搜档网
当前位置:搜档网 › Horizon 6 RDSH工作原理及缺失的功能

Horizon 6 RDSH工作原理及缺失的功能

Horizon 6 RDSH工作原理及缺失的功能
Horizon 6 RDSH工作原理及缺失的功能

【TechTarget中国原创】VMware终于在Horizon 6 RDSH当中实现了应用程序远程交付功能,但是仍然缺少针对主机的简易访问和安装管理功能。

几年前,Citrix就已经在其产品当中实现了应用程序发布功能,许多IT部门发现这种功能可以起到很大帮助作用。现在,VMware尝试凭借Horizon 6 RDSH进入这个未曾涉足的全新领域。

VMware Horizon 6的功能之一就是发布应用程序,而不是整个桌面。通常,IT管理员需要使用应用程序发布功能将业务(LOB)应用从数据中心交付到用户PC——甚至是移动设备上。但是不论管理员为何需要发布应用程序,确保整个流程简单可控都是十分重要的。

企业内部开发的LOB应用程序通常是十分复杂的,这些软件拥有多种组件,在安装过程当中可能遇到很多问题,并且需要进行频繁更新,管理员不得不随时应对部署新版本所带来的挑战。此外,许多客户端/服务器端(CS)模型的应用程序没有针对广域网进行优化,开发人员在设计过程中认为应用程序访问数据时可以拥有高带宽、低延迟的网络环境,但是大多数时候,情况并非如此。

为什么使用RDSH?

使用多台Windows服务器组成远程桌面会话主机(RDSH)farm 之后,用户就可以发起应用程序远程访问请求了。即便用户通过远程方式进行访问,RDSH也可以在数据中心接收并运行更新。

使用RDSH可以减少管理员需要更新的应用程序数量,因为这些应用程序并非安装在每一台PC当中。在数据中心运行RDSH主机还可

以简化应用程序更新过程,不同于分支办公室的笔记本电脑或者PC,RDSH主机当中的应用程序可以不间断地连接到高速网络当中。如果同时部署了Horizon 6和View,你可以使用同样的基础架构和客户端来交付应用程序和VDI桌面。

Horizon 6 RDSH工作原理

在Horizon 6当中部署一个需要发布的应用程序十分简单。你只需要一个RDSH challenge farm——一组拥有相同配置的RDSH服务器。你可以只发布安装在Windows服务器(启用RDSH role)上的应用程序,而对于安装在Windows桌面虚拟机(VM)——比如Windows 7或者Windows 8——当中的应用程序,可以不进行发布。

从RDSH服务器的已安装应用程序列表当中选择需要发布的应用程序,之后分配给用户。在用户的Horizon View或Horizon Workspace 客户端当中,应用程序会以图标的形式进行显示,还包括授权用户访问的桌面池。而在View客户端当中,应用程序图标出现在RDSH farm 当中,因此用户可以分辨出他们正在访问虚拟桌面还是一个单独的应用程序。

Horizon 6 RDSH缺少哪些功能?

目前为止,VMware还没有提供RDSH主机当中的软件安装管理功能,但是链接克隆机制很有可能会被加入到RDSH服务器当中。这种方式使得用户只需要更新一台主RDSH虚拟机,之后将其更新后的状态同步到farm当中的其他RDSH服务器。

保证所有服务器状态同步是构建大型RDSH farm的一个重要组成

部分。到现在为止,用户仍然需要使用其他Windows配置管理工具,比如SCCM(System Center Configuration Manager,系统中心配置管理器),来制作统一的RDSH主机。此外,如果应用程序负载增加,你还可以使用SCCM部署新的RDSH服务器,或者更新RDSH farm当中已经安装的应用程序。

VMware还没有提供一种简单的方式来将需要发布的应用程序集成到用户的PC当中。如果能够在用户客户端设备的开始菜单当中显示应用程序,无疑会大大缩短用户培训周期。对于现有的View用户来说,可以要求他们登陆Horizon客户端来启动应用程序,因为他们熟悉整个流程,但是如果更一步简化应用程序的连接步骤,将会有利于新的部署。

场效应管工作原理 1

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS 功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场

MOS管的结构和工作原理

在P 型衬底上,制作两个高掺杂浓度的N 型区,形成源极(Source )和漏极(Drian ),另外一个是栅极(Gate ).当Vi=VgsVgs 并且在Vds 较高的情况下,MOS 管工作在恒流区,随着Vi 的升高Id 增大,而Vo 随这下降。 常用逻辑电平:TTL 、CMOS 、LVTTL 、LVCMOS 、ECL (Emitter Coupled Logic )、PECL (Pseudo/Positive Emitter Coupled Logic )、LVDS (Low Voltage Differential Signaling )、GTL (Gunning Transceiver Logic )、BTL (Backplane Transceiver Logic )、ETL (enhanced transceiver logic )、GTLP (Gunning Transceiver Logic Plus );RS232、RS422、RS485(12V ,5V , 3.3V );TTL 和CMOS 不可以直接互连,由于TTL 是在0.3-3.6V 之间,而CMOS 则是有在12V 的有在5V 的。CMOS 输出接到TTL 是可以直接互连。TTL 接到CMOS 需要在输出端口加一上拉电阻接到5V 或者12V 。 cmos 的高低电平分别 为:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD. ttl 的为:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v. 用cmos 可直接驱动ttl;加上拉电阻后,ttl 可驱动cmos. 1、当TTL 电路驱动COMS 电路时,如果TTL 电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V ),这时就需要在TTL 的输出

网卡启动

网卡启动(网络唤醒) 原理: 网络唤醒 (Wake On LAN )提供了远程唤醒计算机的功能,网络唤醒的工作原理是由一个管理软件包发出一个基于Magic Packet标准的唤醒帧,支持网络唤醒的网卡收到唤醒帧后对其进行分析并确定该帧是否包含本网卡的MAC地址。如果包含本网卡的MAC地址,网卡向电源发送一个使能的信号,该计算机系统就会自动加电进入开机状态。 条件: 使用网络唤醒对计算机硬件有一定的要求,主要表现在网卡、主板和电源上,三者必须同时支持网络唤醒的要求才能实现该功能 ●网卡:被唤醒计算机的网卡(独立或集成网卡)必须支持WOL即Wake-up On LAN, 用于唤醒计算机的网卡对此无要求 ●主板BIOS支持远程唤醒:通过查看CMOS的“Power Management Setup”菜单中是 否有“Wake on LAN”或类似项而确认;另外,早期支持远程唤醒的主板( PCI2.1 标准)上通常都拥有一个专门的3芯插座,以给网卡供电。由于现在的主板通常支持PCI 2.2、PCI2.3标准,可以直接通过PCI插槽向网卡提供+3.3V Standby电源,即使不连接WOL电源线也一样能够实现远程唤醒,因此,不再提供3芯插座(实际很多主板还预留着该管脚位置)。 ●主板是否支持PCI2.2标准,可通过查看CMOS的“Power Management Setup”菜单 中是否拥有“Wake on PCI Card” 或类似选项来确认 ●电源:电源必须是符合ATX 2.01标准的ATX电源,+5V Standby电流至少应在600mA 以上。 ●计算机硬件支持远程唤醒功能,但还需要借助相应的唤醒软件才能实现该功能 网络要求: 远程唤醒必须保证网络通讯正常,且如果被唤醒主机处于不同网段,则要求所用的 网络设备不要使用广播屏蔽功能;现在很多设备如路由器默认跨网段是不转发广播 的,所以当使用此类设备时,如果发送唤醒命令的主机和被唤醒主机不在同一网段,则被唤醒主机无法接收到广播方式的唤醒祯 如果用户询问怎样设置从网卡启动可从上面的硬件条件和软件来进行说明。

(完整版)对场效应管工作原理的理解

如何理解场效应管的原理,大多数书籍和文章都讲的晦涩难懂,给初学的人学习造成很大的难度,要深入学习就越感到困难,本人以自己的理解加以解释,希望对初学的人有帮助,即使认识可能不是很正确,但对学习肯定有很大的帮助。 场效应管的结构 场效应管是电压控制器件,功耗比较低。而三极管是电流控制器件,功耗比较高。但场效应管制作工艺比三极管复杂,不过可以做得很小,到纳米级大小。所以在大规模集成电路小信号处理方面得到广泛的应用。对大电流功率器件处理比较困难,不过目前已经有双场效应管结构增加电流负载能力,也有大功率场管出现,大有取代三极管的趋势。场效应管具有很多比三极管优越的性能。 结型场效应管的结构 结型场效应管又叫JFET,只有耗尽型。 这里以N沟道结型场效应管为例,说明结型场效应管的结构及基本工作原理。图为N沟道结型场效应管的结构示意图。在一块N型硅,材料(沟道)上引出两个电极,分别为源极(S)和漏极(D)。在它的两边各附一小片P型材料并引出一个电极,称为栅极(G)。这样在沟道和栅极间便形成了两个PN结。当栅极开路时,沟道相当于一个电阻,其阻值随型号而不同,一般为数百欧至数千欧。如果在漏极及源极之间加上电压U Ds,就有电流流过,I D将随U DS的增大而增大。如果给管子加上负偏差U GS时,PN结形成空间电荷区,其载流子很少,因而也叫耗尽区(如图a中阴影区所示)。其性能类似于绝缘体,反向偏压越大,耗尽区越宽,沟道电阻就越大,电流减小,甚至完全截止。这样就达到了利用反向偏压所产生的电场来控制N型硅片(沟道)中的电流大小的目的。 注:实际上沟道的掺杂浓度非常小,导电能力比较低,所以有几百到几千欧导通电阻。而且是PN结工作在反向偏置的状态。刚开机时,如果负偏置没有加上,此时I D是最大的。 特点:1,GS和GD有二极管特性,正向导通,反向电阻很大 2:DS也是导通特性,阻抗比较大 3:GS工作在反向偏置的状态。 4:DS极完全对称,可以反用,即D当做S,S当做D。 从以上介绍的情况看,可以把场效应管与一般半导体三极管加以对比,即栅极相当于基极,源极相当于发射极,漏极相当于集电极。如果把硅片做成P型,而栅极做成N型,则成为P沟道结型场效应管。结型场效应管的符号如图b所示。

各服务器工作原理

FTP(文件传输协议)服务器工作原理FTP(文件传输协议)工作原理 目前在网络上,如果你想把文件和其他人共享。最方便的办法莫过于将文件放FTP服务器上,然后其他人通过FTP客户端程序来下载所需要的文件。 1、FTP架构 如同其他的很多通讯协议,FTP通讯协议也采用客户机 / 服务器(Client / Server )架构。用户可以通过各种不同的FTP客户端程序,借助FTP协议,来连接FTP服务器,以上传或者下载文件。 2、FTP通讯端口知识 FTP服务器和客户端要进行文件传输,就需要通过端口来进行。FTP协议需要的端口一般包括两种:控制链路--------TCP端口21所有你发往FTP服务器的命令和服务器反馈的指令都是通过服务器上的21 端口传送的。数据链路--------TCP端口20数据链路主要是用来传送数据的,比如客户端上传、下载内容,以及列目录显示的内容等。 3、FTP连接的两种方式在数据链路的建立上,FTP Server 为了适应不同的网络环境,支持两种连接模式:主动模式(Port)和被动模式(Pasv)。其实这两种连接模式主要是针对数据链路进行的,和控制链路无关。 主动模式主动模式是这样工作的:客户端把自己的高位端口和服务器端口21建立控制链路。所有的控制命令比如Is或get都是通过这条链路传送的。当客户端需要服务器端给它传送数据时,客户端会发消息给服务器端,告诉自己的位置和打开的高位端口(一般大于1024的端口都就叫高位端口),等候服务器的20端口和客户端打开的端口进行连接,从而进行数据的传输。当服务器端收到信息后,就会和客户端打开的端口连接,这样数据链路就建立起来了。

场效应管工作原理

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP 型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在

网卡工作原理是怎样的

网卡工作原理是怎样的 如今网卡已经作为电脑的必配网络设备。不管是整体出售的品牌电脑还是单独出售的电脑主板,都集成网卡芯片拥有一个甚至多个网络接口(RJ45)。由此可见,网卡是我们使用电脑中所能接触到的第一件网络设备。不少电脑爱好者对于网卡的工作原理不太了解,下面小编将于大家揭开服务器神秘面纱,希望能够给新手朋友增加点电脑知识。 一、网卡工作原理 发送数据时,网卡首先侦听介质上是否有载波(载波由电压指示),如果有,则认为其他站点正在传送信息,继续侦听介质。一旦通信介质在一定时间段内(称为帧间缝隙IFG=9.6微秒)是安静的,即没有被其他站点占用,则开始进行帧数据发送,同时继续侦听通信介质,以检测冲突。在发送数据期间。 如果检测到冲突,则立即停止该次发送,并向介质发送一个“阻塞”信号,告知其他站点已经发生冲突,从而丢弃那些可能一直在接收的受到损坏的帧数据,并等待一段随机时间(CSMA/CD确定等待时间的算法是二进制指数退避算法)。在等待一段随机时间后,

再进行新的发送。如果重传多次后(大于16次)仍发生冲突,就放弃发送。 接收时,网卡浏览介质上传输的每个帧,如果其长度小于64字节,则认为是冲突碎片。如果接收到的帧不是冲突碎片且目的地址是本地地址,则对帧进行完整性校验,如果帧长度大于1518字节(称为超长帧,可能由错误的LAN驱动程序或干扰造成)或未能通过CRC校验,则认为该帧发生了畸变。通过校验的帧被认为是有效的,网卡将它接收下来进行本地处理。 二、网卡的基本知识 我们在使用网卡的时候,总是与它的接口打交道。不管你是接ADSL上网还是接LAN连接内部网络,将网线放入接口的时候“咔嚓的一声”则表示OK你连接正确,这就是RJ45接口。至今人类所使用的最广泛的网络接口,它主要应用在以太网中,于交换机、路由器或者ADSL等设备配合使用,其作为连接的网线学名叫双绞线。既然上面说了主流接口,现在说一下非主流。BNC接口:稍微接触电脑早点的朋友应该记得它,这个接口是96年至99年的时候,流行于那个时期网吧中。它的接口是凸出,类似闭路电视那种。所使用的网线叫做细同轴线,以以太网或者令牌环传输,不需要配置当时昂贵的交换机。因为其经济实惠的特点,所以深受早期的网吧或公司的喜爱。

MOS 场效应管的工作原理及特点

MOS 场效应管的工作原理及特点 场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。有N沟道器件和P 沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide SemIConductor FET)。 MOS场效应管 有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟 道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。P型半导体称为衬底(substrat),用符号B表示。 一、工作原理 1.沟道形成原理

当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着Vgs的继续增加,ID将不断增加。 在Vgs=0V时ID=0,只有当Vgs>Vgs(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 VGS对漏极电流的控制关系可用iD=f(vGS)|VDS=const这一曲线描述,称为转移特性曲线,见图。 转移特性曲线斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也 称为跨导。 跨导的定义式如下: gm=△ID/△VGS| (单位mS) 2.Vds对沟道导电能力的控制 当Vgs>Vgs(th),且固定为某一值时,来分析漏源电压Vds对漏极电流ID的影响。Vds的不同变化对沟 道的影响如图所示。 根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,

网卡工作原理图

网卡工作原理图 网卡工作原理图 网卡的主要工作原理:发送数据时,计算机把要传输的数据并行写到网卡的缓存,网卡对要传输的数据进编码(10M以太网使用曼切斯特码,100M以太网使用差分曼切斯特码),串行发到传输介质上.接收数据时,则相反。对于网卡而言,每块网卡都有一个唯一的网络节点地址,它是网卡生产厂家在生产时烧入ROM(只读存储芯片)中的,我们把它叫做MAC地址(物理地址),且保证绝对不会重复。MAC为48bit,前24比特由IEEE分配,是需要钱买的,后24bit 由网卡生产厂家自行分配. 我们日常使用的网卡都是以太网网卡。目前网卡按其传输速度来分可分为10M网卡、10/100M自适应网卡以及千兆(1000M)网卡。如果只是作为一般用途,如日常办公等,比较适合使用10M网卡和10/100M自适应网卡两种。如果应用于服务器等产品领域,就要选择千兆级的网卡。 一、网卡的主要特点 网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。无论是普通电脑还是高端服务器,只要连接到局域网,就都需要安装一块网卡。如果有必要,一台电脑也可以同时安装两块或多块网卡。 电脑之间在进行相互通讯时,数据不是以流而是以帧的方式进行传输的。我们可以把帧看做是一种数据包,在数据包中不仅包含有数据信息,而且还包含有数据的发送地、接收地信息和数据的校验信息。一块网卡包括OSI模型的两个层――物理层和数据链路层。物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。 网卡的功能主要有两个:一是将电脑的数据封装为帧,并通过网线(对无线网络来说就是电磁

DNS的工作原理

DNS的工作原理 DNS分为Client和Server,Client扮演发问的角色,也就是问Server一个Domain Name,而Server必须要回答此Domain Name的真正IP地址。而当地的DNS先会查自己的资料库。如果自己的资料库没有,则会往该DNS上所设的的DNS询问,依此得到答案之后,将收到的答案存起来,并回答客户。 DNS服务器会根据不同的授权区(Zone),记录所属该网域下的各名称资料,这个资料包括网域下的次网域名称及主机名称。 在每一个名称服务器中都有一个快取缓存区(Cache),这个快取缓存区的主要目的是将该名称服务器所查询出来的名称及相对的IP地址记录在快取缓存区中,这样当下一次还有另外一个客户端到次服务器上去查询相同的名称时,服务器就不用在到别台主机上去寻找,而直接可以从缓存区中找到该笔名称记录资料,传回给客户端,加速客户端对名称查询的速度。例如: 当DNS客户端向指定的DNS服务器查询网际网路上的某一台主机名称DNS服务器会在该资料库中找寻用户所指定的名称如果没有,该服务器会先在自己的快取缓存区中查询有无该笔纪录,如果找到该笔名称记录后,会从DNS服务器直接将所对应到的IP地址传回给客户端,如果名称服务器在资料记录查不到且快取缓存区中也没有时,服务器首先会才会向别的名称服务器查询所要的名称。例如: DNS客户端向指定的DNS服务器查询网际网路上某台主机名称,当DNS服务器在该资料记录找不到用户所指定的名称时,会转向该服务器的快取缓存区找寻是否有该资料,当快取缓存区也找不到时,会向最接近的名称服务器去要求帮忙找寻该名称的IP地址,在另一台服务器上也有相同的动作的查询,当查询到后会回复原本要求查询的服务器,该DNS服务器在接收到另一台DNS服务器查询的结果后,先将所查询到的主机名称及对应IP地址记录到快取缓存区中,最后在将所查询到的结果回复给客户端 常见的DNS攻击包括: 1) 域名劫持 通过采用黑客手段控制了域名管理密码和域名管理邮箱,然后将该域名的NS纪录指向到黑客可以控制的DNS服务器,然后通过在该DNS服务器上添加相应域名纪录,从而使网民访问该域名时,进入了黑客所指向的内容。 这显然是DNS服务提供商的责任,用户束手无策。 2) 缓存投毒 利用控制DNS缓存服务器,把原本准备访问某网站的用户在不知不觉中带到黑客指向的其他网站上。其实现方式有多种,比如可以通过利用网民ISP端的DNS缓存服务器的漏洞进行攻击或控制,从而改变该ISP内的用户访问域名的响应结果;或者,黑客通过利用用户权威域名服务器上的漏洞,如当用户权威域名服务器同时可以被当作缓存服务器使用,黑客可以实现缓存投毒,将错误的域名纪录存入缓存中,从而使所有使用该缓存服务器的用户得到错误的DNS解析结果。 最近发现的DNS重大缺陷,就是这种方式的。只所以说是“重大”缺陷,据报道是因为是协议自身的设计实现问题造成的,几乎所有的DNS软件都存在这样的问题。

场效应管工作原理

场效应管工作原理(1) 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。一般的晶体管是由两种极性的载流子,即多数载流子和反极性的少数载流子参与导电,因此称为双极型晶体管,而FET仅是由多数载流子参与导电,它与双极型相反,也称为单极型晶体管。它属于电压控制型半导体器件,具有输入电阻高(108~109?)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。 一、场效应管的分类 场效应管分结型、绝缘栅型两大类。结型场效应管(JFET)因有两个PN结而得名,绝缘栅型场效应管(JGFET)则因栅极与其它电极完全绝缘而得名。目前在绝缘栅型场效应管中,应用最为广泛的是MOS场效应管,简称MOS管(即金属-氧化物-半导体场效应管MOSFET);此外还有PMOS、NMOS和VMOS功率场效应管,以及最近刚问世的πMOS场效应管、VMOS功率模块等。 按沟道半导体材料的不同,结型和绝缘栅型各分沟道和P沟道两种。若按导电方式来划分,场效应管又可分成耗尽型与增强型。结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。 场效应晶体管可分为结场效应晶体管和MOS场效应晶体管。而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类。见下图。 二、场效应三极管的型号命名方法 现行有两种命名方法。第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表 材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场效应三极管。 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 三、场效应管的参数 场效应管的参数很多,包括直流参数、交流参数和极限参数,但一般使用时关注以下主要参数: 1、I DSS — 饱和漏源电流。是指结型或耗尽型绝缘栅场效应管中,栅极电压U GS =0时的漏源电流。 2、U P — 夹断电压。是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压。 3、U T — 开启电压。是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压。 4、g M — 跨导。是表示栅源电压U GS — 对漏极电流I D 的控制能力,即漏极电流I D 变化量与栅源电压U GS 变化量的比值。g M 是衡量场效应管放大能力的重要参数。 5、BU DS — 漏源击穿电压。是指栅源电压U GS 一定时,场效应管正常工作所能承受的最大漏源电压。这是一 项极限参数,加在场效应管上的工作电压必须小于BU DS。

网卡工作原理

网卡工作原理 精确的说: NIC 工作在数据链路层中的MAC子层上,而非物理层。NIC的作用是进行串并行的转换,即MAC子层规定了如何在物理线路上传输frame,LLC的作用是识别不同协议类型然后进行encapsulation。MAC地址烧入NIC,所以,NIC工作在Data Link Layer。 一、网卡的主要特点 网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。无论是普通电脑还是高端服务器,只要连接到局域网,就都需要安装一块网卡。如果有必要,一台电脑也可以同时安装两块或多块网卡。 图1 一块10/100Mbps的PCI网卡 电脑之间在进行相互通讯时,数据不是以流而是以帧的方式进行传输的。我们可以把帧看做是一种数据包,在数据包中不仅包含有数据信息,而且还包含有数据的发送地、接收地信息和数据的校验信息。一块网卡包括OSI模型的两个层——物理层和数据链路层。物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。 网卡的功能主要有两个:一是将电脑的数据封装为帧,并通过网线(对无线网络来说就是电磁波)将数据发送到网络上去;二是接收网络上其它设备传过来的帧,并将帧重新组合成数据,发送到所在的电脑中。网卡能接收所有在网络上传输的信号,但正常情况下只接受发送到该电脑的帧和广播帧,将其余的帧丢弃。 然后,传送到系统CPU做进一步处理。当电脑发送数据时,网卡等待合适的时间将分组插入到数据流中。接收系统通知电脑消息是否完整地到达,如果出现问题,将要求对方重新发送。二、图解网卡

视频服务器的工作原理以及应用情况

视频服务器在经过多年的发展技术已经有了很大的进步,同时视频服务器的应用也越来越广泛,这都是科技带来的成果。那么下面主要还是介绍一下视频服务器的应用: 首先给大家介绍一个视频服务器的应用案例:我接触到的第一个视频服务器案例是在5年前,那个时候是纯模拟架构的安防系统一统天下。此案例客户是一个做观赏鱼养殖的台资公司,需要改造其已有的视频监控系统:该公司在台湾和广东分别有2个养殖基地,原先各自有独立的视频监控系统。处于保密考虑,客户担心原有系统中DVR录像有可能泄露他的养殖技术和销量等重要信息,因此要求去掉原系统中的DVR,并且使改造后的系统具有网络功能,从而可以在异地随时打开网页给客户浏览其养殖场。经过研究,他们选用了视频服务器对该客户原有的系统予以改造,去掉了前端的DVR设备。通过网络权限控制,使客户的隐私得到了保护。这个阶段,视频服务器的应用还只停留在简单的视频转发的网络功能,图像质量一般,功能单一,软件支持也欠缺。 近年来,随着网络技术和网络应用的进一步拓展,也为视频服务器这一专业设备的发展带来了契机。各行业内知名企业纷纷组织研发力量进行技术攻关,推出了一大批具有特色的新一代视频服务器产品。现在的视频服务器技术已经相对成熟,形成了较为规范的技术特征,其表现为: 传输实时图像的同时,同步传输检测数据和状态信息、D1@25fps画质、带有RS422/RS485串行通讯接口可外接云镜等各种外设、多协议支持、双向音频实时传输、视频帧率根据带宽自动调节、网络中断后自动连接、完善的报警功能、USB备份接口、更低的功耗、更高的稳定性等等。 现在,视频服务器已经在实际项目当中得到了越来越多的应用。例如,某台资企业在大陆三个城市建立了生产基地,每个基地又有若干个独立的产品线,管理上相对独立。原先各基地采用了模拟视频监控系统,系统集中管理困难。经过实地考察和客户需求分析后,建议客户采用视频服务器改造原有的监控系统,每个基地内通过权限管理做到各个产品线相对独立管理,对于涉及到专利技术的敏感地带,采用硬件访问控制,禁止外网客户访问,三个基地都通过企业原有的VPN专线实现网络连接,由总控中心集中管理,并添加了JDR电子地图管理模块。系统运行至今整体表现良好,并且该系统在客户后期的扩容中表现出良好的兼容性,受到了客户的好评。

网卡组成及工作原理.

网卡组成及原理 一认识网卡 网卡充当计算机和网络缆线之间的物理接口或连线将计算机中的数字信号转换成电或光信号,称为nic(network interface card )。数据在计算机总线中传输是并行方式即数据是肩并肩传输的,而在网络的物理缆线中说数据以串行的比特流方式传输的,网卡承担串行数据和并行数据间的转换。网卡在发送数据前要同接收网卡进行对话以确定最大可发送数据的大小、发送的数据量的大小、两次发送数据间的间隔、等待确认的时间、每个网卡在溢出前所能承受的最大数据量、数据传输的速度。 网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接phy,phy 接网线(当然也不是直接接上的,还有一个变压装置)。 二工作原理 以太网卡中数据链路层的芯片一般简称之为MAC控制器,物理层的芯片我们简称之为PHY。许多网卡的芯片把MAC和PHY的功能做到了一颗芯片中,比如Intel 82559网卡的和3COM 3C905网卡。但是MAC和PHY的机制还是单独存在的,只是外观的表现形式是一颗单芯片。当然也有很多网卡的MAC和PHY是分开做的,比如D-LINK的DFE-530TX等。

1 数据链路层MAC控制器 首先我们来说说以太网卡的MAC芯片的功能。以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层。一块以太网卡MAC 芯片的作用不但要实现MAC子层和LLC子层的功能,还要提供符合规范的PCI 界面以实现和主机的数据交换。 MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte,最小64Byte的帧。这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示)。最后还有一个DWORD(4Byte)的CRC码。 可是目标的MAC地址是哪里来的呢?这牵扯到一个ARP协议(介乎于网络层和数据链路层的一个协议)。第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址是广播地址,里面说到:"谁是xxx.xxx.xxx.xxx这个IP地址的主人?"因为是广播包,所有这个局域网的主机都收到了这个ARP请求。收到请求的主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包。这个IP地址的主机收到这个ARP请求包后回复的ARP响应里说到:"我是这个IP地址的主人"。这个包里面就包括了他的MAC地址。以后的给这个IP地址的帧的目标MAC地址就被确定了。(其它的协议如IPX/SPX也有相应的协议完成这些操作。) IP地址和MAC地址之间的关联关系保存在主机系统里面,叫做ARP表,由驱动程序和操作系统完成。在Microsoft的系统里面可以用arp -a 的命令查看ARP表。收到数据帧的时候也是一样,做完CRC以后,如果没有CRC效验错误,就把帧头去掉,把数据包拿出来通过标准的接口传递给驱动和上层的协议客栈,最终正确的达到我们的应用程序。 还有一些控制帧,例如流控帧也需要MAC直接识别并执行相应的行为。以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上。以太网的物理层又包括MII/GMII(介质独立接口)子层、PCS(物理编码子层)、PMA (物理介质附加)子层、PMD(物理介质相关)子层、MDI子层。而PHY芯片是实现物理层的重要功能器件之一,实现了前面物理层的所有的子层的功能。

DNS服务器工作原理

DNS分为Client和Server,Client扮演发问的角色,也就是问Server 一个Domain Name,而Server必须要回答此Domain Name的真正IP地址,DNS是怎么来作名称解析的? DNS的工作原理 DNS分为Client和Server,Client扮演发问的角色,也就是问Server一个Domain Name,而Server必须要回答此Domain Name的真正IP地址。而当地的DNS先会查自己的资料库。如果自己的资料库没有,则会往该DNS上所设的的DNS询问,依此得到答案之后, 将收到的答案存起来,并回答客户。 DNS服务器会根据不同的授权区(Zone),记录所属该网域下的各名称资料,这个资料 包括网域下的次网域名称及主机名称。 在每一个名称服务器中都有一个快取缓存区(Cache),这个快取缓存区的主要目的是将 该名称服务器所查询出来的名称及相对的IP地址记录在快取缓存区中,这样当下一次还有另外一个客户端到次服务器上去查询相同的名称时,服务器就不用在到别台主机上去寻找,而直接可以从缓存区中找到该笔名称记录资料,传回给客户端,加速客户端对名称查询的速度。例如: 当DNS客户端向指定的DNS服务器查询网际网路上的某一台主机名称 DNS服务器会在该资料库中找寻用户所指定的名称如果没有,该服务器会先在自己的快取缓存区中查询 有无该笔纪录,如果找到该笔名称记录后,会从DNS服务器直接将所对应到的IP地址传 回给客户端,如果名称服务器在资料记录查不到且快取缓存区中也没有时,服务器首先会 才会向别的名称服务器查询所要的名称。例如: DNS客户端向指定的DNS服务器查询网际网路上某台主机名称,当DNS服务器在该资料记录找不到用户所指定的名称时,会转向该服务器的快取缓存区找寻是否有该资料, 当快取缓存区也找不到时,会向最接近的名称服务器去要求帮忙找寻该名称的IP地址,在另一台服务器上也有相同的动作的查询,当查询到后会回复原本要求查询的服务器,该DNS 服务器在接收到另一台DNS服务器查询的结果后,先将所查询到的主机名称及对应IP地 址记录到快取缓存区中,最后在将所查询到的结果回复给客户端。 范例

以太网网卡结构和工作原理

以太网网卡结构和工作原理 网络适配器又称网卡或网络接口卡(NIC),英文名NetworkInterfaceCard。它是使计算机联网的设备。平常所说的网卡就是将PC机和LAN连接的网络适配器。网卡(NIC)插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。它的主要技术参数为带宽、总线方式、电气接口方式等。它的基本功能为:从并行到串行的数据转换,包的装配和拆装,网络存取控制,数据缓存和网络信号。目前主要是8位和16位网卡。 网卡必须具备两大技术:网卡驱动程序和I/O技术。驱动程序使网卡和网络操作系统兼容,实现PC机与网络的通信。I/O技术可以通过数据总线实现PC和网卡之间的通信。网卡是计算机网络中最基本的元素。在计算机局域网络中,如果有一台计算机没有网卡,那么这台计算机将不能和其他计算机通信,也就是说,这台计算机和网络是孤立的。 网卡的不同分类:根据网络技术的不同,网卡的分类也有所不同,如大家所熟知的ATM网卡、令牌环网卡和以太网网卡等。据统计,目前约有80%的局域网采用以太网技术。根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,目前,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、 10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。 网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。 网卡的选购:据统计,目前绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。购买时应注意以下几个重点: 网卡的应用领域----目前,以太网网卡有10M、100M、10M/100M及千兆网卡。对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。而10M、100M和 10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)

Web服务器的工作原理

Web服务器工作原理概述 很多时候我们都想知道,web容器或web服务器(比如Tomcat或者jboss)是怎样工作的?它们是怎样处理来自全世界的http请求的?它们在幕后做了什么动作?Java Servlet API(例如ServletContext,ServletRequest,ServletResponse和Session这些类)在其中扮演了什么角色?这些都是web应用开发者或者想成为web应用开发者的人必须要知道的重要问题或概念。在这篇文章里,我将会尽量给出以上某些问题的答案。 请集中精神! 文章章节: ?什么是web服务器、应用服务器和web容器? ?什么是Servlet?他们有什么作用? ?什么是ServletContext?它由谁创建? ?ServletRequest和ServletResponse从哪里进入生命周期? ?如何管理Session?知道cookie吗? ?如何确保线程安全? 什么是web服务器,应用服务器和web容器? 我先讨论web服务器和应用服务器。让我在用一句话大概讲讲: “在过去它们是有区别的,但是这两个不同的分类慢慢地合并了,而如今在大多在情况下和使用中可以把它们看成一个整体。” 在Mosaic浏览器(通常被认为是第一个图形化的web浏览器)和超链接内容的初期,演变出了“web服务器”的新概念,它通过HTTP协议来提供静态页面内容和图片服务。在

那个时候,大多数内容都是静态的,并且HTTP 1.0只是一种传送文件的方式。但在不久后web服务器提供了CGI功能。这意味着我们可以为每个web请求启动一个进程来产生动态内容。现在,HTTP协议已经很成熟了并且web服务器变得更加复杂,拥有了像缓存、安全和session管理这些附加功能。随着技术的进一步成熟,我们从Kiva和NetDynamics学会了公司专属的基于Java的服务器端技术。这些技术最终全都融入到我们今天依然在大多数应用开发里使用的JSP中。 以上是关于web服务器的。现在我们来讨论应用服务器。 在同一时期,应用服务器已经存在并发展很长一段时间了。一些公司为Unix开发了Tuxedo(面向事务的中间件)、TopEnd、Encina等产品,这些产品都是从类似IMS和CICS的主机应用管理和监控环境衍生而来的。大部分的这些产品都指定了“封闭的”产品专用通信协议来互连胖客户机(“fat”client)和服务器。在90年代,这些传统的应用服

MOS管工作原理动画示意图也有N沟道和P沟道两类

MOS管工作原理动画示意图也有N沟道和P沟道两类 绝缘型场效应管的栅极与源极、栅极和漏极之间均采用SiO2绝缘层隔离,因此而得名。又因栅极为金属铝,故又称为MOS管。它的栅极-源极之间的电阻比结型场效应管大得多,可达1010Ω以上,还因为它比结型场效应管温度稳定性好、集成化时温度简单,而广泛应用于大规模和超大规模集成电路中。 与结型场效应管相同,MOS管工作原理动画示意图也有N沟道和P沟道两类,但每一类又分为增强型和耗尽型两种,因此MOS管的四种类型为:N沟道增强型管、N沟道耗尽型管、P沟道增强型管、P沟道耗尽型管。凡栅极-源极电压UGS为零时漏极电流也为零的管子均属于增强型管,凡栅极-源极电压UGS为零时漏极电流不为零的管子均属于耗尽型管。 根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。 N沟道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S 间形成电流。 当栅极加有电压时,若0VGS(th)时( VGS(th)称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层。随着VGS的继续增加,ID

网卡 特点功能

网卡 名称: 网卡(有线·无线) 功能: 1.数据的封装与解封 发送时将上一层交下来的数据加上首部和尾部,成为以太网的帧。接收时将以太网的帧剥去首部和尾部,然后送交上一层 2.链路管理 主要是CSMA/CD(Carrier Sense Multiple Access with Collision Detection ,带冲突检测的载波监听多路访问)协议的实现 3.编码与译码 即曼彻斯特编码与译码。 特点: 网卡的不同分类:根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。就兼容网卡而言,网卡一般分为普通工作站网卡和服务器专用网卡。服务器专

用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。ISA 总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。同样是10M网卡,因为ISA总线为16位,而PCI 总线为32位,所以PCI网卡要比ISA网卡快。 网卡的接口类型:根据传输介质的不同,网卡出现了AUI 接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。而100M和1000M网卡一般为单口卡(RJ-45接口)。除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。必要时还要考虑网卡是否支持光纤连接。 优缺点: 品牌: Intel

相关主题