融资产的学科。 金融学专业主要培养具有金融保险理论基础知识和掌握金融保险业务技术,能够运用经济学一般方法分析金融保险活动、处理金融保险业务,有一定综合判断和创新能力,能够在中央银行、商业银行、政策性银行、证券公司、人寿保险公司、财产保险公司、再保验公司、信托投资公司、金融租赁公司、金融资产公司、集团财务公司、投资基金公司及金融教育部门工作的高级专门人才。 金融学主要学习货币银行学,方向有货币银行学、商业银行经营管理、中央银行、国际金融、国际结算、证券投资、投资项目评估、投资银行业务、公司金融等。

金融学专业毕业生总体上的就业方向有经济分析预测、对外贸易、市场营销、管理等,如果能获得一些资格认证,就业面会更广,就业层次也更高端,待遇也更好,比如特许金融分析师(CFA)、特许财富管理师(CWM)、基金经理、精算师、证券经纪人、股票分析师等。 中国人民大学金融学的整体实力最强,各个分科目实力平均;北京大学侧重金融管理;厦门大学侧重货币银行、金融工程;复旦大学是仅次于人大的金融综合性大学,尤其是国际金融表现突出;对外经 济贸易大学国际金融专业实力强,十分注重抓英语;南开大学的保险精算全国最好;中央财经大学具有区位优势,有好的学校条件;湖南大学是全国最早引入保险精算的学校;西南财经大学该专业为国家级重点学科;西安交通大学该专业为中国人民银行直属院校重点专业;上海财经大学金融学科在全国的金融教学和学术研究领域具有较高的声望和较大的影响;中南财经政法大学的金融证券实力强大,是国内研究方向最齐全,专业最全的学科;清华大学金融工程、微观金融走在我国最前列。 NO.2土木工程 所谓的大土木。是指一切和水、土、文化有关的基础建设的计划、建造和维修。现时一般的土木工作项目包括:道路、水务、渠务、防洪工程及交通等。过去曾经将一切非军事用途的民用工程项目,归类入本类,但随着工程科学日益广阔,不少原来属于土木工程范围的

相关主题