搜档网
当前位置:搜档网 › 2017-2018学年人教A版选修1-2 复数代数形式的加减运算及其几何意义 学案

2017-2018学年人教A版选修1-2 复数代数形式的加减运算及其几何意义 学案

2017-2018学年人教A版选修1-2         复数代数形式的加减运算及其几何意义   学案
2017-2018学年人教A版选修1-2         复数代数形式的加减运算及其几何意义   学案

3.2.1 复数代数形式的加减运算及其几何意义

[提出问题]

已知复数z1=a+b i,z2=c+d i(a,b,c,d∈R).

问题1:多项式的加减实质是合并同类项,类比想一想,复数如何加减?

提示:两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+b i)±(c +d i)=(a±c)+(b±d)i.

问题2:复数的加法满足交换律和结合律吗?

提示:满足.

问题3:以交换律进行说明.

提示:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i,

z2+z1=(c+d i)+(a+b i)=(c+a)+(d+b)i,

∴z1+z2=z2+z1.

[导入新知]

1.复数的加减法法则

设z1=a+b i,z2=c+d i(a,b,c,d∈R),

则z1+z2=(a+c)+(b+d)i,

z1-z2=(a-c)+(b-d)i.

2.复数加法的运算律

(1)交换律:z1+z2=z2+z1;

(2)结合律:(z1+z2)+z3=z1+(z2+z3).

[化解疑难]

对复数加减法的理解

1.把复数的代数形式看成关于“i”的多项式,则复数的加法、减法运算,类似于多项式的加法、减法运算,只需要“合并同类项”就可以了.

2.复数的加减法中规定,两复数相加减,是实部与实部相加减,虚部与虚部相加减,复数的加减法可推广到多个复数相加减的情形.

3.两个复数的和(差)是复数,但两个虚数的和(差)不一定是虚数.例如,(3-2i)+2i =3.

[提出问题]

如图1 OZ ,2

OZ 分别与复数a +b i ,c +d i 对应.

问题1:试写出1 OZ ,2 OZ 及1 OZ +2 OZ ,1 OZ -2

OZ 的坐标.

提示:1 OZ =(a ,b ),2

OZ =(c ,d ), 1 OZ +2 OZ =(a +c ,b +d ),1 OZ -2

OZ =(a -c ,b -d ).

问题2:向量1 OZ +2 OZ ,1 OZ -2

OZ 对应的复数分别是什么?

提示:向量1 OZ +2 OZ 对应的复数是a +c +(b +d )i ,也就是z 1+z 2;向量1 OZ -2

OZ 对应的复数是a -c +(b -d )i ,也就是z 1-z 2.

[导入新知]

复数加减法的几何意义

如图,设在复平面内复数z 1,z 2对应的向量分别为1 OZ ,2

OZ ,以OZ 1,OZ 2为邻边作

平行四边形,则与z 1+z 2对应的向量是 OZ ,与z 1-z 2对应的向量是21

Z Z .

[化解疑难]

对复数加减运算几何意义的认识

(1)若复平面内任意两点Z 1,Z 2所对应的复数分别是z 1,z 2,则Z 1,Z 2两点之间的距离|Z 1Z 2|=|z 2-z 1|.

(2)复数加减法的几何意义包含两方面:一是利用几何意义可以把几何图形的变换转化为复数的运算,使复数作为工具运用于几何之中;另一方面对于一些复数的运算也可以给予几何解释.

[例1] 计算:(1)(-2+3i)+(5-i); (2)(-1+2i)+(1+2i);

(3)(a +b i)-(2a -3b i)-3i(a ,b ∈R).

[解] (1)(-2+3i)+(5-i)=(-2+5)+(3-1)i =3+2i. (2)(-1+2i)+(1+2i)=(-1+1)+(2+2)i =22i. (3)(a +b i)-(2a -3b i)-3i =(a -2a )+(b +3b -3)i =-a +(4b -3)i. [类题通法]

复数的加减运算的技巧

(1)复数的实部与实部相加减,虚部与虚部相加减. (2)把i 看作一个字母,类比多项式加减中的合并同类项. [活学活用] 计算下列各题:

(1)(3-2i)-(10-5i)+(2+17i);

(2)(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 017-2 018i). 解:(1)原式=(3-10+2)+(-2+5+17)i =-5+20i.

(2)原式=(1-2+3-4+…+2 015-2 016+2 017)+(-2+3-4+5-…-2 016+2 017-2 018)i =1 009-1 010i.

[例2] 5-2i ,-4+5i,2,求点D 对应的复数及对角线AC ,BD 的长.

[解] 如图,因为AC 与BD 的交点M 是各自的中点,所以有z M =

z A +z C 2

z B +z D

2

所以z D =z A +z C -z B =1-7i.

因为

AC :z C -z A =2-(-5-2i)=7+2i ,

所以| AC |=|7+2i|=72+22

=53.

因为

BD :z D -z B =(1-7i)-(-4+5i)=5-12i ,

所以| BD |=|5-12i|=52+122

=13.

故点D 对应的复数是1-7i ,AC 与BD 的长分别是53和13. [类题通法]

运用复数加减运算的几何意义应注意的问题

向量加法、减法运算的平行四边形法则和三角形法则是复数加法、减法几何意义的依据.利用加法“首尾相接”和减法“指向被减数”的特点,在三角形内可求得第三个向量及

其对应的复数.注意向量

AB 对应的复数是z B -z A (终点对应的复数减去起点对应的复数).

[活学活用]

复数z 1=1+2i ,z 2=-2+i ,z 3=-1-2i ,它们在复平面内的对应点是一个正方形的三个顶点,如图所示.求这个正方形的第四个顶点对应的复数.

解:复数z 1,z 2,z 3所对应的点分别为A ,B ,C ,设正方形的第四个顶点D 对应的复数为x +y i(x ,y ∈R).

因为 AD = OD -

OA ,

所以

AD 对应的复数为

(x +y i)-(1+2i)=(x -1)+(y -2)i.

因为 BC = OC - OB ,

所以

BC 对应的复数为(-1-2i)-(-2+i)=1-3i.

因为 AD = BC ,

所以它们对应的复数相等,即????

?

x -1=1,y -2=-3.

解得???

?

?

x =2,y =-1.

故点D 对应的复数为2

-i.

[例3] 设z 1,z 2∈C |z 1-z 2|.

[解] 法一:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),由题设知a 2

+b 2

=1,c 2

+d 2

=1,(a +c )2

+(b +d )2

=2,

又(a +c )2

+(b +d )2

=a 2

+2ac +c 2

+b 2

+2bd +d 2

, ∴2ac +2bd =0.

∵|z 1-z 2|2

=(a -c )2

+(b -d )2

=a 2

+c 2

+b 2

+d 2

-(2ac +2bd )=2, ∴|z 1-z 2|= 2.

法二:作出z 1,z 2对应的向量1 OZ ,2 OZ ,使1 OZ +2 OZ =

OZ ,

∵|z 1|=|z 2|=1,又1 OZ ,2 OZ 不共线(若1 OZ ,2

OZ 共线,

则|z1+z2|=2或0与题设矛盾),

∴平行四边形OZ1ZZ2为菱形.

又∵|z1+z2|=2,

∴∠Z1OZ2=90°,即四边形OZ1ZZ2为正方形,

故|z1-z2|= 2.

[类题通法]

与复数模有关的几个常见结论

在复平面内,z1,z2对应的点为A,B,Z1+Z2对应的点为C,O为坐标原点:

(1)则四边形OACB为平行四边形;

(2)若|z1+z2|=|z1-z2|,则四边形OACB为矩形;

(3)若|z1|=|z2|,则四边形OACB为菱形;

(4)若|z1|=|z2|且|z1+z2|=|z1-z2|,则四边形OACB为正方形.

[活学活用]

已知|z1|=|z2|=|z1-z2|=1,求|z1+z2|.

解:法一:设z1=a+b i,

z2=c+d i(a,b,c,d∈R),

∵|z1|=|z2|=|z1-z2|=1,

∴a2+b2=c2+d2=1,①

(a-c)2+(b-d)2=1. ②

由①②得2ac+2bd=1.

∴|z1+z2|=(a+c)2+(b+d)2

=a2+c2+b2+d2+2ac+2bd= 3.

法二:设O为坐标原点,

z1,z2,z1+z2对应的点分别为A,B,C.

∵|z1|=|z2|=|z1-z2|=1,

∴△OAB是边长为1的正三角形,

∴四边形OACB是一个内角为60°,边长为1的菱形,且|z1+z2|是菱形的较长的对角线OC的长,

∴|z1+z2|=|OC|

=|OA|2+|AC|2-2|OA||AC|cos 120°= 3.

4.误将复数运算当作实数运算

[典例] M ={z ||z +1|=1},N ={z ||z +i|=|z -i|},则M ∩N =________. [解析] 利用复数的几何意义解决问题.在复平面内,|z +1|=1的几何意义是以点(-1,0)为圆心,以1为半径的圆.|z +i|=|z -i|的几何意义是到点A (0,1)和点B (0,-1)距离相等的点的集合,是线段AB 的垂直平分线,也就是x 轴.M ∩N 的几何意义是x 轴与圆的公共点对应的复数.故z =0或z =-2.

∴M ∩N ={0,-2}. [答案] {0,-2} [易错防范]

1.本题若混淆复数运算与代数运算,则会错误地将集合M 和N 化简为M ={z |z +1=±1},N ={z |z +i =±(z -i)},从而造成解题错误.

2.在复数运算中,若z =a +b i ,则|z |=a 2

+b 2

.要注意与实数运算中的绝对值运算的区别.

[成功破障]

已知复数z 满足z +|z |=2+8i ,则复数z =________. 解析:法一:设z =a +b i(a ,b ∈R), 则|z |=a 2

+b 2

代入方程得a +b i +a 2

+b 2

=2+8i ,

∴??

?

a +a 2+

b 2=2,b =8,

解得???

??

a =-15,

b =8.

∴z =-15+8i.

法二:原式可化为z =2-|z |+8i , ∵|z |∈R ,∴2-|z |是z 的实部, 于是|z |=(2-|z |)2

+82

即|z |2

=68-4|z |+|z |2,∴|z |=17. 代入z =2-|z |+8i 得z =-15+8i. 答案:-15+8i

[随堂即时演练]

1.复数(1-i)-(2+i)+3i 等于( ) A .-1+i B .1-i C .i

D .-i

解析:选A 原式=(1-2)+(-1-1+3)i =-1+i.

2.在复平面内, AB ,

AC 对应的复数分别为-1+2i ,-2-3i ,则 BC 对应的复数

为( )

A .-1-5i

B .-1+5i

C .3-4i

D .3+4i

解析:选A BC = AC -

AB =(-2-3i)-(-1+2i)=-1-5i.

3.实数x ,y 满足(1+i)x +(1-i)y =2,则xy 的值是________. 解析:由题意得x +y +(x -y )i =2,

∴?????

x +y =2,x -y =0,

∴?????

x =1,

y =1,

∴xy =1.

答案:1

4.已知z 是复数,|z |=3且z +3i 是纯虚数,则z =________. 解析:设z =a +b i ,则a +b i +3i =a +(b +3)i 是纯虚数, ∴a =0,b +3≠0.又∵|z |=3,∴b =3,∴z =3i. 答案:3i

5.已知z 1=(3x +y )+(y -4x )i ,z 2=(4y -2x )-(5x +3y )i(x ,y ∈R),设z =z 1-z 2

=13-2i ,求z 1,z 2.

解:∵z =z 1-z 2

=(3x +y )+(y -4x )i -[(4y -2x )-(5x +3y )i] =[(3x +y )-(4y -2x )]+[(y -4x )+(5x +3y )]i =(5x -3y )+(x +4y )i , 又∵z =13-2i ,且x ,y ∈R ,

∴????

?

5x -3y =13,x +4y =-2,

解得???

?

?

x =2,y =-1,

∴z 1=(3×2-1)+(-1-4×2)i =5-9i ,

z 2=4×(-1)-2×2-[5×2+3×(-1)]i =-8-7i.

[课时达标检测]

一、选择题

1.如图,在复平面内,复数z1,z2对应的向量分别是

OA,

OB,则|z1+z2|=( )

A.1 B. 5

C.2 D.3

解析:选B 由图象可知z1=-2-2i,z2=i,

所以z1+z2=-2-i,|z1+z2|= 5.

2.设f(z)=z,z1=3+4i,z2=-2-i,则f(z1-z2)等于( ) A.1-3i B.-2+11i

C.-2+i D.5+5i

解析:选D ∵z1=3+4i,z2=-2-i,

∴z1-z2=(3+4i)-(-2-i)=5+5i.

又∵f(z)=z,

∴f(z1-z2)=z1-z2=5+5i.

3.在复平面内的平行四边形ABCD中,

AC对应的复数是6+8i,

BD对应的复数是-

4+6i,则

DA对应的复数是( )

A.2+14i B.1+7i C.2-14i D.-1-7i

解析:选D 依据向量的平行四边形法则可得

DA+

DC=

DB,

DC-

DA=

AC,

AC对应的复数是6+8i,

BD对应的复数是-4+6i,依据复数加减法的几何意义可得

DA对应的复数是-1-7i.

4.复数z=x+y i(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值为( ) A.2 B.4

C.4 2 D.16

解析:选C 由|z-4i|=|z+2|得

|x+(y-4)i|=|x+2+y i|,

∴x2+(y-4)2=(x+2)2+y2,

即x+2y=3,

∴2x+4y=2x+22y≥2 2x+2y=223=42,

当且仅当x =2y =32

时,2x +4y

取得最小值4 2.

5.△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3,复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点是△ABC 的( )

A .外心

B .内心

C .重心

D .垂心

解析:选A 设复数z 与复平面内的点Z 相对应,由△ABC 的三个顶点所对应的复数分别为z 1,z 2,z 3及|z -z 1|=|z -z 2|=|z -z 3|可知点Z 到△ABC 的三个顶点的距离相等,由三角形外心的定义可知,点Z 即为△ABC 的外心.

二、填空题

6.设z 1=x +2i ,z 2=3-y i(x ,y ∈R),且z 1+z 2=5-6i ,则z 1-z 2=________. 解析:∵z 1+z 2=5-6i , ∴(x +2i)+(3-y i)=5-6i ,

∴?????

x +3=5,2-y =-6,

即?????

x =2,

y =8,

∴z 1=2+2i ,z 2=3-8i ,

∴z 1-z 2=(2+2i)-(3-8i)=-1+10i. 答案:-1+10i

7.已知|z |=5,且z -2+4i 为纯虚数,则复数z =________. 解析:设复数z =x +y i(x ,y ∈R), 则z -2+4i =(x -2)+(y +4)i.

由题意知????

?

x -2=0,y +4≠0,

x 2+y 2=5.

∴???

??

x =2,y =1

或???

?

?

x =2,y =-1.

∴z =2±i. 答案:2±i

8.已知复数z 1=1+3i ,z 2=3+i(i 为虚数单位).则在复平面内z 1-z 2对应的点在第________象限.

解析:因为z 1-z 2=-2+2i ,所以对应点(-2,2)在第二象限. 答案:二 三、解答题

9.如图所示,平行四边形OABC 的顶点O ,A ,C 分别对应复数0,3+

2i ,-2+4i.求:

(1)向量

AO 对应的复数;

(2)向量

CA 对应的复数;

(3)向量

OB 对应的复数.

解:(1)因为 AO =-

OA ,

所以向量

AO 对应的复数为-3-2i.

(2)因为 CA = OA -

OC ,

所以向量

CA 对应的复数为

(3+2i)-(-2+4i)=5-2i.

(3)因为 OB = OA +

OC ,

所以向量

OB 对应的复数为

(3+2i)+(-2+4i)=1+6i.

10.已知复平面内的A ,B 对应的复数分别是z 1=sin 2

θ+i ,z 2=-cos 2

θ+icos 2θ,

其中θ∈(0,π),设

AB 对应的复数是z .

(1)求复数z ;

(2)若复数z 对应的点P 在直线y =1

2x 上,求θ的值.

解:(1)∵点A ,B 对应的复数分别是

z 1=sin 2θ+i ,z 2=-cos 2θ+icos 2θ,

∴点A ,B 的坐标分别是A (sin 2

θ,1),

B (-cos 2θ,cos 2θ),

∴ AB =(-cos 2θ,cos 2θ)-(sin 2

θ,1)

=(-cos 2

θ-sin 2

θ,cos 2θ-1) =(-1,-2sin 2

θ).

∴ AB 对应的复数z =-1+(-2sin 2

θ)i.

(2)由(1)知点P 的坐标是(-1,-2sin 2

θ), 代入y =1

2

x ,

得-2sin 2θ=-12,即sin 2

θ=14,

∴sin θ=±1

2

.

又∵θ∈(0,π), ∴sin θ=1

2,

∴θ=π6或5π6

.

复数代数形式的加减运算及其几何意义(教案)

新授课:3.2.1 复数代数形式的加减运算及其几何意义 教学目标 重点:复数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 知识点:.掌握复数代数形式的加、减运算法则; .理解复数代数形式的加、减运算的几何意义. 能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想. 在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神. 自主探究点:如何运用复数加法、减法的几何意义来解决问题. 考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题. 易错易混点:复数的加法与减法的综合应用. 拓展点:复数与其他知识的综合. 一、引入新课 复习引入 .虚数单位:它的平方等于,即; .对于复数: 当且仅当时,是实数; 当时,为虚数; 当且时,为纯虚数; 当且仅当时,就是实数. .复数集与其它数集之间的关系:. 一一对应 .复数几何意义: 复数复平面内的向量 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算. 【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫. 二、探究新知

探究一:复数的加法 .复数的加法法则 我们规定,复数的加法法则如下: 设,是任意两个复数,那么: 提出问题: ()两个复数的和是个什么数,它的值唯一确定吗? ()当时,与实数加法法则一致吗? ()它的实质是什么?类似于实数的哪种运算方法? 学生明确: ()仍然是个复数,且是一个确定的复数; ()一致; ()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神. .复数加法的运算律 实数的加法有交换律、结合律,复数的加法满足这些运算律吗? 对任意的,有 (交换律), (结合律). 【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力. .复数加法的几何意义 复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗? 设分别与复数对应,则有,由平面向量的坐标运算有 . 这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:

高中数学选修1,2《复数代数形式的四则运算》教案

高中数学选修1,2《复数代数形式的四则运算》教案 知识与技能:掌握复数的四则运算; 过程与方法:理解并掌握虚数单位与实数进行四则运算的规律 情感态度与价值观:通过复数的四则运算学习与掌握,进一步理解复数引发学生对数学学习的兴趣,激起学生的探索求知欲望。 教学重难点 熟练运用复数的加减法运算法则。 教学过程 教学设计流程 一、导入新课: 复数的概念及其几何意义; 二、推进新课: 建立复数的概念之后,我们自然而然地要讨论复数系的各种运算问题。 设Z1 =a+bi, Z2 =c+di是任意两个复数,我们规定: 1、复数的加法运算法则:Z1+Z2=(a+从)+(b+d)i 2、复数的加法运算律: 交换律:Z1+Z2=Z2+Z1 结合律:Z1+Z2+Z3=Z1+(Z2+Z3) 3、复数加法的几何意义: 4、复数的减法运算法则: Z1-Z2=(a-c)+(b-d)i 5、复数减法的几何意义: 三、例题讲解 例1:计算:(7-3i)+(-1-i)-(6+3i)

课后小结 复数的加法与减法的运算及几何意义 课后习题 课本习题3.2 A组1题、2题、3题. 高中数学选修1-2《复数代数形式的四则运算》教案【二】 教学目标: 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 教学过程: 学生探究过程: 1. 复数的加减法的几何意义是什么? 2. 计算(1) (2) (3) 3. 计算:(1) (2) (类比多项式的乘法引入复数的乘法) 讲解新课: 1.复数代数形式的乘法运算 ①.复数的乘法法则:。 例1.计算(1) (2) (3) (4)

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

复数代数形式的四则运算(教学设计)(2)

复数代数形式的四则运算(教学设计)( 2) § 322复数代数形式的乘除运算 教学目标: 知识与技能目标: 理解并掌握复数的代数形式的乘法与除法运算法则,熟练进行复数的乘法和除法的运算。理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质” 过程与方法目标: 理解并掌握复数的除法运算实质是分母实数化类问题” 情感、态度与价值观目标: 复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。教学难点:对复数除法法则的运用。 教学过程: 一、复习回顾,新课引入: 1 复数 z i与 Z2的和的定义:z i+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 2、复数 z i 与 Z2 的差的定义:z i-Z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 3、复数的加法运算满足交换律:Z l+Z2=z2+Z1. 4、复数的加法运算满足结合律:(Z1 + Z2)+Z3=Z1 +(Z2+Z3). 二、师生互动、新课讲解: 1 ?乘法运算规则: 规定复数的乘法按照以下的法则进行: 设 z i=a+bi, Z2=c+di(a、b、c、d € R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac— bd)+(bc+ad)i. 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-i,并且把实部与虚部分别合并 .两个复数的积仍然是一个复数. 2. 乘法运算律: (1) Z i(Z2Z3)=(Z i Z2)Z3 证明:设 z i=a i+b i i, Z2= a2+b2i, Z3=a3+ b3i(a i, a2, a3, b i, b2, b3€ R). T z i z2=( a i+b i i)(a2+b2i)=( a i a2-b i b2)+(b i a2+ a i b2)i, Z2Z i=(a2+b2i)(a i + b i i)=( a2a i-b2b i)+(b2a i+a2b i)i. 又 a i a2-b i b2=a2a i-b2b i, b i a2+a i b2=b2a i+a2b i. 二 Z i z2=Z2Z i. (2) Z i(Z2+Z3)=Z i Z2+Z i Z3 证明:设 z i=a i+b i i, Z2= a2+b2i, Z3=a3+ b3i(a i, a2, a3, b i, b2, b3€ R). ■/ (z i z2)z3= [ (a i+b i i)(a2+b2i)] (a3+ b3i)= [ (a i a2-b i b2)+(b i b2+a i b2)i] (a3+ b3i) =[(a i a2-b i b2)a3-(b i a2+a i b2)b3] + [(b i a2+a i b2)a3+(a i a2-b i b2)b3] i =(a i a2a3-b i b2a3-b i a2b3-a i b2 b3)+(b i a2a3+a i b2b3+a i a2b3-b i b2b3) i, 同理可证: z i(z2Z3)=(a i a2a3-b i b2a3-b i a2b3-a i b2b3)+(b i a2a3+a i b2a3+a i a2b3-b i b2b3)i, (Z i Z2)Z3=Z i(Z2Z3). (3) Z i (Z2+ Z3)=Z i Z2+Z i Z3. 证明:设 z i=a i+b i i, Z2= a2+b2i, Z3=a3+ b3i(a i, a2, a3, b i, b2, b3€ R). T z i(z2+z3)=(a i+b i i) [(a2+b2i)+(a3+b3i)] =(a i+b i i) [ (a2+a3)+(b2+b3)i] =[a i(a2+a3)-b i(b2+b3)] + [ b i(a2+a3)+a i(b2+b3)] i =(a i a2+a i a3-b i b2-b i b3)+(b i a2+b i a3+a i b2+a i b3)i. z i z2+z i z3=(a i+b i i)(a2+b2i)+(a i + b i i)(a3+b3i) =(a i a2-b i b2)+(b i a2+a i b2)i+(a i a3-b i b3)+( b i a3+a i b3)i =(a i a2-b i b2+a i a3-b i b3)+(b i a2+a i b2+b i a3+a i b3)i =(a i a2+a i a3-b i b2-b i b3)+(b i a2+b i a3+a i b2+a i b3)i .Z i(z2+Z3)=Z i Z2+Z i Z3.

典型例题:复数的代数形式及其运算

复数的代数形式及其运算 例1.计算: i i i i i 2 1 2 1 ) 1( ) 1( 2005 40 40 + + - + + - - + 解:提示:利用i i i i= ± = ±2005 2,2 ) 1( 原式=0 变式训练1: 2 = (A)1 -(B) 1 22 +(C) 1 22 -+(D)1 解:21 2 ===-+故选C; 例2. 若0 1 2= + +z z,求2006 2005 2003 2002z z z z+ + + 解:提示:利用z z z= =4 3,1 原式=2 ) 1(4 3 2002- = + + +z z z z 变式训练2:已知复数z满足z2+1=0,则(z6+i)(z6-i)=▲ . 解:2 例3. 已知4, a a R >∈,问是否存在复数z,使其满足ai z i z z+ = + ?3 2(a∈R),如果存在,求出z的值,如果不存在,说明理由 解:提示:设) , (R y x yi x z∈ + =利用复数相等的概念有 ? ? ? = = + + a x y y x 2 3 2 2 2 3 4 2 2 2> ? ? = - + + ? a y y i a a z a 2 16 2 2 4 | | 2 - ± - + = ? ≤ ? 变式训练3:若 (2) a i i b i -=+,其中i R b a, ,∈是虚数单位,则a+b= __________

解:3 例4. 证明:在复数范围内,方程255||(1)(1)2i z i z i z i -+--+=+(i 为虚数单位)无解. 证明:原方程化简为 2||(1)(1)1 3.z i z i z i +--+=-设 yi x z += (x 、y∈R,代入上述方程得22221 3.x y xi yi i +--=- 221(1)223(2)x y x y ?+=?∴?+=?? 将(2)代入(1) ,整理得281250. x x -+=160,()f x ?=-<∴方程无实数解,∴原方程在复数范围内无解. 变式训练4:已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a∈R, 若12z z -<1z ,求a 的取值范围. 解:由题意得 z 1=151i i -++=2+3i, 于是12z z -=42a i -+1z =13. 13,得a 2-8a +7<0,1

《322 复数代数形式的乘除运算》教学设计 2

《复数代数形式的乘除运算》的教学设计

i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 例1 计算( )()12i i + ()()()2123i i -+ 例2 计算 (1-2i)(3+4i)(-2+i ) 练习1 计算 )1)(23)(2()23)(1)(1(i i i i +--+ )]2)(1)[(21)(4() 2)](1)(21)[(3(i i i i i i ++-++- 2.复数乘法的运算律 对任意复数z 1、z2、z 3∈C ,有 (1)z 1(z2z3)=(z 1z 2)z 3 (2)z1(z 2+z 3)=z 1z 2+z 1z 3 (3)z 1(z2+z3)=z 1z 2+z1z3. 练习2 计算:(1)(3+4i) (3-4i) ; (2)(1+ i)2. 3.共轭复数 当两个复数的实部相等,虚部互为相反数时,这两个复数叫 做互为共轭复数虚部不等于0的两个共轭复数也叫做共轭虚数。 通常记复数z 的共轭复数为z 。 3.复数除法 满足(c +di )(x+yi)=(a +bi)的复数x+y i(x,y ∈R)叫复数a+bi 除以 复数c+di 的商,记为:(a+bi)÷(c+di)或者di c bi a ++. 除法法则 22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a+bi)÷(c +di )= i d c ad bc d c bd ac 2 222+-+++. 利用(c+d i)(c -d i)=c 2+d 2.于是将di c bi a ++的分母有理化得: 例3 计算(12)(34)i i +÷- 四、考点突破 由不同的小组完成相应的对照组,强化学生对复数的乘除运算法则的理解和掌握,同时与多项式乘法类比, 复数代数形式的乘法也满足相应的运算律及乘法公式。 理解共轭复数的定义,了解共轭复数的一些性质,并会应用待定系数方法,方程思想解决复数问题。 类比已有的无理分式化简即分母有理化思想方法,(c +di )·(c -d i)=c2+d 2是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 强化巩固

复数代数形式的四则运算

复数代数形式的四则运算(教学设计)(1) §3.2.1复数代数形式的加减运算及几何意义 教学目标: 知识与技能目标: 掌握复数代数形式的加法、减法运算法则,能进行复数代数形式加法、减法运算,理解并掌握复数加法与减法的几何意义 过程与方法目标: 培养学生参透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力。 情感、态度与价值观目标: 培养学生学习数学的兴趣,勇于创新的精神,并且通过探究学习,培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神。 教学重点:复数代数形式析加法、减法的运算法则。 教学难点:复数加减法运算的几何意义。 教学过程: 一、复习回顾: 1、复数集C 和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应. 这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法 2、. 若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --= 两个向量和与差的坐标分别等于这两个向量相应坐标的和与差 3、 若),(11y x A ,),(22y x B ,则()1212,y y x x --= 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标 即 AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1) 二、师生互动、新课讲解: 1、复数代数形式的加减运算 (1)复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )=(a +c )+(b +d )i . (2)复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )=(a -c )+(b -d )i . (3)复数的加法运算满足交换律: z 1+z 2=z 2+z 1. 证明:设z 1=a 1+b 1i ,z 2=a 2+b 2i (a 1,b 1,a 2,b 2∈R ). ∵z 1+z 2=(a 1+b 1i )+(a 2+b 2i )=(a 1+a 2)+(b 1+b 2)i . z 2+z 1=(a 2+b 2i )+(a 1+b 1i )=(a 2+a 1)+(b 2+b 1)i . 又∵a 1+a 2=a 2+a 1,b 1+b 2=b 2+b 1. ∴z 1+z 2=z 2+z 1.即复数的加法运算满足交换律. (4)复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 证明:设z 1=a 1+b 1i .z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R ). ∵(z 1+z 2)+z 3=[(a 1+b 1i )+(a 2+b 2i )]+(a 3+b 3i ) =[(a 1+a 2)+(b 1+b 2)i ]+(a 3+b 3)i =[(a 1+a 2)+a 3]+[(b 1+b 2)+b 3]i =(a 1+a 2+a 3)+(b 1+b 2+b 3)i . z 1+(z 2+z 3)=(a 1+b 1i )+[(a 2+b 2i )+(a 3+b 3i )]

3.2.1 复数代数形式的加、减运算及其几何意义

复数代数形式的四则运算 3.2.1 复数代数形式的加、减运算及其几何意义 预习课本P107~108,思考并完成下列问题 (1)复数的加法、减法如何进行?复数加法、减法的几何意义如何? (2)复数的加、减法与向量间的加减运算是否相同? 1.复数的加、减法法则 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R), 则z 1+z 2=(a +c )+(b +d )i , z 1-z 2=(a -c )+(b -d )i. 2.复数加法运算律 设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1, (z 1+z 2)+z 3=z 1+(z 2+z 3). 3.复数加、减法的几何意义 设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→ 为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→ 的终点并指向OZ 1――→ 的向量所对应的复数. [点睛] 对复数加、减法几何意义的理解 它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处

理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中. 1.判断(正确的打“√”,错误的打“×”) (1)复数与向量一一对应.( ) (2)复数与复数相加减后结果只能是实数.( ) (3)因为虚数不能比较大小,所以虚数的模也不能比较大小.( ) 答案:(1)× (2)× (3)× 2.已知复数z 1=3+4i ,z 2=3-4i ,则z 1+z 2等于( ) A .8i B .6 C .6+8i D .6-8i 答案:B 3.已知复数z 满足z +i -3=3-i ,则z 等于( ) A .0 B .2i C .6 D .6-2i 答案:D 4.在复平面内,复数1+i 与1+3i 分别对应向量OA ――→和OB ――→ ,其中O 为坐标原点,则|AB ――→ |等于( ) A. 2 B .2 C.10 D .4 答案:B [典例] (1)计算:(2-3i)+(-4+2i)=________. (2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________. [解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i. (2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i , 所以????? 5x -5y =5,-3x +4y =-3, 解得x =1,y =0, 所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,

人教版高中数学选修1-1知识点总结

高中数学选修1-1知识点总结 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. 7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于 12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

复数代数形式的四则运算

§14.4 复数代数形式的四则运算 1.复数 i i 2123-- 等于( ) A i B -i C i -22 D i +-22 2.复数(a+bi)(a-bi)(-a+bi)(-a-bi)等于( ) A 222)(b a + B 222)(b a - C 22b a + D 22b a - 3. 设x,y 为实数,且 i i y i x 315211-=-+- , 则x+y=______________ 4. 算下列各题 (1)22)1(1)1(1i i i i -++ +- (2)2 )3(31i i +- (3))1)(45() 54()22(3i i i i --++ 5.证明:在复数范围内,方程 i i z i z i z +-= +--+- 255)1()1(||2 (i 为虚数单位)无解. 6.设复数z 满足|z|=5 ,且(3+4i)z 在复平面上对应的点在第二.四象限的平分线上, 25|2|=-m z .求复数z 和复数m 的值. 7.在复数范围内解方程 i i i z z z +-=++- 23)(||2 ,(i 为虚数单位) 8.已知关于t 的一元二次方程

0)(2)2(2=-++++i y x xy t i t (x,y ∈R) (1) 当方程有实根时,求点(x,y)的轨迹方程. (2) 求方程的实根的取值范围. 9.设z 是虚数, z z w 1 + = 是实数,且-1

高中数学_复数代数形式的加减运算教学设计学情分析教材分析课后反思

教学设计 一、教学目标: 1.知识与技能:掌握复数的加法运算及理解其几何意义. 2.过程与方法:通过类比实数的四则运算的规律或向量的运算规律,得到复数加减运算的法则,同时了解复数加减法运算的几何意义. 3.情感、态度与价值观:通过探究复数加减运算法则的过程,感悟由特殊到一般的思想,同时由向量的加减法与复数的类比,理解复数加减的运算法则,知道事物之间是普遍联系的哲学规律. 二、教学重点和难点 教学重点掌握复数的加法与减法的运算法则及应用,难点是加减法的几何意义。 三、教学方法 使用多媒体教学辅助手段,从感性到理性的角度认识复数的加减运算,引导学生思考、探索、从解决问题的过程中建构新的知识体系。 四、教学过程

学情分析: 高二(5)班属普通中学艺术文科班,女生比例较大,学生基础普遍比较薄弱,学习习惯较差。学生受文科思维的影响,习惯于机械记忆,受文科学习方式的负面影响,文科学生

不自觉的加剧了数学学习中的机械记忆,习惯于老师讲,自己记,复习背,对概念、定理、公理的本质属性缺乏正确的认识,不重视思维训练,导致数学学习能力下降,心理压力增大,恶性循环。加之,经常要参加专业的培训课,而一段时间不能正常的进行文化课的学习,更使得学习数学的兴趣降低,信心不足,经常会出现一些非常低级的错误。因此培养学生良好的学习数学自信心与严谨的逻辑思维能力相当重要。从而在课堂上要给以学生不断的肯定和鼓励是非常重要的。 效果分析 本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不容易接受。 (1)在复数的加法与减法中,重点是加法.教材首先规定了复数的加法法则.对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:①当 b=0时,与实数加法法则一致;②验证实数加法运算律在复数集中仍然成立;③符合向量加法的平行四边形法则.这样讲解让学生对复数加法法则规定有更加正确的认识,从而接受复数加法法则。 (2)复数加法的向量运算讲解时,画出向量后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量),画出向量后,问与它对应的复数是什么,即求点Z的坐标(证法如教材所示).让学生从数到形全面理解复数加法的的实质。 (3)向学生指出复数加法的三角形法则的好处.向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当与在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释容易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便. (4)一开始,我想把复数的加减法则和几何意义一起讲完,再讲解复数代数形式的加减运算的例题,再练习。后来觉得复数加减的几何意义对于学生来讲可能一时比较难理解,所以讲完法则和运算律以后,紧跟例题和练习,这样安排,使学生觉得很容易接受,然后再来讲解几何意义,再跟进几何意义的练习,这里和预先想到的一样,学生在俩个复数差的绝对值的几何意义上遇到了困难。 (5)这节课设置的例题和练习题的难度都不算大,主要是考虑到我们学校艺术类文科学生,基础不太好,数学思维比较欠缺,学习数学的自信心不够足的实际情况而定的。由于新课之前事先发下了本节课的导学案,在课堂上进行的还是比较理想的。

复数代数形式的加减运算及其几何意义优秀教学设计

复数代数形式的加减运算及其几何意义 【教学目标】 知识与技能:掌握复数的加法运算及意义情感、态度与价值观:理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部) 理解并掌握复数相等的有关概念;画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用 【教学重难点】 重点:复数加法运算,复数与从原点出发的向量的对应关系。 难点:复数加法运算的运算率,复数加减法运算的几何意义。 【教学准备】 多媒体、实物投影仪 。 【教学设想】 复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。复数z =a +bi (a 、b ∈R )与有序实数对(a ,b )是一一对应关系这是因为对于任何一个复数z =a +bi (a 、b ∈R ),由复数相等的定义可知,可以由一个有序实数对(a ,b )惟一确定。 【教学过程】 一、复习回顾: 1.复数的定义: 2.复数的代数形式: 3.复数与实数、虚数、纯虚数及0的关系:对于复数(,)a bi a b R +∈,当且仅当 时,复数a +bi (a 、b ∈R )是实数a ;当 时,复数z =a +bi 叫做虚数;当 时,z =bi 叫做纯虚数;当且仅当 时,z 就是实数0.

4.复数集与其它数集之间的关系: 。 5.两个复数相等的定义: 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就 只有当两个复数不全是实数时才不能比较大小 6.复平面、实轴、虚轴: 点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可 用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫 做复平面,也叫高斯平面,x 轴叫做实轴,y 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数z a bi =+←??? →一一对应复平面内的点(,)Z a b 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 二、讲解新课: 复数代数形式的加减运算 1.复数z 1与z 2的和的定义:z 1+z 2=(a +bi )+(c +di )= 2.复数z 1与z 2的差的定义:z 1-z 2=(a +bi )-(c +di )= 3.复数的加法运算满足交换律: z 1+z 2=z 2+z 1. 证明: 4.复数的加法运算满足结合律: (z 1+z 2)+z 3=z 1+(z 2+z 3) 证明:设z 1=a 1+b 1i 。z 2=a 2+b 2i ,z 3=a 3+b 3i (a 1,a 2,a 3,b 1,b 2,b 3∈R )。

数学人教A版选修1-23.2.1 复数代数形式的加减运算及其几何意义

§3.2 复数代数形式的四则运算 3.2.1 复数代数形式的加减运算及其几何意义 学习目标 1.理解并掌握复数代数形式的加减运算法则.2.了解复数代数形式的加法、减法的几何意义,掌握不同数集中加减运算法则的联系与区别.3.在研究复数代数形式的加法、减法的几何意义时,充分利用向量加法、减法的性质. 知识点一 复数代数形式的加减法 思考1 类比多项式的加减法运算,想一想复数如何进行加减法运算? 答案 两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a +bi)±(c+di)=(a±c)+(b±d)i. 思考2 若复数z 1,z 2满足z 1-z 2>0,能否认为z 1>z 2? 答案 不能,如2+i -i>0,但2+i 与i 不能比较大小. 梳理 (1)运算法则 设z 1=a +bi ,z 2=c +di 是任意两个复数,那么(a +bi)+(c +di)=(a +c)+(b +d)i ,(a +bi)-(c +di)=(a -c)+(b -d)i. (2)加法运算律 对任意z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 知识点二 复数加减法的几何意义 思考1 复数与复平面内的向量一一对应,你能从向量加法的几何意义出发讨论复数加法的几何意义吗? 答案 如图,设OZ 1→,OZ 2→ 分别与复数a +bi ,c +di 对应,

则OZ 1→=(a ,b),OZ 2→ =(c ,d), 由平面向量的坐标运算,得OZ 1→+OZ 2→ =(a +c ,b +d), 所以OZ 1→+OZ 2→ 与复数(a +c)+(b +d)i 对应,复数的加法可以按照向量的加法来进行. 思考2 怎样作出与复数z 1-z 2对应的向量? 答案 z 1-z 2可以看作z 1+(-z 2).因为复数的加法可以按照向量的加法来进行.所以可以按照平行四边形法则或三角形法则作出与z 1-z 2对应的向量(如图).图中OZ 1→对应复数z 1,OZ 2→对应复数z 2,则Z 2Z 1―――→ 对应复数z 1-z 2. 梳理

人教版高中数学选修教案全集

人教版高中数学选修2-2教案全集 第一章导数及其应用 §1.1.1变化率问题 教学目标: 1.理解平均变化率的概念; 2.了解平均变化率的几何意义; 3.会求函数在某点处附近的平均变化率 教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一.创设情景 为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。 导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二.新课讲授 (一)问题提出 问题1 气球膨胀率

我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢? ? 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是33 4)(r r V π= ? 如果将半径r 表示为体积V 的函数,那么3 43)(π V V r = 分析: 3 43)(π V V r =, ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为 )/(62.00 1) 0()1(L dm r r ≈-- ⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为 )/(16.01 2) 1()2(L dm r r ≈-- 可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了. 思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率 是多少? 1 212) ()(V V V r V r -- 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算:5.00≤≤t 和21≤≤t 的平均速度v 在5.00≤≤t 这段时间里,)/(05.405.0) 0()5.0(s m h h v =--= ; 在21≤≤t 这段时间里,)/(2.812) 1()2(s m h h v -=--= 探究:计算运动员在49 65 0≤≤t 这段时间里的平均速度,并思考以下问题: ⑴运动员在这段时间内使静止的吗? ⑵你认为用平均速度描述运动员的运动状态有什么问题吗?

人教版高中数学选修教案全套

§1.1平面直角坐标系与伸缩变换 一、三维目标 1、知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 2、能力与与方法:体会坐标系的作用 3、情感态度与价值观:通过观察、探索、发现的创造性过程, 培养创新意识。 二、学习重点难点 1、教学重点:体会直角坐标系的作用 2、教学难点:能够建立适当的直角坐标系,解决数学问题 三、学法指导:自主、合作、探究 四、知识链接 问题1:如何刻画一个几何图形的位置? 问题2:如何研究曲线与方程间的关系? 五、学习过程 一.平面直角坐标系的建立 某信息中心接到位于正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比它们晚了4s。已知各观测点到中心的距离是1020m,试确定

巨响发生的位置(假定声音传播的速度是340m/s,各观测点均在同一平面上) 问题1: 思考1:问题1:用什么方法描述发生的位置? 思考2:怎样建立直角坐标系才有利于我们解决问题? 问题2:还可以怎样描述点P的位置? B例1.已知△ABC的三边a,b,c满足b2+c2=5a2,BE,CF分别为边AC,CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。 探究:你能建立不同的直角坐标系解决这个问题吗?比较不同的直角坐标系下解决问题的过程,建立直角坐标系应注意什么问题?

小结:选择适当坐标系的一些规则: 如果图形有对称中心,可以选对称中心为坐标原点 如果图形有对称轴,可以选对称轴为坐标轴 使图形上的特殊点尽可能多地在坐标轴上 二.平面直角坐标系中的伸缩变换 思考1:怎样由正弦曲线y=sinx 得到曲线y=sin2x? 坐标压缩变换: 设P(x,y)是平面直角坐标系中任意一点,保持纵坐标不变,将横 坐标x 缩为原来 1/2,得到点P’(x’,y’).坐标对应关系为: ?????==y y x x ''21通常把上式叫做平面直角坐标系中的一个压缩变换。 思考2:怎样由正弦曲线y=sinx 得到曲线y=3sinx?写出其坐标变换。 设P(x,y)是平面直角坐标系中任意一点,保持横坐标x 不变,将纵坐标y 伸长为原来 3倍,得到点P’(x’,y’).坐标对应关系为: ???==y y x x 3' '通常把上式叫做平面直角坐标系中的一个伸长变换。

人教版高二数学选修2-1知识点总结

人教版高二数学选修2-1知识点 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”. 4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ?,则q ?”. 5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题. 若原命题为“若p ,则q ”,则它的否命题为“若q ?,则p ?”. 6、四种命题的真假性: 原命题 逆命题 否命题 逆否命题 真 真 真 真 真 假 假 真 假 真 真 真 假 假 假 假 四种命题的真假性之间的关系: ()1两个命题互为逆否命题,它们有相同的真假性; ()2两个命题为互逆命题或互否命题,它们的真假性没有关系. 7、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题. 用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨. 当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题. 对一个命题p 全盘否定,得到一个新命题,记作p ?. 若p 是真命题,则p ?必是假命题;若p 是假命题,则p ?必是真命题. 9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“?”表示. 含有全称量词的命题称为全称命题. 全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ?∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“?”表示. 含有存在量词的命题称为特称命题. 特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ?∈M ,()p x ”. 10、全称命题p :x ?∈M ,()p x ,它的否定p ?:x ?∈M ,()p x ?.全称命题的否定是特称命题. 11、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 12、椭圆的几何性质:

相关主题