搜档网
当前位置:搜档网 › (完整版)直线、平面平行与垂直的综合问题

(完整版)直线、平面平行与垂直的综合问题

(完整版)直线、平面平行与垂直的综合问题
(完整版)直线、平面平行与垂直的综合问题

第六节 直线、平面平行与垂直的综合问题 考点一 立体几何中的探索性问题

[典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧?CD 所在平面垂直,M 是?CD

上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC .

(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.

[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ?平面ABCD ,

所以BC ⊥平面CMD ,所以BC ⊥DM .

因为M 为?CD

上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .

又BC ∩CM =C ,所以DM ⊥平面BMC .

因为DM ?平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点.

连接OP ,因为P 为AM 的中点, 所以MC ∥OP .

又MC ?平面PBD ,OP ?平面PBD , 所以MC ∥平面PBD . [题组训练]

1.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°.

(1)求三棱锥P -ABC 的体积;

(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM

MC 的值.

解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3

2

.

由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1,

所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3

6

.

(2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下:

如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM .

由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC .

因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ?平面MBN , 所以AC ⊥BM .

在Rt △BAN 中,AN =AB ·cos ∠BAC =1

2,

从而NC =AC -AN =3

2,

由MN ∥P A ,得PM MC =AN NC =1

3

.

2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG .

(1)求证:PC ⊥BC ;

(2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由.

解:(1)证明:因为PD ⊥平面ABCD ,BC ?平面ABCD , 所以PD ⊥BC .

因为四边形ABCD 是正方形,所以BC ⊥CD . 又PD ∩CD =D ,PD ?平面PCD ,CD ?平面PCD , 所以BC ⊥平面PCD .

因为PC ?平面PCD ,所以PC ⊥BC .

(2)连接AC ,BD 交于点O ,连接EO ,GO ,

延长GO 交AD 于点M ,连接EM ,则P A ∥平面MEG . 证明如下:因为E 为PC 的中点,O 是AC 的中点, 所以EO ∥P A .

因为EO ?平面MEG ,P A ?平面MEG ,所以P A ∥平面MEG . 因为△OCG ≌△OAM ,所以AM =CG =2

3,

所以AM 的长为2

3

.

考点二 平面图形的翻折问题

[典例] (2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°.以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .

(1)证明:平面ACD ⊥平面ABC ;

(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =D Q =2

3DA ,求三棱锥Q -ABP

的体积.

解:(1)证明:由已知可得,∠BAC =90°,即BA ⊥AC . 又因为BA ⊥AD ,AC ∩AD =A , 所以AB ⊥平面ACD . 因为AB ?平面ABC , 所以平面ACD ⊥平面ABC .

(2)由已知可得,DC =CM =AB =3,DA =3 2. 又BP =D Q =2

3

DA ,所以BP =2 2.

如图,过点Q 作Q E ⊥AC ,垂足为E ,则Q E 綊1

3DC .

由已知及(1)可得,DC ⊥平面ABC , 所以Q E ⊥平面ABC ,Q E =1.

因此,三棱锥Q -ABP 的体积为V Q -ABP =13×S △ABP ×Q E =13×1

2×3×22sin 45°×1=1. [题组训练]

1.(2019·湖北五校联考)如图1所示,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =1

2AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面

ABC 垂直,得到如图2所示的几何体D -ABC .

(1)求证:BC ⊥平面ACD ;

(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.

解:(1)证明:∵AC =AD 2+CD 2=22, ∠BAC =∠ACD =45°,AB =4,

∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8, ∴AB 2=AC 2+BC 2=16,∴AC ⊥BC .

∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC , ∴BC ⊥平面ACD .

(2)∵AD ∥平面BEF ,AD ?平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF , ∵E 为AC 的中点,∴EF 为△ACD 的中位线,

由(1)知,几何体F -BCE 的体积V F -BCE =V B -CEF =1

3×S △CEF ×BC , S △CEF =14S △ACD =14×12×2×2=1

2,

∴V F -BCE =13×12×22=2

3

. 2.(2018·合肥二检)如图1,在平面五边形ABCDE 中,AB ∥CE ,且AE =2,∠AEC =60°,CD =ED =7,cos ∠EDC =5

7.将△CDE 沿CE 折起,使点D 到P 的位置,且AP =3,

得到如图2所示的四棱锥P -ABCE .

(1)求证:AP ⊥平面ABCE ;

(2)记平面P AB 与平面PCE 相交于直线l ,求证:AB ∥l . 证明:(1)在△CDE 中,∵CD =ED =7,cos ∠EDC =5

7,

由余弦定理得CE = (7)2+(7)2-2×7×7×5

7

=2.

连接AC ,

∵AE=2,∠AEC=60°,

∴AC=2.

又AP=3,

∴在△P AE中,AP2+AE2=PE2,

即AP⊥AE.

同理,AP⊥AC.

∵AC∩AE=A,AC?平面ABCE,AE?平面ABCE,∴AP⊥平面ABCE.

(2)∵AB∥CE,且CE?平面PCE,AB?平面PCE,∴AB∥平面PCE.

又平面P AB∩平面PCE=l,∴AB∥l.

[课时跟踪检测] 1.如图,四棱锥P -ABCD 的底面ABCD 是圆内接四边形(记此圆为W ),且P A ⊥平面ABCD .

(1)当BD 是圆W 的直径时,P A =BD =2,AD =CD =3,求四棱锥P -ABCD 的体积. (2)在(1)的条件下,判断在棱P A 上是否存在一点Q ,使得B Q ∥平面PCD ?若存在,求出A Q 的长;若不存在,请说明理由.

解:(1)因为BD 是圆W 的直径,所以BA ⊥AD , 因为BD =2,AD =3,所以AB =1. 同理BC =1,所以S 四边形ABCD =AB ·AD = 3. 因为P A ⊥平面ABCD ,P A =2,

所以四棱锥P -ABCD 的体积V =13S 四边形ABCD ·P A =233.

(2)存在,A Q =2

3

.理由如下.

延长AB ,DC 交于点E ,连接PE ,则平面P AB 与平面PCD 的交线是PE . 假设在棱P A 上存在一点Q ,使得B Q ∥平面PCD , 则B Q ∥PE ,所以A Q P A =AB

AE

.

经计算可得BE =2,所以AE =AB +BE =3,所以A Q =2

3.

故存在这样的点Q ,使B Q ∥平面PCD ,且A Q =2

3

.

2.如图,侧棱与底面垂直的四棱柱ABCD -A 1B 1C 1D 1的底面是梯形,AB ∥CD ,AB ⊥AD ,AA 1=4,DC =2AB ,AB =AD =3,点M 在棱A 1B 1上,且A 1M =1

3A 1B 1.已知点E 是直

线CD 上的一点,AM ∥平面BC 1E .

(1)试确定点E 的位置,并说明理由; (2)求三棱锥M -BC 1E 的体积.

解:(1)点E 在线段CD 上且EC =1,理由如下:

在棱C 1D 1上取点N ,使得D 1N =A 1M =1,连接MN ,DN , 因为D 1N ∥A 1M ,所以四边形D 1NMA 1为平行四边形, 所以MN 綊A 1D 1綊AD .

所以四边形AMND 为平行四边形,所以AM ∥DN . 因为CE =1,所以易知DN ∥EC 1,所以AM ∥EC 1, 又AM ?平面BC 1E ,EC 1?平面BC 1E , 所以AM ∥平面BC 1E .

故点E 在线段CD 上且EC =1. (2)由(1)知,AM ∥平面BC 1E ,

所以V M -BC 1E =V A -BC 1E =V C 1-ABE

=13×????1

2

×3×3×4=6. 3.(2019·湖北武汉部分学校调研)如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1-ABCE ,其中平面D 1AE ⊥平面ABCE .

(1)证明:BE ⊥平面D 1AE ;

(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AM

AB

的值;若不存在,请说明理由. 解:(1)证明:∵四边形ABCD 为矩形且AD =DE =EC =BC =2,∴∠AEB =90°,即BE ⊥AE , 又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,∴BE ⊥平面D 1AE .

(2)当

AM AB =1

4

时,MF ∥平面D 1AE ,理由如下:取D 1E 的中点L ,连接FL ,AL , ∴FL ∥EC ,又EC ∥AB , ∴FL ∥AB ,且FL =1

4AB ,

∴M ,F ,L ,A 四点共面, 又MF ∥平面AD 1E ,∴MF ∥AL . ∴四边形AMFL 为平行四边形, ∴AM =FL =14AB ,AM AB =1

4

.

4.如图1所示,在Rt △ABC 中,∠ABC =90°,D 为AC 的中点,AE ⊥BD 于点E (不同于点D ),延长AE 交BC 于点F ,将△ABD 沿BD 折起,得到三棱锥A 1-BCD ,如图2所示.

(1)若M是FC的中点,求证:直线DM∥平面A1EF.

(2)求证:BD⊥A1F.

(3)若平面A1BD⊥平面BCD,试判断直线A1B与直线CD能否垂直?请说明理由.

解:(1)证明:∵D,M分别为AC,FC的中点,

∴DM∥EF,

又∵EF?平面A1EF,DM?平面A1EF,

∴DM∥平面A1EF.

(2)证明:∵EF⊥BD,A1E⊥BD,A1E∩EF=E,

A1E?平面A1EF,EF?平面A1EF,

∴BD⊥平面A1EF,

又A1F?平面A1EF,∴BD⊥A1F.

(3)直线A1B与直线CD不能垂直.理由如下:

∵平面BCD⊥平面A1BD,平面BCD∩平面A1BD=BD,EF⊥BD,EF?平面BCD,∴EF⊥平面A1BD,

又∵A1B?平面A1BD,∴A1B⊥EF,

又∵DM∥EF,∴A1B⊥DM.

假设A1B⊥CD,∵DM∩CD=D,

∴A1B⊥平面BCD,

∴A1B⊥BD,与∠A1BD为锐角矛盾,

∴直线A1B与直线CD不能垂直.

5.(2019·河南名校联考)如图,在多面体ABCDEF中,四边形ABCD是梯形,AB∥CD,AD=DC=CB=a,∠ABC=60°,四边形ACFE是矩形,且平面ACFE⊥平面ABCD,点M 在线段EF上.

(1)求证:BC ⊥平面ACFE ;

(2)当EM 为何值时,AM ∥平面BDF ?证明你的结论.

解:(1)证明:在梯形ABCD 中,因为AB ∥CD ,AD =DC =CB =a ,∠ABC =60°, 所以四边形ABCD 是等腰梯形,且∠DCA =∠DAC =30°,∠DCB =120°, 所以∠ACB =∠DCB -∠DCA =90°,所以AC ⊥BC .

又平面ACFE ⊥平面ABCD ,平面ACFE ∩平面ABCD =AC ,BC ?平面ABCD , 所以BC ⊥平面ACFE . (2)当EM =

3

3

a 时,AM ∥平面BDF ,理由如下: 如图,在梯形ABCD 中,设AC ∩BD =N ,连接FN .

由(1)知四边形ABCD 为等腰梯形,且∠ABC =60°,所以AB =2DC ,则CN ∶NA =1∶2.

易知EF =AC =3a ,所以AN =23

3a .

因为EM =

33

a , 所以MF =23EF =23

3a ,

所以MF 綊AN ,

所以四边形ANFM 是平行四边形,

所以AM ∥NF ,

又NF ?平面BDF ,AM ?平面BDF , 所以AM ∥平面BDF .

6.如图所示的五面体ABEDFC 中,四边形ACFD 是等腰梯形,AD ∥FC ,∠DAC =60°,BC ⊥平面ACFD ,CA =CB =CF =1,AD =2CF ,点G 为AC 的中点.

(1)在AD 上是否存在一点H ,使GH ∥平面BCD ?若存在,指出点H 的位置并给出证明;若不存在,说明理由;

(2)求三棱锥G -ECD 的体积.

解:(1)存在点H 使GH ∥平面BCD ,此时H 为AD 的中点.证明如下. 取点H 为AD 的中点,连接GH , 因为点G 为AC 的中点,

所以在△ACD 中,由三角形中位线定理可知GH ∥CD , 又GH ?平面BCD ,CD ?平面BCD , 所以GH ∥平面BCD .

(2)因为AD ∥CF ,AD ?平面ADEB ,CF ?平面ADEB , 所以CF ∥平面ADEB ,

因为CF ?平面CFEB ,平面CFEB ∩平面ADEB =BE , 所以CF ∥BE ,

又CF ?平面ACFD ,BE ?平面ACFD , 所以BE ∥平面ACFD , 所以V G -ECD =V E -GCD =V B -GCD .

因为四边形ACFD 是等腰梯形,∠DAC =60°,AD =2CF =2AC ,所以∠ACD =90°, 又CA =CB =CF =1,所以CD =3,CG =1

2,

又BC ⊥平面ACFD ,

所以V B -GCD =13×12CG ×CD ×BC =13×12×12×3×1=3

12. 所以三棱锥G -ECD 的体积为3

12

.

直线与平面、平面与平面平行的判定(附答案)

直线与平面、平面与平面平行的判定 [学习目标] 1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题. 知识点一直线与平面平行的判定定理 语言叙述符号表示图形表示 平面外一条直线与此平面内的一条直线平 行,则该直线与此平面平行 ?? ? ?? a?α b?α a∥b ?a∥α 思考若一条直线平行于一个平面内的一条直线,则这条直线和这个平面平行吗? 答根据直线与平面平行的判定定理可知该结论错误. 知识点二平面与平面平行的判定定理 语言叙述符号表示图形表示 一个平面内的两条相交直线与另一个平 面平行,则这两个平面平行 ?? ? ?? a?α,b?α a∩b=A a∥β,b∥β ?α∥β 思考如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面也平行吗?答不一定.这条直线与另一个平面平行或在另一个平面内. 题型一直线与平面平行的判定定理的应用 例1如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、 DA的中点. 求证:(1)EH∥平面BCD; (2)BD∥平面EFGH. 证明(1)∵EH为△ABD的中位线, ∴EH∥BD.

∵EH?平面BCD,BD?平面BCD, ∴EH∥平面BCD. (2)∵BD∥EH,BD?平面EFGH, EH?平面EFGH, ∴BD∥平面EFGH. 跟踪训练1在四面体A-BCD中,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ADC. 证明如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两 点,连接PQ. 因为M,N分别是△ABD和△BCD的重心, 所以BM∶MP=BN∶NQ=2∶1. 所以MN∥PQ. 又因为MN?平面ADC,PQ?平面ADC, 所以MN∥平面ADC. 题型二面面平行判定定理的应用 例2如图所示,在三棱柱ABC-A1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1. 证明由棱柱性质知, B1C1∥BC,B1C1=BC, 又D,E分别为BC,B1C1的中点, 所以C1E綊DB,则四边形C1DBE为平行四边形, 因此EB∥C1D, 又C1D?平面ADC1, EB?平面ADC1, 所以EB∥平面ADC1. 连接DE,同理,EB綊BD,

直线、平面平行与垂直的综合问题考点与题型归纳

直线、平面平行与垂直的综合问题考点与题型归纳 考点一立体几何中的探索性问题 [典例](2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧?CD所 在平面垂直,M是?CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC. (2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由. [解](1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC?平面ABCD, 所以BC⊥平面CMD,所以BC⊥DM. 因为M为?CD上异于C,D的点,且DC为直径, 所以DM⊥CM. 又BC∩CM=C,所以DM⊥平面BMC. 因为DM?平面AMD,所以平面AMD⊥平面BMC. (2)当P为AM的中点时,MC∥平面PBD. 证明如下: 连接AC交BD于O. 因为四边形ABCD为矩形, 所以O为AC的中点. 连接OP,因为P为AM的中点, 所以MC∥OP. 又MC?平面PBD,OP?平面PBD, 所以MC∥平面PBD. [题组训练] 1.如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC =2,∠BAC=60°. (1)求三棱锥P-ABC的体积;

(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6. (2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下: 如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC . 因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ?平面MBN , 所以AC ⊥BM . 在Rt △BAN 中,AN =AB ·cos ∠BAC =1 2, 从而NC =AC -AN =3 2, 由MN ∥P A ,得PM MC =AN NC =1 3 . 2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG . (1)求证:PC ⊥BC ; (2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由. 解:(1)证明:因为PD ⊥平面ABCD ,BC ?平面ABCD , 所以PD ⊥BC . 因为四边形ABCD 是正方形,所以BC ⊥CD .

立体几何中平行与垂直证明方法归纳

c c ∥∥b a b a ∥?本文档系统总结归纳了立体几何中平行与垂直证明方法,特别适合于高三总复习时对学生构建知识网络、探求解题思路、归纳梳理解题方法。是一份不可多得的好资料。 一、“平行关系”常见证明方法 (一)直线与直线平行的证明 1) 利用某些平面图形的特性:如平行四边形的对边互相平行 2) 利用三角形中位线性质 3) 利用空间平行线的传递性(即公理4): 平行于同一条直线的两条直线互相平行。 4) 利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 5) 利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. 6) 利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行。 a b α β a b a =?? βαβ α ∥b a ∥?b a b a //// ??? ? ?? ==γβγαβα β α ⊥⊥b a b a ∥?

7) 利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行。 8) 利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明 1) 利用直线与平面平行的判定定理: 平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 2) 利用平面与平面平行的性质推论: 两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。 3) 利用定义:直线在平面外,且直线与平面没有公共点 (三)平面与平面平行的证明 常见证明方法: 1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 α b a β α a β αα ∥?a β ∥a ?α αββ////∩??b a P b a b a =α β//?α β b a P b ∥a b a αα ??α ∥a ?

两条直线平行与垂直作业

两条直线平行与垂直作业 一、选择题(每小题8分) 1.下列命题 ①如果两条不重合的直线斜率相等,则它们平行; ②如果两直线平行,则它们的斜率相等; ③如果两直线的斜率之积为-1,则它们垂直; ④如果两直线垂直,则它们斜率之积为-1. 其中正确的为( ) A.①②③④ B.①③ C.②④ D.以上全错 2.已知点A(1,2),B(m,1),直线AB 与直线y=0垂直,则m 的值为( ) A.2 B.1 C.0 D.-1 3.以A(5,-1),B(1,1),C(2,3)为顶点的三角形是( ) A.锐角三角形 B.钝角三角形 C.以A 为直角顶点的直角三角形 D.以B 为直角顶点的直角三角形 4.已知12l l ⊥,直线2l 的倾斜角为45°,则直线1l 的倾斜角为( ) A.45° B.135° C.-45° D.120° 5.满足下列条件的1l 与2l ,其中12l l ⊥的是( ) (1) 1l 的斜率为- , 2l 经过点A(1,1),B(0,- ); (2) 1l 的倾斜角为45°, 2l 经过点P(-2,-1),Q(3,-5); (3) 1l 经过点M(1,0),N(4,-5), 2l 经过点R(-6,0),S(-1,3). A.(1)(2) B. (1)(3) C.(2)(3) D.(1)(2)(3) 6.若A (-4,2),B(6,-4),C(12,6),D(2,12),则下列四个结论: ① AB ∥CD ② AB ⊥AD ③ AC ∥BD ④ AC ⊥BD 中正确的个数为( ) A.1 B.2 C.3 D.4 7.已知直线l 与过点M(2,3-),N(3,2-)的直线垂直,则直线l 的 倾斜角( ) A.60° B.180° C. 45° D.153° 8.若P (a,b )与Q (b-1,a+1)关于直线l 对称,则l 的倾斜角为( ) A .135° B.45° C. 30° D.60° 二、填空题(每小题8分) 9、经过点P(-2?-1)?Q(3,a)的直线与倾斜角为45°的直线垂直.则a= _____ 10、如果下列三点:A(a,2),B(5,1),C(-4,2a)在同一直线上, 则a= _____ 11、 1l 过点A(m,1),B(-3,4), 2l 过点C(0,2),D(1,1),且1l ∥2l ,则m=_______. 2312

平行与垂直的综合应用

平行与垂直的综合应用 [基础要点] 指出每个箭头方向表示的定理: ⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ 题型一、平行关系的综合应用 例1、如图示,正三棱柱111ABC A B C -的底面边长为2,点E 、F 分别是棱上11,CC BB 的点,点M 是线段AC 上的动点,EC=2FB=2 (1)当点M 在何位置时,MB ∥平面AFE (2)若MB ∥平面AFE ,判断MB 与EF 的位置关系,说明理由,并求MB 与EF 所成角的余弦值。 变式:如图示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问:截面在什么位置时,其截面的面积最大? 题型二、垂直关系的综合应用 例2、如图示,已知平行六面体1111ABCD A BC D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠ (1)求证:1C C BD ⊥ A B C 1 A 1 B 1 C E F N M B H C A D G F E D

(2)当 1 CD CC 的值为多少时,能使1 AC ⊥平面1C BD ?请给出证明 变式:平面α内有一个半圆,直径为AB ,过A 作SA ⊥平面α,在半圆上任取一点M ,连SM 、SB ,且N 、H 分别是A 在SM 、SB 上的射影 (1)求证:NH ⊥SB (2)这个图形中有多少个线面垂直关系? (3)这个图形中有多少个直角三角形? (4)这个图形中有多少对相互垂直的直线? 题型三、空间角的问题 例3、如图示,在正四棱柱1111ABCD A BC D -中 , 11,1A B B B =+,E 为1BB 上使11B E =的点,平面1 AEC 交1DD 于F ,交11A D 的延长线于G ,求: (1)异面直线AD 与1C G 所成的角的大小 (2)二面角11A C G A --的正弦值 变式:如图示,在四棱锥S -ABCD 中,底面ABCD 为正方形,SB ⊥面ABCD ,SB=AB ,设Q 为SD 的中点,M 为AB 的中点, (1)求证:MQ ∥平面SBC (2)求证:平面SDM ⊥平面SCD (3)求锐二面角S -M -C 的大小 题型四、探索性、开放型问题 例4、已知正方体中1111ABCD A BC D -,E 为棱1CC 上的动点, (1)求证:1A E ⊥BD (2) 当E 恰为棱1CC 的中点时,求证:平面1A BD ⊥平面 EBD (3)在棱1CC 上是否存在一个点E ,可以使二面角1A BD E --的大小为45 ?如果存在, C1 A1D B C B1 G F A E D1 A C D S Q A

时两条直线的平行与垂直配套练习必修

两条直线的平行与垂直(2) 分层训练 1 . .若直线ax y 1 0和直线2x by 1 0垂直,则a,b满足() (A)2a b 0 (B)2a b 0 (C)ab 2 0 (D)ab 2 0 2 ..已知两点A( 2,0), B(0,4) ,则与 直 线AB垂直的直线方程可写成( ) (A)2x y m 0 (B)2x y m 0 (C) x 2 y m 0 (D) x 2y m 0 3?已知两点A( 1,3), B(3,1),点C在坐标轴上.若ACB -,则这样的点C有 ( ) (A)1 个(B)2 个(C)3 个(D)4 个 4.原点在直线I上的射影是P( 2,1),则|的方程为( ) (A)x 2y 0 (B) x 2y 4 0 (C)2x y 5 0 (D) 2x y 3 0 5.已知直线mx 4y 2 0 和2x 5y n 0互相垂直,且垂足为(1,p),则m n p的 值是() (A)24 (B)20 (C) 0 (D) 4 6?根据条件,判断直线l i与I2是否垂直: (1)l i的倾斜角为45°, I2的方程是x y 1 : _______________________ ; (2)I1 经过点M (1,0), N(4,5) , J过点R( 6,0), S( 1,3): ________________________ . 7?直线I在y轴上的截距为2,且与直线l': x 3y 2 0垂直,则I的方程是__________ 8.已知直线Ax 4y 2 0和直线2x y C 0垂直且垂足的坐标为(1,m),则 A ______ , C ________ ,m ________ . 9?求经过点(2,1),且与直线2x y 10 0垂直的直线I的方程.

直线、平面平行与垂直的判定及其性质 复习

直线、平面平行的判定及其性质 知识点一、直线与平面平行的判定 ⅰ.直线和平面的位置关系(一条直线和一个平面的位置关系有且只有以下三种) 位置关系直线在平面内直线与平面相交直线与平面平行 公共点有无数个公共点有且只有一个公共点没有公共点 符号表示a?αa∩α=A a||α 图形表示 注:直线和平面相交或平行的情况统称为直线在平面外 ⅱ.思考:如图,设直线b在平面α内,直线a在平面α外,猜想在什么条件下直线a 与平面α平行.(a||b) 判定 文字描述直线和平面在空间永无交点,则直线 和平面平行(定义) 平面外的一条直线与平面内的一条直线平 行,则该直线与此平面平行 图形 条件a与α无交点 结论 a∥αb∥α

知识点二、直线与平面平行的性质 性质 文字描述一条直线与一个平面平行, 则这条直线与该平面无交点 一条直线和一个平面平行,则过 这条直线的任一平面与此平面 相交,这条直线和交线平行. 图形 条件 a∥αa∥α,a?β,α∩β= b 结论 a∩α=?a∥b 线面平行,则线线平行 特别提示 证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通 过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行, 证得“线面”平行. 判定 文字描述如果两个平面无公共 点,则这两个平面平行一个平面内有两条相 交直线与另一个平面 平行,那么这两个平面 平行. 如果两个平面同时垂直于 一条直线,那么这两个平 面平行。 图形 条件 α∩β=?a,b?β a∩b=P a∥α b∥α l⊥α l⊥β 结论 α∥βα∥βα∥β

知识点四、平面与平面平行的性质 性质 文字描述如果两个平行平面同时和第 三平面相交,那么他们的交 线平行如果两个平面平行,那么其中一个平面内的直线平行于另一个平面 图形 条件α∥β β∩γ=b α∩γ=a α∥β a?β 结论a∥b a∥α 直线、平面垂直的判定及其性质 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直线都 垂直,我们就说直线l与平面互相垂直, 记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥b l⊥m,l⊥n,m∩n=B,mα,nα 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”不同(线线垂直线面垂直) 知识点二、直线和平面垂直的性质 性质 语言描述一条直线垂直于一个平面,那么这条直线 垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.图形

直线与平面平行经典题目

9.2 直线与平面平行 ●知识梳理 1.直线与平面的位置关系有且只有三种,即直线与平面平行、直线与平面相交、直线在平面内. 2.直线与平面平行的判定:如果平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行. 3.直线与平面平行的性质:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么这条直线与交线平行. ●点击双基 1.设有平面α、β和直线m 、n ,则m ∥α的一个充分条件是 A.α⊥β且m ⊥β B.α∩β=n 且m ∥n C.m ∥n 且n ∥α D.α∥β且m β 答案:D 2.设m 、n 是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是 ①若m ⊥α,n ∥α,则m ⊥n ②若α∥β,β∥γ,m ⊥α,则m ⊥γ ③若m ∥α,n ∥α,则m ∥n ④若α⊥γ,β⊥γ,则α∥β A.①② B.②③ C.③④ D.①④ 解析:①②显然正确.③中m 与n 可能相交或异面.④考虑长方体的顶点,α与β可以相交. 答案:A 3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是 A.异面 B.相交 C.平行 D.不能确定 解析:设α∩β=l ,a ∥α,a ∥β, 过直线a 作与α、β都相交的平面γ, 记α∩γ=b ,β∩γ=c , 则a ∥b 且a ∥c , ∴b ∥c . 又b ?α,α∩β=l ,∴b ∥l .∴a ∥l . 答案:C 4.(06重庆卷)对于任意的直线l 与平同a ,在平面a 内必有直线m ,使m 与l A.平行 B.相交 C.垂直 D.互为异面直线 解析:对于任意的直线l 与平面α,若l 在平面α内,则存在直线m ⊥l ;若l 不在平面α内, 且l ⊥α,则平面α内任意一条直线都垂直于l ,若l 不在平面α内,且l 于α不垂直,则它的射影在平面α内为一条直线,在平面α内必有直线m 垂直于它的射影,则m 与l 垂直, 综上所述,选C. 5.已知平面βα,和直线,给出条件:①α//m ;②α⊥m ;③α?m ;④βα⊥;⑤βα//. (i )当满足条件 ③⑤ 时,有β//m ;(ii )当满足条件 ②⑤ 时,有β⊥m .

两直线的平行与垂直的条件

复习引入: 直线名称 已知条件 直线方程 使用范围 示意图 点斜式 k y x P ),,(111 )(11x x k y y -=- 存在k 斜截式 b k , b kx y += 存在k 两点式 ) ,(11y x (),22y x 1 21 121x x x x y y y y --= -- 2121,y y x x ≠≠ 截距式 b a , 1=+b y a x 0,0≠≠ b a 一般式 A 、 B 、 C R ∈ 0=++C By Ax 022≠+B A 1.特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行; (2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直王新敞 2.斜率存在时两直线的平行与垂直. 设直线1l 和2l 的斜率为1k 和2k ,它们的方程分别是: 1l :11b x k y +=; 2l :22b x k y +=. 两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特 征王新敞 ⑴两条直线平行(不重合)的情形. 如图,从位置关系、倾斜角、斜率的定义、正切函数的性质分析,得以下结论: 两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如 果它们的斜率相等,则它们平行,即21//l l ?1k =2k 且21b b ≠ 王新敞 要注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. 例1 两条直线1l :0742=+-y x , 2l :052=+-y x .求证:1l ∥2l 例2 求过点)4,1(-A 且与直线0532=++y x 平行的直线方程.(两种方法) 注意: ①解法一求直线方程的方法是通法,必须掌握; ②解法二是常常采用的解题技巧。一般地,直线0=++C By Ax 中系数A 、B l 2l 1 α2 α1 x O y

第2章习题课直线、平面平行与垂直分析

直线、平面平行与垂直 1.能熟练应用直线、平面平行与垂直的判定及性质进行有关的证明.2.进一步体会化归思想在证明中的应用. a 、 b 、 c 表示直线,α、β、γ表示平面. 位置关系 判定定理(符号语言) 性质定理(符号语言) 直线与平面平行 a ∥b 且________?a ∥α a ∥α,________________?a ∥ b 平面与平面平行 a ∥α, b ∥α,且________________ ?α∥β α∥β,________________?a ∥b 直线与平面垂直 l ⊥a ,l ⊥b ,且________________ ?l ⊥α a ⊥α,b ⊥α?________ 平面与平面垂直 a ⊥α, ?α⊥β α⊥β,α∩β=a ,____________ ?b ⊥β 一、选择题 1.不同直线M 、n 和不同平面α、β.给出下列命题: ① ?????α∥βm ?α?M ∥β; ② ? ??? ?m ∥n m ∥β?n ∥β; ③ ?????m ?αn ?β?M ,n 异面; ④ ? ????α⊥βm ∥α?M ⊥β. 其中假命题的个数为( ) A .0 B .1 C .2 D .3 2.下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两直线平行;(4)垂直于同一平面的两直线平行.其中正确命题的个数有( ) A .4 B .1 C .2 D .3 3.若a 、b 表示直线,α表示平面,下列命题中正确的个数为( ) ①a ⊥α,b ∥α?a ⊥b ;②a ⊥α,a ⊥b ?b ∥α; ③a ∥α,a ⊥b ?b ⊥α. A .1 B .2 C .3 D .0 4.过平面外一点P :①存在无数条直线与平面α平行;②存在无数条直线与平面α垂直;③有且只有一条直线与平面α平行;④有且只有一条直线与平面α垂直,其中真命题的个数是( ) A .1 B .2 C .3 D .4 5.如图所示,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是( ) A .线段 B 1C

人教版数学高一-必修2学案 2.4平行与垂直综合问题

2.4平行与垂直综合问题 自测自评 1.已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则(D) A.n⊥βB.n∥β或n?β C.n⊥αD.n∥α或n?α 解析:在平面β内作直线l垂直于α,β的交线,则由α⊥β得直线l⊥α.又m⊥α,所以l∥m.若m?β,结合图形知,要满足题中限制条件,显然只能n∥α或n?α;同理m?β,仍有n∥α或n?α.综上所述,D正确.2.若三个平面α,β,γ,之间有α∥γ,β⊥γ,则α与β(A) A.垂直B.平行 C.相交D.以上三种可能都有 3.对于任意的直线l与平面α相交,在平面α内不可能有直线m,使m与l(A) A.平行B.相交 C.垂直D.互为异面直线 4.给出以下四个命题,其中真命题有①②④(填序号). ①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行;②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面;③如果两条直线都平行于一个平面,那么这两条直线互相平行;④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

基础达标 1.已知平面α外不共线的三点A,B,C,且AB∥α,则正确的结论是(D) A.平面ABC必平行于α B.平面ABC必与α相交 C.平面ABC必不垂直于α D.存在△ABC的一条中位线平行于α或在α内 2.设直线l?平面α,过平面α外一点A且与l,α都成30°角的直线有且只有(B) A.1条B.2条 C.3条D.4条 解析:如图所示 与α成30° 角的直线一定是以A为顶点的圆锥的母线所在直线,当∠ABC=∠ACB=30°时,直线AC,AB都满足条件,故选B. 3.下列命题中,正确的是(C) A.经过不同的三点有且只有一个平面 B.分别在两个平面内的两条直线一定是异面直线 C.垂直于同一个平面的两条直线是平行直线

高中数学2.1.3两条直线的平行与垂直(2)教案苏教版必修2

2.1.3 两条直线的平行与垂直(2) 教学目标: 1. 掌握利用斜率判定两条直线垂直的方法,感受用代数方法研究几何问题的思想; 2. 通过分类讨论、数形结合等数学思想的渗透,培养学生严谨、辩证的思维习惯. 教材分析及教材内容的定位: 本节课和上节课研究的内容有类似之处,都是通过方程研究几何性质的. 教学重点: 用斜率判断两直线垂直的方法. 教学难点: 理解直线垂直的解析刻画. 教学方法: 探究合作. 教学过程: 一、问题情境 1?复习回顾:(1)利用直线的斜率关系判断两条直线平行; (2)利用直线的一般式方程判断两条直线的平行. 2 ?本节课研究的问题是:一一两条直线垂直, 两条直线垂直,那么他们的斜率之间有什么关系,体现在方程有何特征? 二、学生活动 探究:两条直线垂直,即倾斜角的差为直角,那么他们的斜率如何? 不妨设直线丨1,丨2(斜率存在)所对应的倾斜角分别为a 1, a 2,对应的斜率分别为k1, k2. 因为两条直线相互垂直,不妨设 a 1 — a 2= 90 .根据倾斜角与斜率的关系,我们知道 当倾斜角不是直角时,斜率存在,从而有k1=tan a 1, k2= tan a 2,于是根据诱导公式有 1 k1 tan 1 tan (90° 2) tan 2

即k i k2=—1 .此时,若两直线平行,则两直线的斜率乘积为一1. 反之,如果两直线的斜率(斜率存在)互为负倒数,即k i k2=—1,根据倾斜角和斜率 的关系以及正切函数的单调性可知倾斜角的差等于直角,从而说明它们互相垂直. 三、建构数学 两直线垂直. 一般地,设直线l i,丨 2 (斜率存在)所对应的斜率分别为k i, k2,则 11 I2 k i k2 1 说明: (1)如果直线丨1,丨2的斜率有一个不存在,那么其中有一条直线(不妨设 为I 1 )与X轴垂直,此时两条直线垂直的等价条件为I 2的斜率为0; (2)在利用以上结论判定两直线的位置关系时,一定要注意前提条件,即 斜率存在,因此在讨论问题过程中一定要注意对斜率是否存在作分类讨论. (3)设直线I 1: Ax + By+ Ci= 0, 12:Ax+ By + C2= 0,那么两条直线垂直的等价条件 为:A1A2 B1 B20 . 四、数学运用 例1 (1 )已知四点A(5, 3), B (10, 6) , C(3, —4) , D(—6 , 11),求证:AB丄 CD 3 2 (2)已知直线I 1的斜率k1= ,直线12经过点A (3a, —2) , B( 0 , a +1),且I』 4 12 ,求实数a的值. 例2 已知三角形的顶点为A (2 , 4), B (1, —2), C (—2 , 3),求BC边上的高AD 所在的直线. 例3在路边安装路灯,路宽23m,灯杆长2. 5m且与灯柱成1200角.路灯采用锥形灯罩,灯罩轴线与灯杆垂直. 当灯柱高h为多少米时,灯罩轴线正好通过道路路面的中线? (精确到0. 01m) 练习: 1. 求过点A(0 , —3),且与直线2x+ y—5= 0垂直的直线的方程. 2. 已知直线I与直线I : 3x+4y —12= 0互相垂直,且与坐标轴围成的三角形面积为6,求直线I的方

(完整版)直线、平面平行与垂直的综合问题

第六节 直线、平面平行与垂直的综合问题 考点一 立体几何中的探索性问题 [典例] (2018·全国卷Ⅲ)如图,矩形ABCD 所在平面与半圆弧?CD 所在平面垂直,M 是?CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC . (2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由. [解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ?平面ABCD , 所以BC ⊥平面CMD ,所以BC ⊥DM . 因为M 为?CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 因为DM ?平面AMD ,所以平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下: 连接AC 交BD 于O . 因为四边形ABCD 为矩形, 所以O 为AC 的中点. 连接OP ,因为P 为AM 的中点, 所以MC ∥OP . 又MC ?平面PBD ,OP ?平面PBD , 所以MC ∥平面PBD . [题组训练] 1.如图,三棱锥P -ABC 中,P A ⊥平面ABC ,P A =1,AB =1,AC =2,∠BAC =60°. (1)求三棱锥P -ABC 的体积; (2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6 .

两条直线的平行与垂直教案

教学目标 1、掌握用斜率判定两条直线平行和垂直的方法,感受用代数方法研究几何图形性质的思想; 2、通过分类讨论、数形结合等数学思想的运用,培养学生思维的严谨性、辩证性. 教学重难点 重点:两条直线平行和垂直的条件 难点:把两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题 教学过程 (一)温故知新 1、回顾什么是倾斜角、斜率?斜率的公式? 2、平面上两直线位置关系有哪几种? (二)两条直线的平行 1、当两条直线都有斜率且不重合 思考: 如果L 1∥L 2,则α1 α2,k 1 k 2. 若两条直线的斜率相等: 即k 1=k 2,则α1 α2,它 们的位置关系 是 . 结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率 ;反之,如果它们的斜率相等,那么它们 , 即 前提: . 2、当不重合的两直线L 1和L 2的斜率都不存在,那么它们的倾斜角都是 ,它们的位置关系是 . 例题解析 形。四点所得的四边形是梯,,),,(),,(、求证:顺次连接例)44(),32(27-53-21 D C B A

例2、求过点A(2,-3)且与直线2x+y-5=0平行的直线的方程. (三)两条直线垂直.- 思考:当两条直线的斜率都存在 1、如果L 1⊥L 2,这时α1与α2满足什么关系?斜率满足什么关系? 2、若k 1·k 2 = -1,则α1与α2满足什么关系?两直线有什么位置关系? 结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率 ; 反之,如果它们的斜率互为负倒数,那么它们 , 即?⊥21l l (前提: ) 3、思考:如果两直线L 1,L 2中的一条斜率不存在,那么这两条直线什么时候互相垂直? .,),1,0(),2,3(,4 3)2(; ),116(4-36,103,5)1(3212211的值求实数且经过点直线的斜率已知直线求证:,),,(),(),(已知四点、例a l l a B a A l k l CD AB D C B A ⊥+-=⊥- 例4、如图,已知三角形的顶点为A(2,4),B(1,-2),C(-2,3), 求BC 边上的高AD 所在直线方程.

2021届高考数学考点与题型全归纳(文科)第八章 第六节 直线、平面平行与垂直的综合问题

第六节直线、平面平行与垂直的综合问题 考点一立体几何中的探索性问题 [典例](2018·全国卷Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所 在平面垂直,M是CD上异于C,D的点. (1)证明:平面AMD⊥平面BMC. (2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由. [解](1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC?平面ABCD, 所以BC⊥平面CMD,所以BC⊥DM. 因为M为CD上异于C,D的点,且DC为直径, 所以DM⊥CM. 又BC∩CM=C,所以DM⊥平面BMC. 因为DM?平面AMD,所以平面AMD⊥平面BMC. (2)当P为AM的中点时,MC∥平面PBD. 证明如下: 连接AC交BD于O. 因为四边形ABCD为矩形, 所以O为AC的中点. 连接OP,因为P为AM的中点, 所以MC∥OP. 又MC?平面PBD,OP?平面PBD, 所以MC∥平面PBD. [题组训练] 1.如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC =2,∠BAC=60°. (1)求三棱锥P-ABC的体积;

(2)在线段PC 上是否存在点M ,使得AC ⊥BM ,若存在,请说明理由,并求PM MC 的值. 解:(1)由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=3 2 . 由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高, 又P A =1, 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =3 6. (2)在线段PC 上存在点M ,使得AC ⊥BM ,证明如下: 如图,在平面ABC 内,过点B 作BN ⊥AC ,垂足为N .在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连接BM . 由P A ⊥平面ABC ,知P A ⊥AC , 所以MN ⊥AC . 因为BN ∩MN =N ,所以AC ⊥平面MBN , 又BM ?平面MBN , 所以AC ⊥BM . 在Rt △BAN 中,AN =AB ·cos ∠BAC =1 2, 从而NC =AC -AN =3 2, 由MN ∥P A ,得PM MC =AN NC =1 3 . 2.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,底面ABCD 为正方形,BC =PD =2,E 为PC 的中点,CB =3CG . (1)求证:PC ⊥BC ; (2)AD 边上是否存在一点M ,使得P A ∥平面MEG ?若存在,求出AM 的长;若不存在,请说明理由. 解:(1)证明:因为PD ⊥平面ABCD ,BC ?平面ABCD , 所以PD ⊥BC . 因为四边形ABCD 是正方形,所以BC ⊥CD .

空间直线和平面总结知识结构图+例题

【同步教育信息】 一. 本周教学内容: 期中复习 [知识串讲] 空间直线和平面: (一)知识结构 (二)平行与垂直关系的论证 1、线线、线面、面面平行关系的转化: 线线∥ 线面∥ 面面∥ 公理 4 (a//b,b//c a//c) 线面平行判定 αβ αγβγ //,//I I ==???? a b a b 面面平行判定1 a b a b a //,//???? ??ααα 面面平行性质 a b a b A a b ??=????? ?ααββαβ ,//,////I 线面平行性质 a a b a b ////αβαβ?=???? ? ?I 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? A b α a β a b α 2. 线线、线面、面面垂直关系的转化:

线线⊥线面⊥面面⊥三垂线定理、逆定理 PA AO PO a a OA a PO a PO a AO ⊥ ? ⊥?⊥ ⊥?⊥ α α α ,为 在内射影 则 线面垂直判定1面面垂直判定 a b a b O l a l b l , , ? = ⊥⊥ ?⊥ ? ? ? ? ? α α I a a ⊥ ? ?⊥ ? ? ? α β αβ 线面垂直定义 l a l a ⊥ ? ?⊥ ? ? ? α α 面面垂直性质,推论2 αβ αβ β α ⊥ = ?⊥ ?⊥ ? ? ? ? ? I b a a b a , αγ βγ αβ γ ⊥ ⊥ = ?⊥ ? ? ? ? ? I a a 面面垂直定义 αβαβ αβ I=-- ?⊥ ? ? ? l l ,且二面角 成直二面角 3. 平行与垂直关系的转化: 线线∥线面⊥面面∥ 线面垂直判定2面面平行判定2 面面平行性质3 a b a b // ⊥ ?⊥ ? ? ? α α a b a b ⊥ ⊥ ? ? ? ? α α // a a ⊥ ⊥ ? ? ? ? α β αβ // αβ α β // a a ⊥ ⊥ ? ? ? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: (三)空间中的角与距离 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90°

直线与平面平行的判定

直线与平面平行的判定 一、教学内容分析: 本节教材选自人教A版数学必修②第二章第一节课,本节内容在立几学习中起着承上启下的作用,具有重要的意义与地位。本节课是在前面已学空间点、线、面位置关系的基础作为学习的出发点,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。本节课的学习对培养学生空间感与逻辑推理能力起到重要作用,特别是对线线平行、面面平行的判定的学习作用重大。 二、学生学习情况分析: 任教的学生在年段属中上程度,学生学习兴趣较高,但学习立几所具备的语言表达及空间感与空间想象能力相对不足,学习方面有一定困难。 三、设计思想 本节课的设计遵循从具体到抽象的原则,适当运用多媒体辅助教学手段,借助 实物模型,通过直观感知,操作确认,合情推理,归纳出直线与平面平行的判定定 理,将合情推理与演绎推理有机结合,让学生在观察分析、自主探索、合作交流的 过程中,揭示直线与平面平行的判定、理解数学的概念,领会数学的思想方法,养 成积极主动、勇于探索、自主学习的学习方式,发展学生的空间观念和空间想象力, 提高学生的数学逻辑思维能力。 四、教学目标 通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。 五、教学重点与难点 重点是判定定理的引入与理解,难点是判定定理的应用及立几空间感、空间观念的形成与逻辑思维能力的培养。 六、教学过程设计 (一)知识准备、新课引入 提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并

两条直线的平行与垂直的判定教案

两条直线的平行与垂直的判定教案 教学目标 (一)知识教学 理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. (二)能力训练 通过探究两直线平行或垂直的条件,培养学生运用已有知识解决新问题的能力, 以及数形结合能力. (三)学科渗透 通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣. 重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用. 难点:启发学生, 把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题. 注意:对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题. 教学过程 (一)先研究特殊情况下的两条直线平行与垂直 上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直. 讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. (二)两条直线的斜率都存在时, 两直线的平行与垂直 设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系? 首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系) ∴tgα1=tgα2. 即 k1=k2. 反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2. 由于0°≤α1<180°, 0°≤α<180°, ∴α1=α2. 又∵两条直线不重合, ∴L1∥L2. 结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它

线面平行与垂直关系的转化

三垂线定理 一、温故 1.线面平行的判定及性质定理 2.线面垂直的判定及性质定理 3.求线面所成角步骤 二、探究 思考1:面的垂线垂直于平面内的每一条直线;平面的斜线不能垂直于平面的每一条直线,但也不是与每一条直线都不垂直。那么平面的斜线与平面内的直线在什么情况下是垂直的呢? 例1:已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a AO ⊥。 求证:a PO ⊥; 例2.已知P 是平面ABC 外一点,,PA ABC AC BC ⊥⊥。 求证:PC BC ⊥。 P B

例3.已知:点O 是ABC ?的垂心,PO ABC ⊥平面,垂足为O ,求证:PA BC ⊥ 例4.已知PA ⊥正方形ABCD 所在平面,O 为对角线BD 的中点。 求证:,PO BD PC BD ⊥⊥。 例5.在正方体1AC 中,求证:1111 1,AC B D AC BC ⊥⊥; 例6.已知:,PA PO 分别是平面α的垂线和斜线,AO 是PO 在平面α的射影,, a α?a PO ⊥。 求证:a AO ⊥; P B 1 A C O D A C B P

例7.在空间四边形ABCD 中,设,AB CD AC BD ⊥⊥。 求证:(1)AD BC ⊥; (2)点A 在底面BCD 上的射影是BCD ?的垂心; 线面平行与垂直关系的转化 1.对于命题:①b a a b b a ⊥?⊥,//; ②αα//,b a b a ?⊥⊥; ③ c a b a c b a ////,,,?=???βαβα;④ c b a c a b ////,,,?=?=?=?ααγγββα,其中正确的命题个数是 2.若直线a ,b 没有公共点,则下列命题:①存在与a ,b 平行的直线;②存在与a ,b 垂直的平面;③存在经过a 而与b 垂直的平面;④存在经过a 而与b 平行的平面. 其中正确的命题序号是 3.已知a ,b 和平面α,下列推理:①α⊥a 且b a a b ⊥??;②αα⊥?⊥b a b a 且//;③b a a //b //??αα且;④ααα??⊥⊥a a b a 或且//b ,其中正确的命题序号是 4.下列说法:①如果一条直线和平面内的一条直线垂直,该直线与这个平面必相交;②如果一条直线和平面的一组平行线垂直,该直线必在这个平面内;④如果一条直线和一个平面垂直,该直线垂直于平面内的任何直线,其中正确的个数是 5.空间四边形ABCD 的四条边相等,则它的对角线AD 、BC 的关系是 6.对于命题:① αα⊥????⊥a b b a //;②αα////a b b a ?????;③αα⊥?? ?? ⊥a b b a //;④ αα//b b a a ?? ?? ⊥⊥其中正确的命题是 7.在正方体ABCD-A ?B ?C ?D ?中,边对角线BD ?的一个平面交AA ?于E ,交CC ?于F , D A B C

相关主题