搜档网
当前位置:搜档网 › 悬臂梁静态几何非线性的有限元分析

悬臂梁静态几何非线性的有限元分析

悬臂梁静态几何非线性的有限元分析
悬臂梁静态几何非线性的有限元分析

Hans Journal of Civil Engineering 土木工程, 2014, 3, 141-147

Published Online September 2014 in Hans. https://www.sodocs.net/doc/3818266333.html,/journal/hjce

https://www.sodocs.net/doc/3818266333.html,/10.12677/hjce.2014.35017

Finite Element Analysis of Static Geometry

Nonlinear about Cantilever Beam

Pei Luo, Jianwei Tian

National Engineering Laboratory for Fiber Optic Sensing Technology, Wuhan University of Technology, Wuhan Email: zhaojx_2001@https://www.sodocs.net/doc/3818266333.html,

Received: Jul. 12th, 2014; revised: Aug. 10th, 2014; accepted: Aug. 20th, 2014

Copyright ? 2014 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.sodocs.net/doc/3818266333.html,/licenses/by/4.0/

Abstract

The finite element model of geometry nonlinearity about cantilever has been introduced in this paper. The relation of strain-stress about cantilever has been deduced (in range of linearity).

Based on this, using finite element analysis soft, the static geometry nonlinearity of cantilever beam structure has been finitely analyzed. The study finds that the existing strain-stress relation is not linear relation when the cantilever beam structure shows the geometry nonlinearity after receiving large deformation, but is nonlinearity, and that the theoretical derivation must be com-puted by using nonlinear system of equations. But the solution of nonlinear equations can use in-crement means of large distortion question, which is T.L means (Lagrange means).

Keywords

Cantilever Beam, Concentrating Load, Geometry Nonlinearity, Finite Element Analysis

悬臂梁静态几何非线性的

有限元分析

罗裴,田建伟

武汉理工大学光纤传感技术国家工程实验室,武汉

Email: zhaojx_2001@https://www.sodocs.net/doc/3818266333.html,

收稿日期:2014年7月12日;修回日期:2014年8月10日;录用日期:2014年8月20日

摘 要

介绍了悬臂梁几何非线性的有限元模型,并对悬臂梁的应力应变关系进行了推导(在线性范围内),在此基础上,利用有限元分析软件,对悬臂梁结构的静态几何非线性进行了有限元分析,研究发现,当悬臂梁结构在受到大变形而出现几何非线性时,现有的应力应变关系不再呈线性关系,而是呈现非线性,其理论推导必须采用非线性方程组来计算,而非线性方程组的求解可采用大变形问题的增量法——T.L 法(拉格朗日法)。

关键词

悬臂梁,集中载荷,几何非线性,有限元分析

1. 引言

几何非线性问题是不采用小位移假设,从几何上严格分析单元体的尺寸、形状变化,得到非线性的几何运动方程,由此造成基本控制方程的非线性问题。对于小变形问题的研究已经趋于成熟[1] [2],而结构在受到大载荷的时候,将出现几何非线性,几何非线性的求解比较复杂,但在日常生活中经常遇到。

引起结构非线性行为的原因很多,主要有以下三种原因[3]:几何非线性、材料非线性、状态非线性。悬臂梁的几何非线性问题是指悬臂梁在平面内的大位移和大转动问题。在研究这类问题时,除了要考虑应变-位移的非线性关系外,还要考虑悬臂梁的基本特征是随变形而变化的,所以,平衡方程应建立在变形后的位置上。若仍用变形前的几何位置来描述,将不能反映梁的真实变形情况。但是,由于变形后的位置是未知的,这就给处理梁的几何非线性问题带来了一定的复杂性。

有限元分析是用于结构分析的有力工具[4],它能对结构进行理论上的初步模拟,并得出与实际检测结果接近的理论结果,这些结果对后续的实验起着指导作用,因此,要得到理想的实验数据,必须首先进行有限元分析,根据理论模型,设计实验方案,从而获得理想的实际结果。

本文为了获得悬臂梁结构受到静态集中力的作用而产生非线性现象,采用Analysis2013进行有限元模拟,从而获得悬臂梁的非线性应变分布图,这将为悬臂梁的非线性损伤检测奠定理论基础,对后续的损伤实验起指导性作用。

2. 悬臂梁几何非线性有限元模型

当物体产生大变形时,代表所研究的点的微小体元在变形的同时可能产生较大的刚性旋转和刚性平移。为了度量大变形物体的变形状态,必须更精确地研究物体的变形。几何非线性问题不仅几何方程不同,而且由于产生大变形,应力和应变需重新定义,本构方程、平衡方程或虚功方程需按重新定义的应力和应变表示。几何非线性有限元法可以仿照线性弹性有限元法,进行离散化并选取单元位移函数后,按几何方程、本构方程和能量原理,建立以节点位移为基本未知量的非线性有限元方程。在几何非线性有限元法[3] [5]中,可以按Euler 描述,也可以按Lagrange 描述,一般情况下,Lagrange 描述用于固体力学问题,因此,本文采用Lagrange 描述。

以初始构形为参考构形,将初始构形进行有限单元离散,选用固定不动的直角坐标系。在大变形情况下,Green 应变E 可分解为线性和非线性两部分之和

L N E E E =+ (1)

式中,L E 为线性应变,N E 为非线性应变。其中,

e L L E B d = (2)

e N N E B d = (3)

式中,e d 为单元节点位移矢量,矩阵B L 是Green 应变线性部分与单元节点位移之间的转换矩阵。 将(2)、(3)两式代入(1)式,得

()e e L N E B B d Bd =+=

(4) 式(4)给出Green 应变和单元节点位移矢量之间的关系,包含非线性项,故Green 应变矢量和单元节点位移矢量之间是非线性关系。应用虚功原理,将Green 应变式(4)两边同时变分,可得

e E B d δδ=? (5)

其中,L N B B B =

+。 将(5)式代入由Green 应变和Kirchhoff 应力表述的虚功方程,整理得离散系统的平衡方程为

()00d 0T V d B S V F ψ?=?=∫ (6)

式中,F 为有限元离散系统的外力等效节点力。上式即为有限元系统的位移形式的平衡方程组。若用矩阵形式表示,则为

e e e T

K dd F =? (7) e e e e T DL DN S

K K K K =++ 式中,e T

K 即为单元的切线刚度矩阵,为对称矩阵。e DL K 是小位移刚度矩阵,e DN K 是由大位移引起的,称为初位移矩阵或大位移矩阵,矩阵e S

K 是由于应力状态S 引起的切线刚度,通常称为几何矩阵或初应力矩阵,F e 为单元外部荷载的等效节点力。

有限元非线性方程组的求解过程是一个非常复杂的过程,可采用大变形问题的增量法——拉格朗日法(即T.L 法)来求解,T.L 法是一个复杂的过程,在此不多赘述。

3. 悬臂梁应力-应变关系的理论计算

在悬臂梁上粘贴应变片。h 代表梁的厚度,b 代表应变片所在位置宽度,X 代表应变片中心距离自由力端的距离,L 表示单臂梁自由端到固定端的距离。悬臂梁的材料为不锈钢,弹性模量在196~216 Gpa 之间,故取弹性模量210Gpa E =。由材料力学[6]可知:悬臂梁的抗弯截面系数

2

6bh W = (8) 贴应变片位置的弯矩为

FLX M FX L == (9) 贴应变片位置的应力为

2

6M FX W bh σ== (10) 式中,F 为悬臂梁的受力,L 为受力点到固定端的距离,b 为梁截面的宽,h 为梁截面的高。

贴应变片位置的应变为

E σε=

(11)

综合上面各式有: 26FX bh E

ε= (12) 这就是悬臂梁的应变计算公式,由上式可知,当悬臂梁为等截面梁时,受力位置固定时,悬臂梁的应变只与待计算位置有关,即应变与悬臂梁上各点的位置坐标呈线性关系。而当悬臂梁呈几何非线性时,这种关系将被打破,应变位置将发生变化,不能再应用这种关系来计算悬臂梁的应变。要详细了解悬臂梁的应变分布状况,采用有限元软件对悬臂梁进行分析,可以得到悬臂梁的整体应变分布状况。

悬臂梁发生大变形时,其应力应变也将发生大的变化,此时不能再采用前面的计算线性范围内的公式,而应该采用非线性方程来计算应力应变之间的关系,即拉格朗日法。

4. 悬臂梁结构的有限元静态非线性模拟

悬臂梁结构是目前最常见的一种结构,并且计算简单,易于分析。本文针对具体的悬臂梁结构,对悬臂梁在受大载荷情况下的静态非线性特性进行了有限元模拟,待模拟的悬臂梁的基本尺寸如下:弹性模量:210Gpa E =,泊松比:0.3ν=,长:400 mm ,宽:70 mm ,厚:2 mm 。应用ansys2013进行有限元模拟,图1~4为悬臂梁的非线性静态分析,其临界屈曲载荷为:

()32

221190222πππ2100.0781012144N 441240.4Bh E EI F D D ?××××××====××, 要进行悬臂梁的几何非线性的有限元分析,施加在悬臂梁端的荷载必须大于临界屈曲荷载,才能使悬臂梁呈非线性。采用有限元分析的悬臂梁的几何非线性所得到的结果如下各图。

Figure 1. Distortion chart when cantilever

beam supported stress is 150N 图1. 悬臂梁受力为150N 的变形图

Figure 2.Distortion chart when cantilever beam supported stress is 170N

图2. 悬臂梁受力为170N的变形图

Figure 3. Distortion chart when cantilever beam supported stress is 190N

图3.悬臂梁受力为190N的变形图

Figure 4.Distortion chart when cantilever beam

supported stress is 210N

图4.悬臂梁受力为210N的变形图

由上述各图可知,悬臂梁在受到高于临界屈曲载荷时呈现非线性,随着载荷的增大,其非线性越明显,由此说明,线弹性结构在受到一定载荷时会呈现非线性。也就是说,悬臂梁结构的临界屈曲载荷是区分线性和非线性的分界点,悬臂梁结构受的载荷小于临界屈曲载荷,则悬臂梁结构所展示的应力应变关系呈线性关系,超过这个临界屈曲载荷,悬臂梁结构的应力应变关系呈非线性。因此,在研究悬臂梁的应力应变关系时,都是在其线性范围内进行(即受力小于临界载荷)。当受载超过临界载荷时,悬臂梁结构处于非线性状态,其应力应变关系不再呈线性关系,将随着结构非线性的出现而出现非线性(由上述各图可知)。因此,在静态受力的状况下,要想得到悬臂梁受力下的应力应变的非线性分布,采用有限元软件是一种好的方法,它可以形象的描绘出悬臂梁的应力应变的非线性分布,并能得到悬臂梁各点的应变值。

5. 结论

本文阐述了悬臂梁的几何非线性,并给出了悬臂梁的几何非线性的有限元模型,推导了悬臂梁的应力应变的理论计算过程,得到了线性范围内悬臂梁的应变与待测点的位置呈线性关系。采用有限元分析软件,模拟了悬臂梁在大载荷作用下的几何非线性的应力应变分布,此时,其应变不再与待测点的位置呈线性关系,而比在线性状况下有很大的变化,其待测点的位置发生了变化,不再为线性,而是呈弧形。因此,悬臂梁的非线性只有通过有限元软件进行分析,才能得到合适的结果。采用有限元分析软件对悬臂梁进行静态非线性的模拟的目的,是为了模拟悬臂梁在受到大载荷情况下的变形状况及其对应的应力应变分布状况,从而为后续的损伤实验奠定基础。

基金项目

国家自然科学基金青年基金(51308428),武汉理工大学自主创新基金(2013-IV-027)。

参考文献(References)

[1]张家伟, 刘生纬, 吴亚平, 等(2013) 考虑恒载效应对梁静力反应影响的有限元分析. 应用力学学报, 5, 762-767.

[2]谢卿, 王弘(2013) 氢致钢内部疲劳裂纹萌生和扩展的有限元分析. 北京科技大学学报, 10, 1313-1319.

[3]凌道盛, 徐兴(2004)非线性有限元及程序. 浙江大学出版社, 杭州.

[4]杨昕光, 迟世春(2013) 基于非线性破坏准则的土坡稳定有限元上限分析. 岩土工程学报, 6, 1-7.

[5]蒋友琼(1988) 非线性有限元法. 北京工业学院出版社, 北京.

[6]孙训方, 方孝淑, 关来泰(1994) 材料力学(下). 高等教育出版社, 北京.

有限元非线性计算特点

有限元非线性计算特点 文章通过几个典型的工程计算模型,分析比较有限元线性与非线性计算结果,阐释了有限元非线性计算的特点及优点。 标签:工程计算;线性;非线性 1 引言 有限元单元法已成为强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题,有限元的线性分析已被广泛采用。但对于许多航空工程中遇到的问题,如进气道等,仅仅采用线性求解是不真实的,而采用非线性计算将更符号实际情况。本文借助MSC/NASTRAN有限元分析程序,对于典型的工程计算模型分析比较线性与非线性计算结果,从而给出非线性计算相对于线性计算的优点及特点。 2 有限元非线性计算的特点及优点 为了明确有限元非线性计算结果与线性计算结果的差异,更好的展现有限元非线性计算的特点,本节将借助于有限元分析软件MSC/NASTRAN,对一受外载的矩形薄板根据不同的边界条件,进行非线性及线性静力分析,通过分析比较计算结果,说明有限元非线性静力计算中的一些特点。 2.1 非线性与线性计算结果随载荷的变化 首先,给出薄板尺寸、载荷。 模型尺寸:薄板尺寸为500×500×1.5mm。 载荷:受法向气动压力(pressure),气动压力由小到大变化依次为0.01MPa、0.02MPa、0.04MPa、0.08MPa、0.16MPa。 取薄板中央节点位移、应力及薄板边缘中部节点位移,比较线性计算结果和非线性计算结果。在分别进行有限元线性及非线性分析后,给出位移、应力及支反力结果随载荷的变化曲线。图1、图3、图5分别为采用限元线性计算得到的参考点的位移、应力及支反力变化曲线;图2、图4、图6分别为采用有限元非线性计算得到的参考点的位移、应力及支反力变化曲线。 由圖1、3、5可见,采用线性静力分析后,参考点位移、应力、支反力均随载荷增加而线性增大,位移、应力、支反力与载荷呈明显的线性关系,这是线性静力分析的特点。对于本例,可以预言,在其它条件不变的情况下,计算出一套载荷下的结果,就可以按照线性关系求出压力载荷下的位移、应力及支反力结果。

非线性有限元分析

轨道结构的非线性有限元分析 姜建华 练松良 摘 要 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。钢轨垫层刚度、钢轨抗扭刚度和扣件扣压力的大小是影响轨距扩大的主要因素。根据非线性有限元接触理论,建立了能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型;并研究计算了不同扣件压力下,由于受载车轮与钢轨侧向滑动接触引起的轨距扩大问题。 关键词 轮轨关系,扣件压力,非线性弹性力学,有限元分析 1 引言 实际工程中常见的非线性问题一般可以归纳为三类:材料非线性、几何非线性以及边界条件非线性。材料非线性问题是由于材料的非线性本构关系所引起的,例如材料的弹塑性变形,材料的屈服和硬化等;几何非线性问题是由于结构的位移或变形相当大,以至必须按照变形后的几何位置来建立平衡方程;边界条件非线性问题是指边界条件随位移变化所引起的非线性问题。通常情况下,我们所遇到的非线性问题多数是上述三类非线性问题的组合[1,2]。 实际轨道结构受载时的力学行为,属于典型的非线性力学问题。比如基于轮轨接触的材料非线性、几何非线性及边界条件非线性问题,以及扣件、钢轨、垫层三者间相互作用时所表现的边界条件非线性行为等。所以,机车车辆在轨道结构上行驶时引起的力学现象是相当复杂的。以往在研究轨道各部分应力应变分布规律时,通常采用连续弹性基础梁理论或连续点支承,偶尔简单考虑扣件的作用和弹性垫层的使用。不管用哪一种支承方式建立模型,都由于这样那样的假设而带有一定程度的近似性。所以,如何利用现代力学理论的最新成果以及日益发展的计算机技术,根据轨道结构的具体情况,建立更为完整更为准确的轨道结构计算模型,为轨道设计部门提供更加可靠的设计依据或研究思路,已十分必要。 本文提出了用非线性有限元理论研究轮轨系统和轨道结构的思路。作为算例之一,本文将根据非线性有限元理论,建立能准确反映扣件、钢轨与垫层的拧紧接触,以及受载车轮与钢轨侧向滑动接触的力学计算模型。 2 轨道结构的有限元接触模型 对于非线性问题,不管是材料非线性、几何非线性,还是边界条件非线性,总是最终归结为求解一组非线性平衡方程及其控制方程。例如用位移作为未知数进行有限元分析时,最后可得到一组平衡方程及其控制方程为 : 图1 轮轨系统的对称性模型简图 [K(u)]{u}={R}(1) (u)= (u)(2)其中:{u}为节点位移列阵;{R}为节点载荷列阵; [K(u)]为总体刚度矩阵; (u)为边界条件。它们 36 姜建华:同济大学工程力学系,副教授、博士,上海200092

悬臂梁分析报告

悬臂梁受力分析报告 高一博 2016.11.13 西安理工大学 机械与精密仪器工程学院

摘要 利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。 关键词:悬臂梁,变形分析,应力分析

目录 一.问题描述: (4) 二.分析的目的和内容: (4) 三.分析方案和有限元建模方法: (4) 四.几何模型 (4) 五.有限元模型 (4) 六.计算结果: (5) 七.结果合理性的讨论、分析 (8) 八.结论 (8) 参考文献 (8)

一.问题描述: 现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。 其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。 二.分析的目的和内容: 1.观察悬臂梁的变形情况; 2.观察分析悬臂梁的应力变化; 3.找出其最大变形和最大应力点,分析形成原因; 三.分析方案和有限元建模方法: 1.使用ANSYS-modeling-create-volumes-block建模, 2.对梁进行材料定义,网格划分。 3.一端固定,另外一端施加一个向下的200N的力。 4.后处理中查看梁的应力和变形情况。 四.几何模型 500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。 五.有限元模型 单元类型:solid brick8node45 材料参数:弹性模量2e+11pa,泊松比0.3 边界条件:一端固定,一端施加载荷 载荷:F=200N 划分网格后的悬臂梁模型

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

悬臂梁的有限元建模与变形分析

悬臂梁的有限元建模与变形分析 摘要:应用有限元软件对矩形截面的悬臂梁受均匀载荷时采用三种不同的模型进 行分析,并且比较其有限元结果与理论结果,从而得之有限元分析需要进行合理的分析,建立合适的模型,才可以得到正确的结果。 关键词:建模,有限元 1计算分析模型如图1-1所示,左边完全约束,右边不约束。 图1-1梁的计算分析模型梁截面分别采用以下三种截面(单位:m): Name; Profile-1 Shape; Rectangular 图1-2矩形截面Cancel 1 a

Name: Profiled Shape: Circular shape;] 图1-4圆形截面 Cancel Name; Profile-3 图1-3圆形截面 + 2 b -* 1 b Cancel 2理论计算模型 取右端研究

5e4 3有限元计算结果 图1-5矩形截面变形位移图 qx .0e5 cy ax 200000 0.05 2.67 e8Pa 50000 400000 12 El 3 El 带入 2, y = 0得 m ax 8.5e - 3m 0.3 6 u 3 33T-333 3 333 -u oo oo.d c T-IT - T-lF ■ :57 912^ 6 8-q I ^680357^1^? 4 Is 630 7 4「二口 6 1.2-2 £ 4 5 IT 二b 77 R-

图1-6矩形截面应力图 U U2 +O.OOOeWO -7.4<>Cie*04 -1.4S0e-03 -2.220e-03 -2.960&-03 -3,700e-03 -4.440e-03 -5.180e-03 -5.920e-03 -6.660e'03 -7.400&-03 -S.140&-03 -8.S80e-03 ODB: Job-222.odb Abaqus/Standard 6.10-1 Tue Apr 10 16:53:04 GIVfT+08:0D 2012 ;何亡卵亡兀 L S MS TH MS * 103] 675e+07 ;■ saie+oa 517e+0S [A%>g 75%) 比叮币 Li? ft Comer 工 Mv&es 4实M j L> 3 + i + 1 + 1. * t 11 t - *€ ? I

非线性有限元方法及实例分析

非线性有限元方法及实例分析 梁军 河海大学水利水电工程学院,南京(210098) 摘 要:对在地下工程稳定性分析中常用的非线性方程组的求解方法进行研究,讨论了非线性计算的迭代收敛准则,并利用非线性有限元方法分析了一个钢棒单轴拉伸的实例。 关键词:非线性有限元,方程组求解,实例分析 1引 言 有限单元法已成为一种强有力的数值解法来解决工程中遇到的大量问题,其应用范围从固体到流体,从静力到动力,从力学问题到非力学问题。有限元的线性分析已经设计工具被广泛采用。但对于绝大多数水利工程中遇到的实际问题如地下洞室等,将其作为非线性问题加以考虑更符合实际情况。根据产生非线性的原因,非线性问题主要有3种类型[1]: 1.材料非线性问题(简称材料非线性或物理非线性) 2.几何非线性问题 3.接触非线性问题(简称接触非线性或边界非线性) 2 非线性方程组的求解 在非线性力学中,无论是哪一类非线性问题,经过有限元离散后,它们都归结为求解一个非线性代数方程组[2]: ()()()00 021212211=… …==n n n n δδδψδδδψδδδψΛΛΛ (1.1) 其中n δδδ,,,21Λ是未知量,n ψψψ,,,21Λ是n δδδ,,,21Λ的非线性函数,引用矢量记 号 []T n δδδδΛ21= (1.2) []T n ψψψψΛ21= (1.3) 上述方程组(1.1)可表示为 ()0=δψ (1.4) 可以将它改写为 ()()()0=?≡?≡R K R F δδδδψ (1.5) 其中()δK 是一个的矩阵,其元素 是矢量的函数,n n ×ij k R 为已知矢量。在位移有限 元中,δ代表未知的结点位移,()δF 是等效结点力,R 为等效结点荷载,方程()0=δψ表示结点平衡方程。 在线弹性有限元中,线性方程组

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

有限元悬臂梁仿真

有限元方法大作业 课程设计题目: 若干个质量不等的仪器要安装在均匀悬臂梁(或板)不同位置上,仪器间要有预留安全距离,试确定一种安装方法,使梁(或板)的变形最小或第一阶固有频率最高。 题目分析: 1 题目中没有给定梁的材料和形状、仪器的数量和质量,以及仪器的安全距离。在这里不妨假定,梁的材料为结构钢,其密度为、杨氏模量为Pa、泊松比为0.3,梁的形状为。仪器的数量为3个,均匀的安装在梁上,其质量及其组合如表1所示。 表1 仪器的质量、及其组合 2 本次采用solidworks建立梁的实体模型,并导入ansys workbench软件中进行计算。梁模型左端固定,仪器安装顺序依次从左到右。 3 在题目中,需要找到一种安装组合使得梁的变形最小或第一阶固有频率最高,这分别是静力学分析问题和模态分析问题。在静力学分析中,如图2-1所示,在梁上安装仪器的位置上,加上一个加力面(半径为20mm的圆)。在加力面上可以施加均布载荷,这里将仪器的质量换算成相应的均布载荷,施加到相应的加力面上,如图2-2所示。 图2-1 ansys workbench实体梁的静力学分析

图2-2 加力面和加力面上的均布载荷 采用solid187单元对模型进行网格划分,solid187单元是一个高阶3维10节点固体结构单元,如图2-3所示,单元通过10个节点来定义,每个节点有3个沿着xyz方向平移的自由度。并对加力面附近进行加密,如图2-4所示。进而进行静力学分析,得到梁的总体变形量(total-Deformation)。 图2-3 solid187单元 图2-4 梁模型网格划分和加力面加密 4 梁的固有频率可由无阻尼自由振动方程求解: 令: 得到: 当: 从而求的梁的自振频率。在ansys workbench中,将仪器的质量用质量点代替,并安置在相应的位置上,如图2-5所示。采用solid186单元对模型进行网格划分,其结果如图2-6所示,solid186是一个高阶3维20节点固体结构单元,如图2-7所示,单元通过20个节点来定义,每个节点有3个沿着xyz方向平移的自由度。然后,求解梁模型的前6阶的固有频率。

悬臂梁—有限元ABAQUS线性静力学分析实例-精选.pdf

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型, 不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在 ABAQUS 中,该类问题通常采用静态通用( Static ,General )分析步或静态线性摄动(Static ,Linear perturbation )分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I 、C3D8I )的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图 1-1所示,求梁受载后 的Mises 应力、位移分布。 材料性质:弹性模量32e E ,泊松比3.0均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS 有两种方法,用户可以任选一种。 (1)在Windows 操作系统中单击“开始” --“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

非线性有限元分析

非线性有限元分析 1 概述 在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。 已经发展的数值分析方法可以分为两大类。一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。 另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。 1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。 现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。 在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体

有限元分析及应用报告-利用ANSYS软件分析带孔悬臂梁

有限元分析及应用报告 题目:利用ANSY软件分析带孔悬臂梁 姓名:xxx 学号:xxx 班级:机械xxx 学院: 机械学院 指导老师:xxx 二零一五年一月

问题概述 图示为一隧道断面,其内受均布水压力q,外受土壤均 布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。(材料为钢,隧道几何尺寸和压力大小自行确定) 本例假定内圆半径为1m,外圆半径为2m,外受均布 压力p=10000pa ,内受均布压力为q=20000pa 。 问题分析 由题目可知,隧道的的长度尺寸远远大于截面尺寸,并且压力在长度方向上均匀分布,因此本问题可以看作为平面应变问题。由于在一个截面内,压力沿截面四周均匀分布,且截面是对称的圆环,所以可以只取截面1/4进行有限元建模分析,这样不仅简化了建模分析过程,也能保证得到精确的结果。由以上分析,可以选取单元类型plane42进行有限元分析,在option中选择K3 为plane strain。

三.有限元建模 1.设置计算类型 由问题分析可知本问题属于平面静应力问题,所以选择preferences 为structure 。 2.单元类型选定 选取平面四节点常应变单元plane42,来计算分析隧道截面的位移和应力。由于此问题为平面应变问题,在设置element type的K3时将其设置为plane strain。 3.材料参数 隧道的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比(T =0.3 4.几何建模 按照题目所给尺寸利用ansys的modeling依次建立keypoint : 1(0,0),2(1,0),3(2,0),4(0,2),5(0,1) , create LINES 依次连接keypoint 2、3和4、5即可创建两条直线,使用create article 的By cent & radius 创建两条圆弧。create AREAS依次选择四条线即建立了所需的1/4截面。 5.网格划分

悬臂梁ansys有限元分析求最大挠度

(一) 悬臂梁ansys 有限元分析求最大挠度 问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度? 解:弯矩方程: 221) ()(x l q x M --= 微分方程: 22 1'')(x l q y EI z -= 积分求解:D Cx qx qlx x ql y EI C qx qlx x ql y EI z z +++-=++-=4322322'24 1 6125.06 1 5.05.0 由边界条件:0; 0, 0' ' ====A A A y y x θ 得:C=0, D=0 I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。 q=ρ*g*a*h*l 材料力学公式求:Y=EI 85 gahl^ρ=5.733mm L

ANSYS 模拟求:Y=5.5392mm,详细见下步骤 ANSYS 软件设置及其具体过程如下: 步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。(单位默认为m) 步骤2:材料属性设置。密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。在左面施加固定约束(三个方向固定)

步骤5::求解。在solve下solve current LS。 步骤6:后处理查看。在result中plot result,查看nodes displacement。List查看文本,观察nodes的最大位移点。

ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 采用二维模型,3*0.09m。

2 软件知识学习 2.1 软件的使用与介绍 软件介绍: ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。 ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。 软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型; 分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

悬臂梁有限元模拟分析步骤

Introduction to Simulation I-DEAS Tutorials: Simulation Projects Simulation involves three major steps: Pre-processing (modeling, applying boundary conditions, meshing); solving the model; and post-processing (displaying the results). Learn how to: ?create a finite element model ?apply boundary conditions ?mesh the FE model ?solve the FE model ?display the results

Before you begin... Prerequisite tutorials:?Introducing the I-DEAS Interface Quick Tips to Using I-DEAS –and– Creating Parts ?Extruding and Revolving Features

If you didn’t start I-DEAS with a new (empty) model file, open a new one now and give it a unique name. File Open Open Model File form Model File name: any unique name OK Simulation Master Modeler Set your units to mm. Options Units mm (milli newton)

专业课设,悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 二维模型,3*0.09m。 2 软件的介绍与使用 2.1 ANSYS 简介 ANSYS程序是一个功能强大的灵活的设计分析及优化、融结构、流体、电场、磁场、声场分析于一体的大型通用有限元商用分析软件,可广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等一般工业及科学研究。该软件提供了一个不断改进的功能清单,集体包括:结构高度非线性分析、电磁分析、计算流体动力分析、设计优化、接触分析、自适应网格划分、大应变/有限转动工功能一接利用ANSYS参数设计的扩展宏命令功能。 ANSYS由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数

系统下生成的集合数据传入ANSYS,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,并通过必要的修补可准确地在该模型上划分网格并求解。 2.2 ANSYS软件的功能介绍 ANSYS软件含有多种有限元分析的能力,包括从简单线性静态分析到复杂非线性动态分析。一个典型的ANSYS分析过程可分为以下三个步骤: 创建有限元模型; 施加载荷进行求解; 查看分析结果; 在有限元的分析过程中,程序通常使用以下三个部分:前处理模块,分析求解模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,通过这个模块用户可以建立自己想要的工程有限模型。 分析求解模块即是对已建立好的模型在一定的载荷和边界条件下进行有限元计算,求解平衡微分方程。包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析(热-应力耦合、流-固耦合以及电-磁-热-应力耦合)等,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 下面对ANSYS软件的三种模块的功能进行简要介绍: 1.前处理模块 ANSYS软件的前处理模块主要实现三种功能:参数定义、实体建模和网格划分。 (1)参数定义 ANSYS程序在进行结构建模的过程中,首先要对所有被建模型的材料进行参数定义。包括定义使用单位制,定义所有使用单元的类型,定义单元的实常数,定义材料的特性以及使用材料库文件等。 (2)实体建模

梁结构静力有限元分析论文

梁结构静力有限元分析论文 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力 时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立好梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键字:ANSYS ,梁结构,有限元,静力分析。 0引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。以下为此次分析对象。 梁的截面形状为梯形截面,各个截面尺寸相同。两端受弯矩沿中性面发生弯曲,如图2-1所示。试利用ANSYS 软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。 r θ A A M M A -A 截面 D,B 1#面 2#面 C A B D

C,A 1 有限元模型的建立 首先进入ANSYS中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick 8-node 45,弹性模量为200e9,泊松比为0.3。由于分析不需要定义实常数,因此可忽略提示,关闭Real Constants菜单。 建立的切片模型如下:

试验三结构梁的有限元分析

实验三结构梁的有限元分析 (一) 实验目的 1.了解ANSYS在有限元分析中的作用; 2.理解ANSYS的工作机理; 3.掌握ANSYS的建模及分析方法; 4.掌握梁结构的有限元分析方法。 (二) 实验设备和工具 装有ANSYS软件的计算机 (三) 实验原理 1.有限元建模的基本原则 建模时需要考虑两条基本原则:一是保证计算结果的精度,二是控制模型的规模。在保证精度的前提下,减小模型规模是必要的,它可在有限的条件下使有限元计算更好、更快地完成。 (1) 保证精度原则 ① 适当增加单元数量,即划分比较密集的网格。实际计算时,可以比较两种网格的计算结果,如果相差较大,可以继续增加单元数量。如果结果变化不大,则可以停止增加。 ②在划分网格特别是在应力精度要求很高的区域时尽量划分比较规则的网格形状。一般情况下,使单元形状为正多边形(等边三角形或正方形)和正多面体。 (2) 控制规模原则 模型规模是指模型的大小,直观上可用节点数和单元数来衡量。 ①可以通过控制节点和单元数量来控制模型规模。此外,模型规模还受节点和单元编号的影响。 ② 在估计模型规模时,除了考虑节点的多少外,还应考虑节点的自由度数。 2.有限元建模的一般步骤 不同问题的有限元建模过程和内容不完全相同,在具体实施分析之前,首先弄清分析对象的几何形状、约束特点和载荷规律,以明确结构型式、分析类型、计算结果的大致规律、精度要求、模型规模大小等情况,以确定合理的建模策略和分析方案。 3.形状处理方法 几何模型对分网过程、网格形式和网格数量都有直接影响。几何建模时,对原有结构进

行适当处理是必要的。 (1) 降维处理:对某些结构作近似处理,按平面问题或轴对称问题来计算,把三维问题简化或近似为二维问题来处理。 (2) 细节简化:结构中存在的一些相对尺寸很小、处于结构的非高应力区的细节,如倒圆、倒角、退刀槽、加工凸台等,可以简化处理。 (3) 局部结构的利用:当有些结构尺寸很大,但受力或同时受力的却是某些相对很小的局部,结构只是在局部发生变形,应力也分布在局部区域内时,可以从整个结构中划分出一部分进行分析。 (4) 对称性的利用:当结构形状和边界条件具有某种对称性,应力和变形呈相应的对称分布时,可以只取出结构的一半计算。 4.单元类型 单元类型的选择应根据分析类型、形状特征、计算数据特点、精度要求和计算条件等因素综合考虑。在结构分析领域,不同的结构类型需要相应的单元进行离散。因此单元通常是按结构类型进行分类的,即根据结构的特点选择相应单元。 5.单元特性 单元特性定义了单元内部数据,包括材料数据、截面数据等。 (1) 材料特性 材料特性用于定义分析对象的材料在力学、热学等方面的性能,如弹性模量E、泊松比、密度、导热系数、热膨胀系数等。 (2) 物理特性 物理特性用于定义单元物理参数或辅助几何特征,在ANSYS中称为实常数。 (3) 截面特性 杆、梁这类一维单元需要定义其截面特性。杆件结构只承受拉压,其截面特性只有截面积。梁结构可以承受拉压、弯曲和扭转,其截面特性包括截面积、主惯矩、极惯矩等截面性质。 (4) 单元相关几何数据 某些单元具有一些相关几何数据,以对单元作进一步说明。 6.网格划分原则 (1) 网格数量 网格数量的多少主要影响以下两个因素。 ①结果精度 网格数量增加,结果精度一般会随之提高,但当网格数量太大时,数值计算的累积误差反而会降低计算精度。 ②计算规模 网格数量增加,将会增加计算时间。并不是网格分得越多越好,应该考虑网格增加的经济性,在实际计算时应权衡两个因素综合考虑。 (2) 网格疏密 网格疏密是指结构不同部位采用不同大小的网格,又称相对网格密度。应力集中区域采用较密集的网格,而在其它非应力集中区域,则采用较稀疏的网格。采用疏密不同的网格划分,既可保持相当的精度,又可使网格数量减小。 (3) 单元阶次 采用高阶单元可以提高计算精度,但高阶单元的节点较多,使用时也应权衡精度和规 模综合考虑。 (4) 网格质量

ansys桁架和梁的有限元分析

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

相关主题