搜档网
当前位置:搜档网 › 小电流接地系统发生单相接地故障的处理

小电流接地系统发生单相接地故障的处理

小电流接地系统发生单相接地故障的处理
小电流接地系统发生单相接地故障的处理

小电流接地系统发生单相接地故障的处理

第1条单相接地故障的现象

1.1 警铃响,“母线接地”告警;

1.2 绝缘检查电压表三相电压指示不平衡,接地相电压降低或为零,其它两相电压升高或为线电压,此时为稳定接地;

1.3 若绝缘监察电压表指针不停的摆动,则视为弧光间歇性接地故障。

第2条单相接地故障的分析判断

小电流接地系统发生单相接地故障时,将会导致三相电压不平衡。完全接地时,故障相电压为零,其它两相电压升高至线电压;不完全接地时,故障相电压下降, 其它两相电压升高。当出现接地告警时,应认真检查三相电压情况以做出正确判断,严禁将以下情况误判断为接地故障,具体有:

2.1 TV一次、二次保险熔断器或TV二次回路断线引起得三相电压指示不平衡。

2.2 空投母线时造成的电压不平衡误发接地告警。

第3条电网中允许带接地故障的运行时间

3.1 电网经消弧线圈接地时,其允许带接地时间运行的时间为取决于制造厂家的技术规定;

3.2 6-35kV配电网一点接地,允许其运行时间不超过2小时。

第4条单相接地故障的处理

当发生单相接地故障时,应首先详细检查站内设备无异常,确认本站设备无异常,可向调度申请进行拉路检查,查找时两人进行,一人监视电压,一人进行拉路。具体处理过程如下:

1、记录接地时间,判明是否真接地及接地相别;

2、将接地情况(接地时间、性质、相别、仪表指示、电压情况等)向值班调度员汇报。

3、当两段母线并列运行时,先断开母线分段开关,判明接地母线;

4、检查站内设备无接地异常;

5、按调度令进行拉路检查,拉路前制定好拉路顺序。一般拉路顺序为;

(1)先架空线路后电缆线路,空载线路后负载线路,先长线路后短线路;

(2)先一般用户,后重要用户;

(3)先无保安电用户,后有保安电用户;

6、当拉完所有出线后接地故障仍查不到接地线路,则有可能是接地点在母线上或两条以上线路同名相接地。

(1)如接地点在母线上时,根据调度命令,将接地母线撤出运行,排除故障后恢复对外供电;

(2)如接地为不同线路同相接地,可根据调度令先将母线停电,然后用试送电的方法判别接地线路。第5条单相弧光接地故障处理

发生弧光接地时,经调度同意,可使用人工接地方法恢复弧光接地点的介质强度,人工接地时需特

别注意人工接地相必须与弧光接地故障相别相同,防止造成两相短路故障跳闸,具体处理方法如下:

1、记录接地时间,判明是否真接地及接地相别;

2、将接地情况(接地时间、性质、相别、仪表指示、电压情况等)向值班调度员汇报。

3、当两段母线并列运行时,先断开母线分段开关,判明接地母线;

4、检查站内设备无接地异常;

5、根据调度令按顺序进行拉路检查,判明接地线路。

6、当弧光接地发生再出线开关至母线范围时,可用旁路开关人工接地进行处理:

(1)确定接地相;

(2)检查旁路开关、刀闸在断开位置;

(3)在旁路开关与旁路刀闸之间的故障同相上人工接地;

(4)将旁路开关转运行;

(5)检查弧光接地消失;

(6)拉开旁路开关及刀闸;

(7)拆除人工接地线。

第6条处理接地故障时的注意事项

1、检查站内设备时,应穿绝缘靴,接触设备外壳,构架及操作时,应戴绝缘手套。

2、当接地运行时,应严密监视该设备特别是电压互感器的运行状况,防止其发热严重而烧坏,注意高压保险是否熔断。

3、监视消弧线圈的运行状况。消弧线圈有故障时,应先投入备用变压器,故障变压器停电后拉开消弧线圈刀闸。严禁在有接地故障时,拉开消弧线圈刀闸。

4、系统带电接地故障运行,一般不得超过2h。

5、发现接地设备消弧线圈故障或严重异常,应立即断开故障线路。

6、用“瞬停法”查找故障线路时,无论线路上有无故障,均应立即合上,瞬停时间应小于10S。

7、如在大风、雷雨天气系统频繁瞬时接地,可将不重要、易出现故障,分支多的线路停电10—20min,若观察不再出现瞬时接地,风雨停后再试送电。

直流系统故障处理

第1条直流接地处理

直流接地为直流系统常见故障,发生直流接地时将威胁变电站的安全运行,有可能造成继电保护装置误动、拒动、烧断熔断器熔丝和继电器触点烧损,必须尽快检查处理。

1.1 直流接地现象:

“直流接地”告警,无法复归时,用接地选择开关发现正极或负极对地电阻下降。

1.2 直流接地故障的处理:

直流系统接地时,应检查是否由于工作人员误碰造成,然后分析可能造成直流接地的其它原因,经调度许可后用瞬停法查找:

(1)停止直流回路上的一切工作;

(2)先查找事故照明回路、信号回路、充电机回路,后查找其他回路;

(3)对于操作和保护不分开的站,先查找主合闸,后查找操作回路,对于操作和保护分开的站,应先查找操作回路,后查找保护回路;

(4)先查找室外回路,再查找室内回路;

(5)按设备电压等级从低到高查找。

1.3 处理直流接地故障注意事项:

(1)直流接地时,禁止在二次回路上工作;

(2)查找接地时必须两人以上进行;

(3)查找直流接地时应使用高内阻电表进行,应防止两点接地,造成直流短路。

第2条“交流过欠压”告警的检查处理步骤

1、是否已经失去380V所用电,如果是,则应尽快设法恢复所用电;

2、检查所用电配电屏上的充电屏电源的三相保险是否正常,有否某相或三相熔断现象,保险管与保险座是否都接触良好,如果发现有熔断现象,应立即换上同规格的保险;

3、如果再次熔断,应检查电缆及充电机屏是否有短路现象;

4、如果检查不出的应立即汇报调度及管理所。

“整流模块告警”、“电池告警”、“模块交流电源告警”时,按直流系统日常巡视检查项目检查,能处理的立即处理,不能处理的汇报管理所。

第3条“控母过欠压”的检查处理步骤

1、检查控制母线电压表指示是否正常,如果电压表指示母线电压正常,则应是监控模块发生故障,应立即汇报管理所;

2、如果母线电压不正常,应进行以下检查

1)电压过高

――检查充电电压是否过高;

――检查调压开关是否在适当位置;

――检查硅链外观是否有异常现象,如果通过调节开关调节时控制母线电压不变,则说明硅链已经被击穿。

2)电压过低

――应检查充电机是否正常,是否已经停机;

――用万用表检查蓄电池端电压是否正常;

――如果蓄电池端电压不正常,应在充电屏上检查浮充电压是否正常,是否发生过充电机长时间停电,造成欠充电;

――检查蓄电池组外观是否有损坏现象。

3)电压调节装置档位不对或由于长时间停电造成欠充电,应将其打到控制母线正常的档位;

4)当检查是由于充电机故障、硅链击穿、电池损坏时应立即汇报本管理所;

站用电系统故障处理

第1条发现时,应做如下检查:

1、站用变受电电压是否超过额定值。

2、站用变供电系统是否有接地现象。

3、站用变有无过负荷。

第2条遇下列情况时站用变应加强监视,记入运行记录簿及有关记录薄并立即汇报值班调度员和管理所:

1、过负荷超过额定容量的30%。

2、内部声音异常或音响特别,如响声不均匀,有爆裂声等。

3、外壳漏油使得油面下降或上盖掉落杂物,危及安全运行。

4、油色显著变化,从油标处可观察出。

5、套管出现裂纹或不正常的电晕现象。

第3条当站用变失电时,有自动切换的,应检查自动切换良好;如无自动切换,应手动切换恢复站用电,将失电站用变退出检查处理。

第4条站用变高压侧保险熔断后,应判明是内部故障还是外部故障,内部故障应将站用变退出检查处理,如是外部故障应在故障消除后恢复供电。

第5条所用电馈线故障保险熔断,应检查消除故障后,更换保险恢复供电,禁止随意加大保险容量。

系统振荡时的处理

第1条系统振荡的原因

1.1 电力系统静态稳定或动态稳定的破坏;

1.2 两电源之间非同步合闸未能拖入同步和发电机失去励磁等。

第2条系统振荡时的现象

2.1 电压、电流、有功功率和无功功率表指示出现周期性地剧烈摆动,送电端系统频率升高,受电端系

统频率降低,并略有摆动。

2.2 电压波动大,照明忽明忽暗,硅整流可能跳闸。

2.3 主变压器发出周期性的轰鸣声。

2.4 当系统静稳定或动稳定破坏后,系统振荡时,若变电站处于振荡的中心,电压摆幅最大并周期性的降为零。

第3条系统振荡的处理

1、系统出现非周期振荡时,运行值班人员应立即向当值调度汇报,并对其设备加强监视,听候调度处理。

2、系统振荡发生后,值班员应立即同调度取得联系,密切关注仪表变化,并在值班调度远统一指挥下进行必要的解列操作和紧急拉路。

3、当变电站联络线断路器跳闸,如果两侧均有同期并列条件时,值班人员无需调度命令可自行进行同期并列操作,然后再汇报调度。

4、系统解列后,在系统事故情况下,为加速同期并列和根据调度命令允许经长距离输电线路联络两个系统电压相差20%,频率相差0.5HZ进行同期并列。

MATLAB对小电流接地系统单相故障的仿真

38 2009年第7期 科园 的管理能力。针对企业领导层、管理层、技术研发层、操作层等不同层次的人员,以培训班、研讨会、专题讲座等多种形式,开展技术创新、信息安全、商业秘密、成果申报、专利申报、科技论文撰写等方面的系统培训。 6.应对侵权纠纷 企业不仅要学会应用法律武器来保护自己的知识产权,而且也要学会如何处理专利侵权纠纷。当事人可以通过以下途径进行解决:一是双方当事人协商;二是双方当事人在第三人(管理专利行政部门、人民调解委员会、律师等双方信任的机关或者个人)的协助下调解;三是请求管理专利行政部门处理;四是向仲裁机构申请仲裁;五是向人民法院起诉。由此可见,当面临专利侵权纠纷时,企业可选择的应对办法很多。企业要利用专利权保护自己,就必须学习、了解和熟悉专利制度。 7.专利档案保管 企业在申请专利并得到授权后,要及时做好专利档案资料的收集、整理、归档和保管工作。项目完成单位要在取得专利证书后一个月内将申请文件报送主管业务部门,移交档案室归档。需归档的申请文件分两类:一类是技术文件,包括请求书、权利要求书、说明书、说明书附图、说明书摘要和摘要附图等;另一类是程序文件,包括受理通知书、补正书、审查意见通知书、授权通知书、交费通知书和专利证书等。同时,对工程(项目)设计文件、竣工资料、竣工图、验收证书,以及专业期刊、出版物等,都要注意收集、整理、归档,以便查找利用,为企业生产经营提供高效服务。 (作者单位:中铁四局集团有限公司) 责任编辑:潘勇 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 我国配电网接方式通常采用中性点非有效接地(NUGS ),它包括中性点不接地系统(NUS ),经消弧线圈接地系统(NES)和经电阻接地系统(NRS ),因为这样的接线方式在发生单相接地故障时接地电流比较小,所以称其为小电流接地系统。由于故障点电流很小,而且三相之间的线电压仍然保持对称,对负荷的供电没有影响,因此,在一般情况下都允许再继续运行1~2小时,而不必立即跳闸,这也是采用中性点非有效接地运行的主要优点。但是,为了防止故障扩大,就应及时发出信号,以便运行人员采取措施予以消除。 1.故障的示意图和仿真图 在采取措施前,必须弄清到底哪一相发生了故障,图1中a 是简单的中性点不接地系统单相故障的示意图,设A 相接地短路。图1中b 是MATLAB 仿真模块,设 0.05s 故障发生,0.25s 故障排除,总的模拟 时间是0s~0.3s 。通过调节3-phase Fault 的过渡电阻的阻值来模拟接地电阻;通过调节3-phase Fault 的选项来仿真不同的相的接地;同时还可以通过调整线路模型参数来模拟不同的距离、阻抗等接地。 2.仿真参数 三相电源电压是10kv ,频率是60Hz 。取每条线路长度不等,L1=300km ,L2= MATLAB 对小电流接地系统单相故障的仿真 尹 润张庆生 摘 要:在小电流接地系统中发生单相接地时,虽然故障点电流很小对负荷的供电没有太多影响,但是其他两相的 接地电压升高了,为了防止故障进一步扩大成两点或多点接地短路,应及时采取措施予以消除。MATLAB 是对系统进行仿真,通过零序电流和零序电压的波形对系统进行分析,从而推断出哪相发生故障。 关键词:小电流接地仿真零序电流零序电压 a.示意图 b.仿真图 图1 中性点不接地系统单相故障 一、引言 二、中性点不接地系统单相接地故障

小电流接地系统接地故障分析

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压 升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性点不接地系统正常运行时,各相线路对地有相同的对地电容C0,在相电压作用下,每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是

架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向,每相对地电压就等于相电压。 图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对 地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = - U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC = U A’jwC0,I BC = U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相

大电流接地系统与小电流接地系统

大电流接地系统与小电流接地系统(不接地系统)发生故障的区别,对系统设备运行的影响,处理原则和注意事项。 中性点直接接地(包括经小阻抗接地)得系统,当发生单相接地故障时,接地电流一般都比较大,所以称为大电流接地系统.一般110kv及以上的系统采用大电流接地系统。 中性点不接地或经消弧线圈接地的系统,发生单相接地故障时,由于不构成短路回路,接地短路电流比负荷电流小很多,这种系统称为小电流接地系统。一般66kv及以下系统常采用这种系统 1 中性点不接地电网的接地保护 中性点不接地系统的接地保护、接地选线装置 (1) 系统接地绝缘监视装置:(陡电6.0KV厂用电系统) 绝缘监视装置是利用零序电压的有无来实现对不接地系统的监视。 将变电所母线电压互感器其中一个绕组接成星形,利用电压表监视各相对地电压,另一绕组接成开口三角形,接入过电压继电器,反应接地故障时出现的零序电压。 当发生单相接地故障时,开口三角形出现零序电压,过电压继电器动作,发出接地信号。 该保护只能实现监测出接地故障,并能通过三只电压表判别出接地的相别,但不能判别出是哪条线路的接地。要想判断故障线路,必须经拉线路试验。且若发生两条线路以上接地故障时,将更难判别。 装置可能会因电压互感器的铁磁谐振、熔断器的接触不良、直流的接地、回路的接触不良而误发或拒发接地信号。(2) 零序电流保护:零序电流保护是利用故障线路的零序电流比非故障线路零序电流大的特点来实现选择性的保护,如DD-11接地电流继电器和南自厂的RCS-955系列保护。 该保护一般安装在零序电流互感器的线路上,且出线较多的电网中更能保证它的灵敏度和选择性。但由于零序电流互感器的误差,线路接线复杂,单相接地电容的大小、装置的误差、定值的误差、电缆的导电外皮等的漏电流等影响,发生单相接地故障线路零序电流二次反映不一定比非故障线路大,易发生误判断、误动。 (3) 零序功率保护: 零序功率方向保护是利用非故障线路与故障线路的零序电流相差180°来实现有选择性的保护。如传统的零序功率方向继电器,无人值守综自所应用的如南瑞DSA113、119系列零序功率方向保护。 零序功率方向保护没有死区,但对零序电压零序电流回路接线等要求比较高,对系统中有消弧线圈的需用五次谐波功率原理。 (4) 小电流接地选线综合装置:

小电流接地故障现象及原因分析通用版

安全管理编号:YTO-FS-PD721 小电流接地故障现象及原因分析通用 版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

小电流接地故障现象及原因分析通 用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短

配电网单相接地故障原因分析

配电网单相接地故障原因分析 发表时间:2018-08-17T13:40:38.403Z 来源:《河南电力》2018年4期作者:赵明露 [导读] 当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 (新疆光源电力勘察设计院有限责任公司新疆乌鲁木齐 830000) 摘要:配电网在电网中使用广泛,其运行的可靠性和安全性对促进社会的发展和提高人民的生活质量有着很大的作用。但是配电网也常出现单相接地故障,对社会经济发展和人民生活质量造成很大的影响。因此本文主要对配电网单相接地故障及处理进行探析,重点分析配电网单相接地故障原因及对电网的影响,同时也提出针对故障处理的一些措施及方法。通过对配电网单相接地故障定位及应用实例的探析指出,当故障发生时,应该灵活运用技术进行分析处理,更好更稳定地管理好电网。 关键词:配电网;单相接地故障;原因分析 导言 针对小电流接地系统过电压等弊端,特别是故障线路选择、故障点定位、测距的困难性,有专家建议我国配电网改用小电阻接地方式。但这样不仅要花费巨额的设备改造费,还丧失了小电流接地系统供电可靠性高的优点。随着社会的发展,对供电质量的要求越来越高,小电流接地方式无疑具有独特的优点。如果能够解决小电流接地故障的可靠检测问题,及时发现接地故障线路,找到故障点,并采取相应的处理措施,减少甚至避免接地故障带来的不良影响,小电流接地方式将是一种理想的模式。因此,研究中低压配电网的单相接地故障特征很有必要。 1配电网单项接地故障的影响 1.1线路影响 配电网发生单项接地故障时,故障点的位置会出现弧光接地,在附近的线路中形成谐振过电压,与正常配电网运行时相比,过电压要高出几倍,超出线路的承载范围,直接烧毁线路,或者是击穿绝缘子引起短路。单项接地故障对配电网线路的影响是直接性的,线路多次处于电压升高的状态,就会加速绝缘老化,配电网线路运行期间,有可能发生短路、断电的情况。 1.2设备影响 单项接地故障产生零序电流,容易在变电设备周围形成零序电压,不仅增加设备内的励磁电流,也会引起过电压的现象,导致设备面临着被烧毁的危害。例如:某室外配电网发生单项接地故障后,击穿变电设备的绝缘子,此时单项接地故障对变电设备的影响较大,导致该地区停电一天,引起了较大的经济损失,更是增加了设备维护的压力。 1.3人为因素造成单相接地故障 由于部分线路沿公路侧架设,道路车流量大,部分驾驶员违章驾驶,造成车辆撞倒、撞断杆塔的事件时有发生。城市转型升级建设步伐加快,伴随着三旧改造,大量的市政施工及基建项目不断涌现,基面开挖伤及地下敷设的电缆,施工机械碰触线路带电部位。因为不法分子这些贪图私利的窃盗行为引发电网故障,造成大规模大范围停电,给社会发展和人们生活带来了极大的影响。 2配电网系统单相接地故障的检测技术应用分析 在对单相接地故障进行检测过程中,传统的故障检测方法因为自身的局限性比较多,因此,需要全新的检测技术开展故障检测。本次研究过程中主要提出了S型注入法和TY型小电流接地系统单性接地选线和定位装置在配电网单项接地故障检测中的应用。 在实际故障检测过程中,首先将处于运行状态下的TV向接地线中注入相应的信号,并通过信号追踪和定位原理直接检查到故障点。设备和技术在实际应用过程中,该装置的原理和传统的故障检测方法存在很大的区别,在具备选线功能的前提下,还应该具备故障定位功能,这项技术在单相接地故障中有着广泛的应用前景。从这种故障诊断装置的组成分析,主要包括了主机、信号电流检测器等几个部分。在检测过程中,主机在信号发出之后,利用TV二次端子接入到故障线路中,从而通过自身的接地点达到回流的目的,主机内部要安装好信号检测器,当配电网系统中出现了接地故障之后,主机中的信号检测器就会自动启动,并向着故障相中输入特殊的故障信号,此时工作人员可以根据这个信号判断出故障点在哪一个位置上。如果配电网系统中某一个线路存在单相接地故障,变电站母线TV二次开口三角绕组输出电压将装置启动,这时装置就会对存在单相接地故障故障点进行自动判断,同时,在与之相对应的TB二次端口中注入220Hz的特殊信号,并利用TV将其转变转化后体现在整个配电网系统中。故障相和大地形成一个完成的回路,并使用无线检测设备对这种信号进行跟踪检测,从而就能实现对故障位置的精确定位。 3处理方法 3.1精准快速查找出故障区间 当发生单相接地故障后,工作人员第一时间要做的是精准快速查找出故障区间,以便后面故障处理行动的开展。因此,如何能精准快速查找出成了重要的问题。针对传统方法很难精准快速查找出故障区间的问题,本文提出的是一种小电流接地系统单相接地故障定位的方法。在供电线路干线和分支线路的出口处均布置零序电流测点,编号各个测点,测量数据。当某条出线线路发生单相接地时,故障相线对地的电压将降低,若是金属性的完全接地甚至能降为0kV,非故障相线对地电压将升高,若是金属性的完全接地甚至能升为线电压。此时利用小电流接地系统单相接地时所产生的零序电流,能准确判断出发生故障的线路及故障区间。利用测点确定故障支路,为后面故障处理工作提供依据。 3.2做好管理层面的预防工作 3.2.1在日常做好线路检修和巡视工作,采用定期和不定期的巡视方式,及时排出线路中可能存在的隐患,尤其是要注意高大建筑物、树木和线路之间的安全距离,做好绝缘子加固、更换工作,保证线路达到标准化程度,做好防雷击保护工作。 3.2.2在不同的运行环境应该采用合适的运行和维修措施,尤其是在容易受到污染的区域,要保证绝缘设备的绝缘能力,提高绝缘子的抗电压水平,这样才能更好地促进整个电网绝缘性能的提升。 3.3严谨快速抢修 当工作人员找出精准故障区间后,在天气晴朗条件允许的情况下,供电部门应及时派出有经验的工作人员快速到达故障地进行抢修。

单相接地故障的特征及处理

单相接地故障的特征及处理 10kV(35kV)小电流接系统单相接(以下简称单相接是配电系统最常见故障,多发生潮湿、多雨天气。树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起。单相接影响了用户正常供电,可能产生过电压,烧坏设备,引起相间短路而扩大事故。,熟悉接故障处理方法对值班人员来说十分重要。 1几种接故障特征 (1)当发生一相(如A相)不完全接时,即高电阻或电弧接,这时故障相电压降低,非故障相电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处电压达到整定值,电压继电器动作,发出接信号。 (2)发生A相完全接,则故障相电压降到零,非故障相电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相指示不为零,这是此相电压表二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小电压指示,但该相实际电压,非故障相仍为相电压。互感器开口三角处会出现35V左右电压值,并启动继电器,发出接信号。 (4)系统中存容性和感性参数元件,特别是带有铁芯铁磁电感元件,参数组合不匹配时会引起铁磁谐振,继电器动作,发出接信号。 (5)空载母线虚假接现象。母线空载运行时,也可能会出现三相电压不平衡,发出接信号。但当送上一条线路后接现象会自行消失。 2单相接故障处理 (1)处理接故障步骤: ①发生单相接故障后,值班人员应马上复归音响,作好记录,迅速报告当值调度和有关负责人员,并按当值调度员命令寻找接故障,但具体查找方法由现场值班员自己选择。 ②详细检查所内电气设备有无明显故障迹象,不能找出故障点,再进行线路接寻找。 ③将母线分段运行,并列运行变压器分列运行,以判定单相接区域。 ④再拉开母线无功补偿电容器断路器以及空载线路。对多电源线路,应采取转移负荷,改变供电方式来寻找接故障点。 ⑤采用一拉一合方式进行试拉寻找故障点,当拉开某条线路断路器接现象消失,便可判断它为故障线路,并马上汇报当值调度员听候处理,同时对故障线路断路器、隔离开关、穿墙套管等设备做进一步检查。 (2)处理接故障要求: ①寻找和处理单相接故障时,应作好安全措施,保证人身安全。当设备发生接时,室内不接近故障点4m以内,室外不接近故障点8m以内,进入上述范围工作人员必须穿绝缘靴,戴绝缘手套,使用专用工具。 ②减小停电范围和负面影响,寻找单相接故障时,应先试拉线路长、分支多、历次故障多和负荷轻以及用电性质次要线路,然后试拉线路短、负荷重、分支少、用点性质重要线路。双电源用户可先倒换电源再试拉,专用线路应先行通知。若有关人员汇报某条线路上有故障迹象时,可先试拉这条线路。 ③若电压互感器高压熔断件熔断,不用普通熔断件代替。必须用额定电流为0.5A装填有石英砂瓷管熔断器,这种熔断器有良好灭弧性能和较大断流容量,具有限制短路电流作用。 3结束语 减少单相接故障给电网运行带来不良影响,要求值班人员熟悉有关运行规程,了解设备运行状况,实践中不断总结经验,提高处理问题能力,还要积极改善设备运行条件,及时消除设备缺陷,保持设备清洁,提高设备绝缘水平。同时,还要加强配电线路检修、维护管理,提高配电线路检修人员技术水平,缩短查找处理接故障时间,尽快恢复对用户供电。

小电流接地故障现象及原因分析(正式版)

文件编号:TP-AR-L2950 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 小电流接地故障现象及 原因分析(正式版)

小电流接地故障现象及原因分析(正 式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1 引言 随着全国农村电网改造工程的全面展开,农村供 电网络健康水平明显提高,小接地电流电网中三相对 地电压不平衡现象是电网异常和故障的反映,电气运 行人员若能正确判断并限制故障发展,迅速排除故 障,则可保证电网安全运行。反之,往往导致配电变 压器电磁式电压互感器烧损、高压熔断器熔断、避雷 器爆炸、导线烧断、线路短路、保护误动、大面积停 电等事故发生。

1 引言 随着全国农村电网改造工程的全面展开,农村供电网络健康水平明显提高,小接地电流电网中三相对地电压不平衡现象是电网异常和故障的反映,电气运行人员若能正确判断并限制故障发展,迅速排除故障,则可保证电网安全运行。反之,往往导致配电变压器电磁式电压互感器烧损、高压熔断器熔断、避雷器爆炸、导线烧断、线路短路、保护误动、大面积停电等事故发生。 2 故障现象判断与分析 2.1 绝缘监视装置自身故障的判断 2.1.1 TV熔断器一相熔断的现象与判断 (1)单相TV接线Y0/Y0/Δ接线时,由于磁路系统为单路回路,如果TV一次侧A相熔断器熔断,则

系统发生单相接地时零序电流与电压之间的关系分析

系统发生单相接地时零序电流与电压之间的关系分析: 将6KV系统简化为上图:用电系统中所有正常线路不止一条,为了容易表达,我们简化为一条线路,假定第二条线路出现接地故障,零序CT安装位置如图中1、2。 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 在正常情况下一次电压,二次电压(测量、开口三角)关系如图:其中UA为一次,Ua为测量二次,Ub0为开口二次电压,各相的向量方向相同。测量线圈电压变比为UA/Ua=UB/Ub=UC/Uc=6000/√3/100/√3=60,即一二次侧相电压之比60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为100/√3,相之间电压为100V。 开口三角线圈的变比为:UA/Ua0=UB/Ub0=UC/Uc0=6000/√3/100/3=60√3,如果系统6000V,则在每只PT的开口三角形线圈中电压为100/3 我们计算零序UL0向量=Ua向量+Ub向量+Uc向量,如果我们假定其中一相电压,另俩相电压与它相差120和240度。即UL0=Umsinwt+Umsin(wt+120)+Umsin(wt+240)=Um(sinwt+sin(wt+120)+sin(wt+240)=Um(sinwt +sinwtcos120+sin120coswt+sinwtcos240+sin240coswt),计算其中cos240=-1/2,COS120=-1/2 ,SIN120=√3/2,SIN240=-√3/2代入上式中得UL0=Um(sinwt-1/2sinwt+√3/2coswt-1/2sinwt-√3/2coswt)=0 正好等于0,即系统正常时开口三角UL0(向量)为0,三相向量正好对称如图所示 如果C相保险熔断,那么C相的向量就等于0,从而有UL0向量=Ua0向量+Ub0向量即= Umsinwt+Umsin(wt+120)=Um(sinwt+sinwtcos120+sin120coswt)=Um(sinwt-1/2sinwt+√3/2coswt)=

小电流接地系统接地故障选线方法 涂少煌

小电流接地系统接地故障选线方法涂少煌 发表时间:2019-09-18T10:09:46.183Z 来源:《电力设备》2019年第7期作者:涂少煌[导读] 摘要:本文简要总结近年来现有的选线的理论方法,对选线方法的原理做了简要分析,并指出了小电流接地系统故障选线的主要侧重方向。 (广州智光电气技术有限公司广州 510760) 摘要:本文简要总结近年来现有的选线的理论方法,对选线方法的原理做了简要分析,并指出了小电流接地系统故障选线的主要侧重方向。 关键词:小电流接地系统;单相接地;故障选线;选线方法 1单相接地故障信号特征的分析 1.1稳态特征信号分析 中性点不直接接地系统发生接地故障时,全系统伴随零序电压的产生会有零序电流产生,所有非故障线路上元件的对地电容电流之和在数值上等于故障线路的零序电流,故障相电流方向从线路流向母线,与非故障线路相反。为了减少故障点处的故障电流,在中性点处接入了消弧线圈,相当于叠加了一个与故障电流相反的感性电流,在实际运行中,由于消弧线圈过补偿的作用,所叠加的感性电流在数值上大于故障电流,使得故障电流方向发生改变与非故障线路相同,由此,使得基于稳态量的选线方法失败。 1.2暂态特征信号分析 配电网发生接地故障时,所产生的故障电流包含的暂态成分比稳态成分多。可以被利用的有效的信息较多,全网络的暂态电容电流相当于2个电容电流之和:放电电流,此电流方向由母线流向故障点处,是由于故障相的电压突然降低而产生;充电电流,该电流通过电源形成回路,是由于非故障相的电压突然升高而产生。一般在相电压接近最大值时刻较多地发生接地故障,此时电容电流远远大于电感电流,消弧线圈补偿作用可以忽略不计,所以可以认为中性点不接地系统和经消弧线圈接地系统发生故障时的暂态特征是相似的,因此利用故障时的暂态特征作为选线的基本依据的重要意义显而易见。 2小电流接地系统故障选线方法 2.1基于稳态分量的选线方法 2.1.1零序电流比幅法 零序电流比幅法所需的特征量是零序电流,是根据系统故障的稳态特征来进行选线,比较母线处各出线零序电流幅值大小,其中幅值最大的线路即为故障线路,此方法比较简单容易实行。但是,当幅健距不大或母线故障时,会造成选线失败,此外还有各种复杂因素的影响,如不平衡的CT,系统运行方式等问题。由于电容电流在中性点经消弧线圈接地系统中被补偿,使得该方法不适用于此系统,但可用于小电流不接地系统,适用范围较小。 2.1.2零序电流相位法 配电网发生接地故障时,该方法利用故障稳态特征选出与各条出线零序电流方向不同的线路作为故障线路。当线路很短且零序电很小时容易产生“时针效应”,在零序电流方向的判断上出现错误。同时,系统运行方式、电流不平衡以及过渡电阻也会对故障线路产生一定程度的干扰。同样,由于消弧线圈的补偿作用可以改变故障线路电流的方向,同零序电流比幅法一样,此方法也不适用谐振接地系统,只能用于不接地系统。 2.1.3群体比幅比相法 该方法是前两个方法的结合。首先比较各条线路的零序电流幅值大小,选出3条以上幅值相对较大的线路,然后再比较它们的相位,方向与其他线路相反的即为故障线路,若所有方向线路都相同则为母线故障。但此方法易受过渡电阻的大小以及CT不平衡等因素的影响,且死区和盲点的存在会对相位的判断产生影响。除此以外,由于是前两种方法的结合,同样只能适用于不接地系统。 2.1.4有功分量法 电网中各条线路存在对地电导,消弧线圈串/并联的电阻在发生故障时,会产生一定有功电流且不能被消弧线圈补偿。以零序电压作为参考量,将有功分量取出,然后利用故障线路零序电流有功分量比非故障线路大且方向相反来选线此方法虽然不受消弧线圈的限制,但接地电流中有功分量的成分较少,降低了检测的灵敏度,且受接地电阻和电流互感器不平衡的影响。 2.2基于暂态分量的选线方法 2.2.1首半波法 此方法最重要的一点就是假设故障发生的时刻是相电压接近峰值的瞬间,此时,暂态电容电流远远大于暂态电感电流。该方法的选线原理是在发生单相接地故障后的首个半周期内,故障线路的零序暂态电流和电压的极性与非故障线路相反。但是如果故障发生在相电压经过零的时刻,暂态电流的信号非常薄弱,特征信号不明显,不易检测。显而易见,该方法有一定的局限性,并且过渡电阻和谐波会造成一定的干扰,降低故障选线的准确性。 2.2.2小波分析法 小波分析理论可以在一定的频带内将暂态信号分解,尤其是对奇异信号和变化不明显的信号应用较好,信号突变部分和信号的奇异点处包含有能清晰反映原始信号中重要信息的成分。而在小电流系统发生接地故障时,暂态信号的奇异处隐藏有较多有价值的故障信息,能清晰地反映故障的暂态特征,所以可以利用小波分析法来分析和提取故障信息。故障发生时电流会突然改变,小波分析法就是利用这一特点来进行选线,首先利用小波奇异性检测的方法对各条线路的暂态零序电流使用小波变换,然后对各条线路的零序电流经过小波变换后的模极大值的峰值和相位进行分析和对比,模极大值最大且相位与其他线路相反的线路即为故障线路。对信号进行小波变换时,也涉及到一些细节选择:小波基函数的选取对小波变换的结果非常关键,要选择紧支集正交性的小波;对故障信号进行小波分解后,选择小波变换细节部分中绝对值幅值最大的点所在的尺度作为分解尺度;信号的采样频率也有相应的要求,应该大于等于信号中最高频率的2倍;还要进行细节分量的重构以及边界的处理。本文认为小波分析在信号处理方面是一种比较理想的数学工具,所以应将小波分析法应用于现场的实际运行中,并结合实际继续深入研究,使得小波分析法能适用于各种类型的单相接地故障的选线。 2.2.3暂态能量法

变电站线路单相接地故障处理及典型案例分析(扫描版)

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

单相接地时零序电流电压分析

下面对系统单相接地时,零序电流与电压之间的关系做简单的分析: 将某用电系统简化为上图:(将所有正常回路简化为第一条回路,假定第二条回路出现接地故障,零序CT安装位置如图中1、2) 下面就分别对第三条回路存在或不存在接地故障情况下,电压及对地电容电流进行分析。 对该系统电压情况分析如下: 一、在正常情况下一次电压,二次电压(测量、开口三角)关系如图: UA(向量)与Ua(向量)、Ua0(向量); UB(向量)与Ub(向量)、Ub0(向量); UC(向量)与Uc(向量)、Uc0(向量); 方向分别相同 在测量线圈中变比为:

即一二次侧电压比为60,即如果系统线电压为6000V,则在每一测量PT的二次线圈中电压为V,两相之间的电压为100V 在开口三角线圈中变比为: 即一二次侧电压比为,即如果系统线电压为6000V,则在每只PT的开口三角 二次线圈中电压为V, UL0(向量)=Ua(向量)+ Ub(向量) +Uc(向量) = = = =0 用向量图的形式表示如下, 由上图也可以看出系统正常时开口三角UL0(向量)为0 二、如果C相保险熔断,那么UC(向量)=0,有 UL0(向量)= Ua0(向量)+ Ub0(向量) = =

= = = =-Uc0(向量) 用向量图的形式表示如下, 可以看出此时开口三角电压与C相电压大小相等,方向相反。即有: 一相保险熔断(无论高压侧低压侧)开口三角电压约为33.3V 同理可知:如果一相保险熔断(无论高压侧低压侧),开口三角电压与该相二次电压大小相等,方向相反。电压约为33.3V 如果两相保险熔断(无论高压侧低压侧),开口三角电压与正常相二次电压大小相等,方向相同。电压约为33.3V 三、如果存在一相金属性接地(假设为C相金属性接地)则有: UA’(向量)=UAC(向量)=UA(向量)-UC(向量) UB’(向量)=UBC(向量)=UB(向量)-UC(向量) UA’(向量)=UAC(向量)=UA(向量)-UC(向量)

小电流接地系统单相故障matlab仿真

Xx学院课程设计说明书设计题目:小电流接地系统单相故障matlab仿真 系(部):机电工程系 专业:自动化 班级: 姓名: x x x 学号: 20 12 年 12 月 12 日

目录 第一章matlab简介 (3) 第二章小电流接地系统单相故障matlab仿真 (4) 2.1小电流接地系统单相故障特点简介 (4) 2.2 小电流接地系统的仿真模型构建 (5) 2.3 仿真结果及分析 (11) 第三章心得与体会 (16) 参考文献 (16)

一Matlab简介 Matlab是由英文单词matri和laboratory的前3个字母组成。目前matlab已成为国际认可的最优秀的科技应用软件之一。在大学里,他是用于初等和高等数学、自然科学和工程学的标准数学工具;在工业界,他是一个高效的研究、开发和分析的工具。随着科技的发展,许多优秀的工程师不断的对matlab进行了完善,使其从一个简单的矩阵分析软件逐渐发展成为一个具有极高通用性,并带有众多实用工具的运算操作平台。 Simulink是matlab提供的实现动态系统建模和仿真的一个软件包,是基于框图的仿真平台。Simulink挂接在matlab环境上,以matlab的强大计算功能为基础,利用直观的模块框图进行仿真和计算。Simulink提供了各种仿真工具,尤其是它不断扩展的、内容丰富的模块库,为系统的仿真提供了极大的方便。在simulink平台上拖拽和连接典型模块就可以绘制仿真对象的模块框图,并对模型进行仿真。在simulink平台上,仿真模型的可读性很强,这就避免了在matlab窗口使用matlab命令和函数仿真时,需要熟悉大量的M函数的麻烦,对广大工程技术人员来说,这无疑就是一个福音。随着matlab的不断升级,simulink的版本也在不断的升级,从1993年的matlab4.0/simulink1.0版到2001年的matlab6.1/simulink4.1版、2002年的matlab6.5/simulink5.0版,现在的最常用的版本就是matlab7.0/simulink6.0 Simulink最初是为仿真控制系统而建立的工具箱,在使用中容易编程、容易扩展,并且可以解决在使用matlab过程中遇到的非线性、变系数等问题。它能够进行系统和离散系统的仿真,也能够进行线性和非线性系统仿真,并且支持多种采样频率系统的仿真,使不同的系统能以不同的采样频率组合,这样就可以仿真较大、较复杂的系统。因此,不同的科学领域根据自己的仿真要求,以matlab为基础,开发了大量的专用仿真程序,并把这些程序以模块的形式放入simulink中,形成模块库。Simulink的模块库实际上就是用matlab基本语言编写的子程序集。现在simulink模块库有3级树状的子目录,在一级目录下包含了simulink 最早开发的数学计算工具箱、控制系统工具箱的内容,之后开发的信号处理工具箱、通信工系统工具箱等也并行列入模块库的一级子目录,逐级打开模块库浏览器的目录,就可以看到这些模块。 Simulink是基于matlab的图形化仿真设计环境。确切的说,它是matlab提供的对动态系统进行建模、仿真和分析的一个软件包。它支持线性和非线性系统、连续时间系统、离散时间系统、连续和离散混合系统,而且系统可以是多进程的。它使用图形化的系统模块对动态系统进行描述,并非在此基础上采用matlab计算引擎对动态系统在时域内进行求解。Matlab计算引擎主要对系统微分方程和差分方程求解。Simulin和matlab是高度集成在一起的,因此,它们之间可以进行灵活的交互操作。 Simulink提供了友好的图形用户界面,模型由模块组成的框图来表示,用户通过简单的鼠标操作就能够完成建模。Simulink的模块库为用户提供了包括基本功能模块和扩展模块在

34 单相接地与零序过电流保护

10kV变配电站单相接地与零序过电流保护有关问题分析微机保护装置有单相接地保护与零序过电流保护,单相接地保护又称为小电流接地选线。单相接地保护与零序过电流保护是两种完全不同的保护。 1 单相接地保护与零序过电流保护的区别 1.1单相接地保护与零序过电流保护都需要安装零序电流互感器,但二者的作用完全不相同。单相接地保护用于电源中性点不接地的供电系统。对于三相三线制供电系统,由于电源没有中性线(N线),只有三根相线穿过零序电流互感器时,零序电流互感器感应不出三相负荷不平衡电流,即零序电流,只能感应出三相对地不平衡电容电流,正常运行时此电流非常小,但在本供电系统发生单相接地故障后,就增加为全供电系统对地不平衡电容电流,它等于全供电系统一相对地电容电流的三倍。 1.2 零序过电流保护用于电源中性点直接接地,或通过接地变压器接地的供电系统。上述供电系统发生单相接地故障后,电源中性点通过大地和接地故障点形成回路,临时成为三相四线制供电系统,故障电流为非常大的短路电流。所以电源中性点接地的供电系统单相接地故障称为单相对地短路。此时只有三根相线穿过零序电流互感器时,零序电流互感器就可以感应出三相不平衡电流,即零序电流。可以实现零序过电流保护。 2 电源中性点不接地的供电系统单相接地小电流接地选线 2.1 电源中性点不接地的供电系统单相接地保护可选用小电流接地选线装置。二次电路设计时将所有零序电流互感器和Y/Y/△(开口三角形)型电压互感器的开口三角形电压接到小电流接地选线装置的测量端子上,就可以检测出是某一路线路发生单相接地故障,然后进行报警或跳闸。需要跳闸时还应将跳闸输出接到所需要跳闸的回路。二次电路接线比较多。 2.2 微机保护装置都有单相接地保护后,保护原理与小电流接地选线装置完全相同,不仅节省了一套设备,可以直接跳闸,二次电路接线也简化了许多。 3 电源中性点不接地的供电系统单相接地保护的整定 3.1 电源中性点不接地的供电系统发生单相接地故障后,全供电系统接地相对地电压为零,对地电容电流也为零。不接地回路也只有两相有对地电容电流,零序电流互感器就可以感应出对地不平衡电容电流,即零序电流,此电流等于本回路不接地两相对地电容电流的向量和,为一相对地电容电流的3倍。发生单相接地故障后不接地回路单相接地保护不应动作。需要计算出本回路一相对地电容电流,乘以3后再乘以可靠系数,作为本回路单相接地保护的动作电流。 单相接地保护动作的灵敏系数等于发生单相接地故障后全供电系统对地电容电流,减去发生单相接地相对地电容电流后,再除以单相接地保护动作电流。在进行灵敏系数校验是,还需要计算出全供电系统一相对地电容电流。 1

小电流接地系统接地故障的原因分析及对策(正式版)

文件编号:TP-AR-L5942 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 小电流接地系统接地故障的原因分析及对策(正 式版)

小电流接地系统接地故障的原因分 析及对策(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 1.问题提出 目前,小电流接地系统特别是35KV及以下的小 接地系统,由于其线路分支多,走向复杂,电压等级 较低,在设计施工中线路质量不易保证,运行中发生 接地故障的几率是很高的。从我市地方电网历年来的 运行统计资料来看,在小电流接地系统的接地故障 中,35KV电网占8.2%,10KV电网占91.8%。本文通 过笔者在实践中对电网运行工况的了解以及运行经验 的总结,分析了小电流接地系统在实际运行中易引起 误判的几类接地故障,在给出其原因分析的基础上着

重阐述了接地故障的判别方法、处理措施及对策。相信对同行有一定的借鉴作用。 2.易引起误判的几类接地故障及其原因分析 为了便于展开下文,我们有必要首先对电网发生接地的原因作一个简单的分析。如图1,当中性点电压Uo不为0且Uo大于绝缘监察系统定值时,便有接地信号发出,而Uo反映的是零序电压,其计算公式为: Uo=(ùa ùb ùc)/3 从上式可以看出,当电网各相电压ùa、ùb、ùc 不平衡时,便有中性点电压Uo产生,而电网电压的不平衡度是接地信号发生与否的关键,本文下面的论述将紧紧围绕接地故障发生的原因作具体分析。根据兴义市地方电网历年来的运行资料,我们统计了如下几类经常发生接地的情况:

35kv电网单相接地故障与零序电流检测

9 本科生毕业设计(论文) 题目:35KV电网零序电流的检测及谐波分析学生姓名:袁靖 系别:机械与电气工程系 专业年级:电气工程及其自动化2008级本科四班 指导教师:王铭 2012年6 月8 日

摘要 小电流接地系统发生单相接地故障时,故障电流小,故障检测较为困难。对小电流接地系统单相接地故障选线的研究已有几十年的历史,但目前为止所提选线方法仍不能达到现场对选线可靠性较高的要求。文中利用Matlab对中性点不接地系统单相接地故障进行仿真,重点探讨了仿真模型的搭建过程;通过对各线路零序电流波形的分析,判断出故障线路;该方法简单、准确、可靠,较好解决了中性点不接地系统单相接地问题。 关键词:小电流接地系统;仿真;零序电流;三相电压;三相电流。

ABSTRACT The single phase grounding fault happens in the small current grounding power system,the fault current is small, fault detection is more difficult .In small current grounding system, fault line selection has been studied for decades, but now the select line methods can not achieve the site on line selection of high reliability requirements. In this paper, using matlab to simulate single-phase tc earth fault of the neutral undergrounding power system, by analy2 zing zero sequence current of each line, the fault line is judged. The method is simple exact and reliable, which well solves single-phase grounding fault of the neutral undergrounding power system. Key words: small current grounding power system;simulation; zero sequence current; three-phase voltage; three-phase current

相关主题