搜档网
当前位置:搜档网 › 光纤通信_波动方程推导

光纤通信_波动方程推导

光纤通信_波动方程推导
光纤通信_波动方程推导

光纤通信报告

1.麦克斯韦方程组

光是电磁波,用波动理论来分析电磁场的分布,获得更准确的光纤的传输特性必须从麦克斯韦方程组出发:

0B

E t

D H J t

D B ρ

???=-

????=+???=??= 光纤不是电的导体,不存在电流,电流,电流密度0J =

光纤中不存在自由电荷,所以电荷体密度0v ρ=

0B

E t

D H t

D B ???=-

????=???=??=

2.波动方程

设光纤无损耗,在光线中传播角频率为ω的单色光,电磁场与时间t 的关系为j t e ω,则波动方程为:

222222

0o o E n k E H n k H ?+=?+=

0k 为真空中的波数:

02k c ωπλ=

=

3.柱坐标下的波动方程

利用光纤的圆柱对称性,将波动方程写成圆柱坐标的形式:

电场的z 分量z E 的波动方程为:

2

22222222110z z z z z E E E E n E r r r z c ωφφ??????++++= ???????

4.边界条件及贝塞尔函数的求解

()()

22222102222222202210010d R dR m n k R r a dr r dr r d R dR m n k R r a dr r dr r ββ???++--=≤≤? ????????++--=> ????? 上式是贝塞尔函数的微分方程,可以有多种()R r 与β的组合满足方程,每一个组合称为一个模式。

在纤芯中名要求具有振荡特性,即

22210100,n k n k ββ-><

在包层中,要求具有衰减特性,即

22220200,n k n k ββ-><

所以传播传播常数必须满足的条件是

2010n k n k β<<

对于突变型光纤,贝塞尔方程的解得形式为:

()(),()()(),

m m m m AJ r A Y r r a R r BK r B I r r a χχγγ'+≤?=?'+>?

A 、A '、

B 、B '为常数; m J 为第一类贝塞尔函数;

m Y 为第二类贝塞尔函数;

m K 为第二类变形贝塞尔函数;

m I 为第一类变形贝塞尔函数;

χ、γ定义为

2222

10222220n k n k χβγβ=-=-

波动方程的通解的形式为:

()()im i z m z im i z m AJ r e e r a E BK r e e r a φβφβγγ?≤?=?>??

同样可以得到:

()()im i z m z im i z m CJ r e e r a H DK r e e r a φβφβγγ?≤?=?>??

A 、

B 、

C 、

D 待定。

A 、

B 、

C 、

D 斯格常数表示出了光纤纤芯和包层的电磁场分布情况。这些常数必须满足电场

E 、磁场H 在纤芯和包层分层界面上切向分量连续的边界条件,即在r a =处有: ()()

()()

()()

()()

z z z z E r a E r a E r a E r a H r a H r a H r a H r a φφφφ≤=>≤=>≤=>≤=>

可得A 、B 、C 、D 四个常数必须满足的四个齐次方程。

这些方程只有系数矩阵的行列式为零时,才有平凡解。

在对贝塞尔函数的微分方程的求解过程中,应用纤芯—包层边界条件,求得: 传播常数β的特征方程为

222222110()()()()11()()()()m m m m m m m m J a K a J a K a n m J a K a J a n K a n aK χγχγβχχγγχγγγχγ??????''''??++=+ ????? ????????? 因无法导出β的解析表达式,只能数值求解

5.光纤的模式及其分布

模式:mn β所对应的这种空间分布,在传播过程中只有相位变化,没有形状的变化,且始终满足边间条件,这种空间分布称为模式。

进入光纤的光分解成为“模式”的离散光束,模式是在光纤内部存在的稳定的电磁场模型。 每个模式可以认为是以特定传播角传播的独立光束。

以不同角度入射到光纤的射线将形成光线中不同的模式

光纤中的电磁场模式不同于平面波导,一般z E 、z H 都不为零。

当方位角模数0m =时:

在传输方向无磁场的模式称为横磁模On TM 。

(0,0;z r H H E φ===仅有z E 、r E 、H φ、)H φ

在传输方向无电场模式称为横电模On TE 。

(0,0;z r E E H φ===仅有z H 、r H 、)E φ

当0m ≠时,电磁场六个分量都存在,E 和H 都拥有纵向(即沿着传播方向z )分量,这些模式称为混合模。

磁场贡献为主()z z H E >—mn HE

电场贡献为主()z z E H >—mn EH

在弱导光纤中,z E 、z H 都近似零。存在的摸式线性偏振(linearly Polarrized )摸—mn LP 。 为了决定截止条件,定义归一化频率V :

22120122()2aNA V k a n n an πλπλ

???=-=????归一化频率V 越大,能够传播的模式数就越多。

V 值较高的光纤可以支持较多的模式,称为多模光纤。

模式数目随V 的减少快速减少。5,7V =个模式。

当V 小于某个值,初11HE 模式外,所有模式被截止。只支持一个模式(基模)的光纤被称作单模光纤。

单模光纤的截止波长:

单模条件:

2.405V =

, 2.405c V λλ==

,c λλ>单模传输。

,c λλ<多模传输。

一维波动方程的达郎贝尔公式

第四章 行波法 一 一维波动方程的达郎贝尔公式 1达郎贝尔公式 在常微分方程的定解问题中,通常是先求方程的通解,然后利用定解条件确定通解所含的任意常数,从而得到定解问题的解。考虑无限长弦的自由振动问题 ?????? ?=??=>+∞<<∞-??=??==) (|),(|0, ,0 022 2 22x t u x u t x x u a t u t t φ? ① 作自变量的代换 ?? ?-=+=at x at x ηξ 利用复合函数的微分法有: η ξ??-??=??u a u a t u )2(22 2222 22η ηξξ??+???-??=??u u u a t u 同理有:2 2222222ηηξξ??+???+??=??u u u x u 将①化为:02=???η ξu 并将它两端对η进行积分得:

)(0ξξ f u =?? 其中)(0ξf 是ξ的任意函数,再将此式对ξ积分 )()()()(),(2120ηξηξξf f f d f t x u +=+=? = )()(21at x f at x f -++ ② 其中21f f 、是任意两次连线可微函数,式②即为方程①的含有两个任意函数的通解。 由初始条件可得: )()()(21x x f x f ?=+ )()()(2'' 1x x f x af φ=+ 通过积分可得: ?+-+-++=at x at x d a at x at x t x u ξξ?φ?)(21)]()([21),( 称此式为一维波动方程的达郎贝尔公式。 2解的物理意义 由于波动方程的通解是两部分)(1at x f +与)(2at x f -。 )(22at x f u -=表示了以速度a 向x 轴正方向传播的行波,称 为右行波。同理,)(11at x f u +=表示了以速度a 向x 轴负方向传播的行波,称为左行波。 由达郎贝尔公式,解在点),(t x 的值由初始条件在区间],[at x at x +-内的值决定,称区间],[at x at x +-为点),(t x 的 依赖区域,在t x -平面上,它可看作是过点),(t x ,斜率分

(整理)二维波动方程第一类吸收边界条件c++实现代码.

精品文档 #include "stdafx.h" #include #include #include #include using namespace std; const double pi=4*atan(1.0); double freq=45; double sb=7.45; double t1=2*pi/(sb*4); double source(double t) { //double t2=0.0; if(t<=t1) return (sin(sb*4*t-pi/2)+1)/10; else{ double tep=0.0; return tep;} //return ((1-2*pi*pi*freq*freq*t*t)*exp(-pi*pi*freq*freq*t*t)+1);//Ricker子波} void update_Vn(double upt,double lowt,double upx1,double lowx1) { int i,j,m; const int Csize=300; double deg=0; double stepx1=abs(upx1-lowx1)/(Csize-1); //double te=sqrt(static_cast(3.0/8.0)); double stept=sqrt(static_cast(1.0/2.0))*stepx1/2.0;// int tn=static_cast(upt/stept); double r=stept/stepx1; double **u_current,**u_old,**u_past; u_current=new double *[Csize]; u_old=new double*[Csize]; u_past=new double*[Csize]; for(i=0;i

第七章 一维波动方程的解题方法及习题答案

第二篇 数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I .质点力学:牛顿第二定律F mr =r r && 连续体力学222 2() (,)(,)0(()0; v 1()0(Euler eq.).u r t a u r t t v t v v p f t ρρρ ?????-?=??????? ?? +??=????-?+??=+=????? r r r r r r r r &弹性定律弦弹性体力学杆 振动:波动方程);膜 流体力学:质量守恒律:热力学物态方程: II.麦克斯韦方程 ;;00;().,,,D D E l B s E B B B H l j D s H j D E u B A u A σρτρσ??=???=?=????=????=???=?=+????=+??=-?=????????????????????r r r r r r r r r &&r r r r r r r r r r r &&r r r r 已已d d d d d d d 满足波动方程。Lorenz 力公式力学方程;Maxwell eqs.+电导定律电报方程。 III. 热力学统计物理 220;0.T k T t D t ρρ?? -?=??????-?=??? 热传导方程:扩 散方程:特别: 稳态(0t ρ?=?):20ρ?= (Laplace equation). IV. 量子力学的薛定谔方程: 22 .2u i u Vu t m ?=-?+?h h 2. 分类

热传导+对流微分方程推导

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象.此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m . λ--导热系数,又称热导率,/()Kcal mh C ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(th erm al c ondu ct iv ity )及其影响因素 导热系数λ(/()Kcal mh C )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量. 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k(W/m·K,此处的K 可用℃代替). 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量.单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程. 3.热传导微分方程推导 在t时刻w界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

二维波动方程的有限差分法

告实验报学生 偏微分方程数值解实验课程名称 开课实验室数统学院 信计02班专业班院数统年级2013 学 学号姓学生名 学年第2016 2 学期开课时间2015 至

总成绩 教师签名 数学与统计学院制 开课学院、实验室:数统学院实验时间2016年6月20日:

kkjikkk1kk?1k?kkk u??2uuu?2u?2u?uu?u ,j?,iji,,ijj1ij?1,i,ij,jii?1,jj,?1i??(2)?????kk?1k21kkkk2)3(uu???u??u?ruuu?24r 222?hh整理得到: j,ij,i1?j,i1?j,ij1,?ij1,?ij,i

????,差分格式为:kkkk(4),140?0,k?0,1,u?u?u?u N0,0,N0,N,0N 考虑初始条件y?sinsinuxx,y,0 ????????0????(5),10usin?sin0,1,xjsinjh?y,?sini,ih jjii,2??????,利用二阶差商近似:考虑初始条件0,1?,y,0,?0,yuxx t1?1u?u j,jii,?0,i,j?0,1,,10(6)?2设时刻的点为内点,则满足差分格式(2),代入上式得到:0k? ????002211?000(7)u?uu?u4?ur??u2?r?u j,iii,,jj?j?i1?1,j1i,?1,jjii,11?uu?代入(将(6)得到的结果7)中,整理得到:ji,ji,1????01202000)(8?u?1??u2rru?uu?u j,j?1i,1,jjii,j?1?i1,j,ii?2 8)得到三层显格式的差分格式为:(4)、(5)、(综上(2)、??????1kk2kkk2kk?1u?u???uu4?urr?2u?u i,ij?1,,ii,,jj?1i?1,jji?1,jji?i,j?1,2,,9,k?1,2,,139??kkkk?u?u?u?u,1 40?0,k?0,1,(9)N0,N,0NN0,0,? ????????0?????,i,jih?u?sinsinx0,1,sin,10jhy?sin jji,i? 1?????02102000,10?0,1,uu,?ui?1?2ru?,ruj?u? ?1j?1i,ijii?,j1,j,j?ii,j?1,?2? ??22?0.1?r?其中,局部截断误差为ho?。h 四.实验环境(所用软件、硬件等)及实验数据文件 Matlab %二维波动方程数值计算(关键:怎么运用i,j,k三个指标建立循环) clc; %可以将代码换成函数m文件 h=0.1;tau=0.1*h;%定义步长 r=tau/h;%网比 空间网格剖分[x,y,t]=meshgrid(0:h:1,0:h:1,0:tau:1.4);%.

一维热传导MATLAB模拟

昆明学院2015届毕业设计(论文) 设计(论文)题目 一维热传导问题的数值解法及其MATLAB模拟子课题题目无 姓名伍有超 学号201117030225 所属系物理科学与技术系 专业年级2011级物理学2班 指导教师王荣丽 2015 年 5 月

摘要 本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。 关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟

Abstract In this paper, the method of variable separation and finite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems. Keywords: One-dimensional heat conduction; method of variable separation; finite difference method; numerical method; MATLAB simulation

波动方程的物理背景

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波和水波。波动方程抽象自声学,电磁学,和流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t 的标量函数u(代表各点偏离平衡位置的距离)满足: 这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c 依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。 在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c 应该用波的相速度代替: 实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程: 另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u 的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。 三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波: 式中: 和被称为弹性体的拉梅常数(也叫“拉梅模量”,英文Lamé constants 或 Lamémoduli),是描述各向同性固体弹性性质的参数; 表示密度; 是源函数(即外界施加的激振力); 表示位移; 注意在上述方程中,激振力和位移都是矢量,所以该方程也被称为矢量形式的波动方程。其他形式的波动方程还能在量子力学和广义相对论理论中用到。 标量形式的一维波动方程 [编辑]波动方程的推导 一维波动方程可用如下的方式推导:一列质量为m的小质点,相邻质点间用长度h的弹簧连接。弹簧的弹性系数(又称“倔强系数”)为k:

光纤通信_波动方程推导

光纤通信报告 1.麦克斯韦方程组 光是电磁波,用波动理论来分析电磁场的分布,获得更准确的光纤的传输特性必须从麦克斯韦方程组出发: 0B E t D H J t D B ρ ???=- ????=+???=??= 光纤不是电的导体,不存在电流,电流,电流密度0J = 光纤中不存在自由电荷,所以电荷体密度0v ρ= 0B E t D H t D B ???=- ????=???=??= 2.波动方程 设光纤无损耗,在光线中传播角频率为ω的单色光,电磁场与时间t 的关系为j t e ω,则波动方程为: 222222 0o o E n k E H n k H ?+=?+= 0k 为真空中的波数: 02k c ωπλ= = 3.柱坐标下的波动方程 利用光纤的圆柱对称性,将波动方程写成圆柱坐标的形式: 电场的z 分量z E 的波动方程为: 2 22222222110z z z z z E E E E n E r r r z c ωφφ??????++++= ???????

4.边界条件及贝塞尔函数的求解 ()() 22222102222222202210010d R dR m n k R r a dr r dr r d R dR m n k R r a dr r dr r ββ???++--=≤≤? ????????++--=> ????? 上式是贝塞尔函数的微分方程,可以有多种()R r 与β的组合满足方程,每一个组合称为一个模式。 在纤芯中名要求具有振荡特性,即 22210100,n k n k ββ->< 在包层中,要求具有衰减特性,即 22220200,n k n k ββ->< 所以传播传播常数必须满足的条件是 2010n k n k β<< 对于突变型光纤,贝塞尔方程的解得形式为: ()(),()()(), m m m m AJ r A Y r r a R r BK r B I r r a χχγγ'+≤?=?'+>? A 、A '、 B 、B '为常数; m J 为第一类贝塞尔函数; m Y 为第二类贝塞尔函数; m K 为第二类变形贝塞尔函数; m I 为第一类变形贝塞尔函数; χ、γ定义为

热传导方程及其定解问题的导出

第一章 热传导方程 本章介绍最典型的抛物型方程—热传导方程,在研究热传导,扩散等物理现象时都会遇 到这类方程. §1 热传导方程及其定解问题的导出 1.1热传导方程的导出 物理模型 在三维空间中,考虑一均匀,各向同性的物体Ω,假定它内部有热源,并且与周围介质有热交换,需要来研究物体内部温度的分布和变化. 以函数),,,(t z y x u 表示物体Ω在位置),,(z y x 及时刻t 的温度.物体内部由于各部分温度不同,产生热量的传递,它们遵循能量守恒定律. 能量守恒定律 物体内部的热量的增加等于通过物体的边界流入的热量与由物体内部的热源所生成的热量的总和 . 在物体Ω内任意截取一块D .现在时段],[21t t 上对D 使用能量守恒定律. 设),,,(t z y x u u =是温度(度),c 是比热(焦耳∕度·千克),ρ是密度(千克/米3), q 是热流密度(焦耳/秒·米2),0f 是热源强度(焦耳/千克·秒). 注意到在dt 时段内通过D 的边界D ?上小块dS 进入区域D 的热量为dSdt n q ?-(n 是 D ?的外法向),从而由能量守恒律,我们有 ,)||(21 21 120??????????+?-=-?==t t D t t D D t t t t dxdydz f dt ds n q dt dxdydz u u c ρρ (1.1) 大家知道,热量流动的原因是因为在物体内部存在温差.依据传热学中的傅立叶实验定律,在一定条件下,热流向量与温度梯度成正比 ,u k q ?-= (梯度? ?? ? ????????==?z u y u x u gradu u ,,) (1.2) 这里负号表明热量是由高温向低温流动,k 是物体的导热系数.

一维热传导方程

一维热传导方程Last revision on 21 December 2020

一维热传导方程 一. 问题介绍 考虑一维热传导方程: (1) ,0),(22T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合;Γ=G --G 是网格界点集合。

三. 离散格式 第k+1层值通过第k 层值明显表示出来,无需求解线性代数方程组,这样的格式称为显格式。 第k+1层值不能通过第k 层值明显表示出来,而由线性代数方程组确定,这样的格式称为隐格式。 1. 向前差分格式 (5) ,22111j k j k j k j k j k j f h u u u a u u ++-=--++τ )(j j x f f =, )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1。以2/h a r τ=表示网比。则方程(5)可以改写为: 易知向前差分格式是显格式。 2. 向后差分格式 (6) ,11111)21(j k j k j k j k j f u ru u u ru τ+=-++-+-+++ )(0 j j j x u ??==, 00==k N k u u , 其中j = 1,2,…,N-1,k = 1,2,…,M-1,易知向前差分格式是显格式。 3. 六点对称格式(Grank-Nicolson 格式) 将向前差分格式和向后差分格式作算术平均,即得到六点对称格式: (7) 111112)1(2+-+++-++-k j k j k j u r u r u r =j k j k j k j f u r u r u r τ++-+-+112 )1(2 利用0j u 和边值便可逐层求到k j u 。六点对称格式是隐格式,由第k 层计算第k+1层时需解线性代数方程组(因系数矩阵严格对角占优,方程组可唯一求解)。

对波动方程的一些理解

1如果你从头到尾仔细查看声音的波动方程的推导过程,你会发现,这是一个介质中的密度变化从而导致压强变化(声压)的过程,如果静止介质中的声速是 Cs ,那么很容易就可以推导出来,对于一个以速度 v 运动的介质,声速是(Cs+v ),也就是说,声速Cs 是相对于介质而言的。 而对于电磁波的速度,麦克斯韦方程组里面只有一个 常数C 来描述,这个C 与光源的运动状态是完全没有关系的。那么这个 C 究竟是相对于哪一个参考系的速度呢?麦克斯韦当时自己认为他的方程组是基于 “绝对静止系”成立的(因为显然麦氏方程不满足伽利略相对性),这个C 因而也就是“绝对速度”。然而麦莫实验并没有找到以太存在的证据,这使得当时经典物理的天空多了一块阴云。 既然不能找到一个绝对静止系, 那么就有两个比较明显的结论,要么是麦氏方程从根本上就错了,要么是这个 C 本来就是一个常数,对哪一个惯性系都一样。爱因斯坦选择了后者:久经考验的麦氏方程依然成立, 它也不是仅仅是建立在一个不存在的绝对静止系之上的,而是对一切惯性系都成立,只要考虑相对论效应一切矛盾就消失了。2有时间看看,《什么是数学》 3.看书发现有很多波动方程:对波动方程总是有着模糊的概念: 看了以下内容发现各种波之间有相似的联系. 机械振动方程: 一维弹簧振子的振动方程由牛顿第二定律推导得: 方程的通解是: ψ = C 1 co s ωt + C 2sin ωt 正弦形式为ψ= A sin (ωt + ? ) 简谐振动它是各种波的起因和微观模型。 振动和波动的关系:振动是质点模型,波动是介质模型;振动是因,波动是果。 机械波动方程 机械波的传播公式: ψ= A sin[ω (t -x / u )+ ? ] 描述波的物理量:波速u 、波长λ、频率f 、周期 T 、圆频率ω、圆波数k=ω/u ,ψ= Asin[(ωt -kx) +?] 与下面的等价 ψ = C 1 co s(ω t - k x ) + C 2 s i n (ω t - k x )分别对x 和t 求二阶偏导数,可得 2 22sin[()]2 22A t kx x u u 1.1 222 sin[()]2A t kx t 1.2 整理得到机械波的波动方程为: 这是一维机械波的波动方程。 推广到空间因此可以得到三维机械波的波动方程:

第七章一维波动方程的解题方法与习题答案

第七章一维波动方程的傅里叶解小结及习题答案 第二篇数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I.质点力学:牛顿第二定律Fmr 连续体力学 弦 2 u(r,t) 弹性体力学杆振动:22波动方程); au(r,t)0( 2 t (弹性定律) 膜 流体力学:质量守恒律:(v)0; t 热力学物态方 程: v1 (v)vpf0(Eulereq.). t II.麦克斯韦方程 DddD;EdlBdsEB; Bd0B0;Hdl(jD)dsHjD. Eu,BA,u,A 满足波动方程。 Lorenz力公式力学方程;Maxwelleqs.+电导定律电报方程。III.热力学统计物理 热传导方程: 扩散方程:T t t 2 kT 2 D 0; 0. 特别:稳态(0 t ) : 20(Laplaceequation). IV.量子力学的薛定谔方程: 2 u 2.iuVu t2m 2.分类 物理过程方程数学分类

振动与波波动方程2 u 1 2 u 22 at 双曲线 输运方程能量:热传导 质量:扩散u t 20 ku 抛物线 1

稳态方程Laplaceequation 2u0椭圆型 二、数理方程的导出 推导泛定方程的原则性步骤: (1)定变量:找出表征物理过程的物理量作为未知数(特征量),并确定影响未知函数的自变量。 (2)立假设:抓主要因素,舍弃次要因素,将问题“理想化” ---“无理取闹”(物理趣乐)。 (3)取局部:从对象中找出微小的局部(微元),相对于此局部一切高阶无穷小均可忽略---线性化。 (4)找作用:根据已知物理规律或定律,找出局部和邻近部分的作用关系。 (5)列方程:根据物理规律在局部上的表现,联系局部作用列出微分方程。 Chapter7一维波动方程的傅里叶解 第一节一维波动方程-弦振动方程的建立 1.弦横振动方程的建立 (一根张紧的柔软弦的微小振动问题) (1)定变量:取弦的平衡位置为x轴。表征振动的物理量为各点的横向位移u(x,t),从而速度为u t,加速度为u tt. (2)立假设:①弦振动是微小的,1,因此,sintan,cos1,又 u x tan u;②弦是柔软的,即在它的横截面内不产生应,1 x 力,则在拉紧的情况下弦上相互间的拉力即张力T(x,t)始终是沿弦的切向 2

一维热传导方程(Richardson格式)

中南林业科技大学 偏微分方程数值解法学生姓名:周晓虹 学号:20083710 学院:理学院 专业年级:08信计1班 设计题目:一维热传导方程的Richardson格式 2011年06月

一. 问题介绍 考虑一维热传导方程: (1) ,0),(22 T t x f x u a t u ≤<+??=?? 其中a 是正常数,)(x f 是给定的连续函数。按照定解条件的不同给法,可将方程(1)的定解问题分为两类: 第一类、初值问题(也称Cauthy 问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(∞<<∞-x )和初始条件: (2) ),()0,(x x u ?= ∞<<∞-x 第二类、初边值问题(也称混合问题):求具有所需次数偏微商的函数),(t x u ,满足方 程(1)(l x <<0)和初始条件: (3) ),()0,(x x u ?= l x <<0 及边值条件 (4) .0),(),0(==t l u t u T t ≤≤0 假定)(x ?在相应区域光滑,并且在l x ,0=满足相容条件,使上述问题有唯一充分光滑 的解。 二. 区域剖分 考虑边值问题(1),(4)的差分逼近。去空间步长N l h /=和时间步长M T /=τ,其中N,M 都是正整数。用两族平行直线: ),,1,0(N j jh x x j === ),,1,0(M k k t t k ===τ 将矩形域}0;0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x 。以h G 表示网格内点集合,即位于开矩形G 的网点集合;h G 表示所有位于闭矩形G 的网点集合; h Γ=h G --h G 是网格界点集合。

波动方程

1.1 波动方程的形式 一维波动方程(描述弦的振动或波动现象的)()t x f x u a t u ,2 2 222=??-?? 二维波动方程(例如薄膜振动)()t y x f y u x u a t u ,,2222 222+??? ? ????+??=?? 三维波动方程(例如电磁波、声波的传播)()t z y x f z u y u x u a t u ,,,222222 222+???? ????+??+??=?? 1.2 波动方程的定解条件(以一维波动方程为例) (1)边界条件 ①第一类边界条件(又称Dirichlet 边界条件):弦振动问题中,弦的两端被固定在0=x 及l x =两点,因此有()0,0=t u ,()0,=t l u 。 ②第二类边界条件(又称Neumann 边界条件):弦的一端(例如0=x )处于自由状态,即可以在垂直于x 轴的直线上自由滑动,未受到垂直方向的外力,此时成立 0=??=o x x u 。也可以考虑更普遍的边 界条件 ()t x u x μ=??=0 ,其中()t μ是t 的已知函数。 ③第三类边界条件:弦的一端固定在弹性支承上,不放考虑在l x =的一端,此时边界条件归结为 0u =??? ??+??=l x u x σ。也可以考虑更普遍的情况()t u x l x v u =??? ??+??=σ,其中()t v 是t 的已知函数。 1.3 利用叠加原理求解初值问题 初值问题 ()()()()??? ????+∞<<∞=??==+∞<<∞>=??-??)x -(,,:0t x 0,-t ,,22 222x t u x u t x f x u a t u ψ? (1) 利用叠加原理求解上述初值问题,叠加原理表明由()t x f ,所代表的外力因素和由()()x x ψ?,所代表的初始振动状态对整个振动过程所产生的综合影响,可以分解为单独只考虑外力因素或只考虑初始振动状态对振动过程所产生的影响的叠加。即如果函数()t x u ,1和()t x u ,2分别是下述初值问题 (I )()()()()??? ????=??===??-??2.1.....................,:0t 1.1. (022) 222x t u x u x u a t u ψ?

热传导+对流微分方程推导(精.选)

热传导微分方程 导热又称热传导,是两个相互接触的物体或同一物体的各部分之间,由于温度不同而引起的热量传递现象。此时热量主要依靠分子、原子及自由电子等微观粒子的运动进行传递,没有明显的物质转移。热量可以通过固体、液体以及气体进行传导,但是严格来说,单纯的导热只发生在密实的固体物质中。 1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q ——热流密度,是一个向量,2/()Kcal m h gradT ——温度梯度,也是一个向量,℃/m 。 λ——导热系数,又称热导率,/()Kcal mh C o ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(thermal conductivity )及其影响因素 导热系数λ( /()Kcal mh C o )是热传导过程中一个重要的比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。 导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。 在上述假设前提下,建立煤层瓦斯流动数学模型的控制方程。 3.热传导微分方程推导 在t 时刻w 界面的温度梯度为 x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 22??+??=???? +??

单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ?? ? ? ????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ 单位时间内流入六面体的总热量为: dxdydz z T y T x T ??? ?????+??+??222222λ (3-1)

一维热传导方程的前向 、紧差分格式

中南林业科技大学 本科课程论文 学院:理学院 专业年级:09信息与计算科学一班 课程:偏微分方程数值解法 论文题目:一维热传导方程的前向Euler和紧差分格式指导教师:陈红斌 2012年7月

学生姓名:唐黎学号: 20093936分工:程序编写,数值例子 学生姓名:何雄飞学号:20093925分工:格式建立,资料收集 学生姓名:汪霄学号:20093938分工:文档编辑,资料整理 学生姓名:毛博伟学号:20093931分工:公式编辑,查找资料 学生姓名:倪新东学号:20093932分工:数据分析,查找资料 学生姓名:何凯明学号:20093924分工:数据分析,查找资料

目录 1引言 (1) 2物理背景 (1) 3网格剖分 (2) 4.1.1向前Euler格式建立 (2) 4.1.2差分格式的求解 (4) 4.1.3收敛性与稳定性 (4) 4.1.4 数值例子 (7) 4.2.1紧差分格式建立 (10) 4.2.2差分格式求解 (12) 4.2.3数值例子 (13) 总结 (17) 参考文献 (18) 附录 (19)

1 引言 本文考虑的一维非齐次热传导方程的定解问题: 22(,),0,0,u u a f x t x l t T t x ??-=<<<≤?? (,0)(),0,u x x x l φ=≤≤ (0,)(), (1,)(), 0.u t t u t t t T αβ==<≤ 其中a 为正常数,(,),(),(),()f x t x t t ?αβ为已知函数,(0)(0),(1)(0).?α?β== 目前常用的求解热传导方程的差分格式有前向Euler 差分格式、向后Euler 差分格式、Crank-Nicolson 格式、Richardson 格式[1,2,3].本文将给出前向Euler 格式和紧差分格式,并给出其截断误差和数值例子. 2 物理背景 热传导是由于物体内部温度分布不均匀,热量要从物体内温度较高的点流向温度较低的点处.以函数(),,,u x y z t 表示物体在t 时刻,(),M M x y =处的温度,并假设 (),,u x y z 关于,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数.() ,,k k x y z =是物体在(),,M x y z 处的热传导系数,取正值.设物体的比热容为(),,c c x y z =,密度为 (),,x y z ρ.根据Fourier 热传导定律,热量守恒定律以及Gauss 公式得 ,u u u u c kx k k t x x y y z z ρ ????????????? =++ ? ? ???????????? ?? 如果物体是均匀的,此时,k c 以及ρ均为常数.令2 k a c ρ = ,上式方程化为 2222 2222,t u u u u a a u x y z ?? ???=++=? ?????? 若考虑物体内有热源,其热源密度函数为(),,F F x y z =,则有热源的热传导方程为 ()2,,,,t u a u f x y z t =?+ 其中F f c ρ = .

第七章 一维波动方程的解题方法及习题答案

第二篇 数学物理方程 ——物理问题中的二阶线性偏微分方程及其解法 Abstracts:1、根据物理问题导出数理方程—偏微分方程; 2、给定数理方程的附加条件:初始条件、边界条件、物理条件 (自然条件,连接条件),从而与数理方程一起构成定解问题; 3、方程齐次化; 4、数理方程的线性导致解的叠加。 一、数理方程的来源和分类(状态描述、变化规律) 1、来源 I .质点力学:牛顿第二定律F mr = } 连续体力学2222()(,)(,)0(()0; v 1()0(Euler eq.).u r t a u r t t v t v v p f t ρρρ ????? -?=??????? ?? +??=??? ?-? +??=+=????? 弹性定律弦 弹性体力学杆 振动:波动方程);膜 流体力学:质量守恒律:热力学物态方程: II.麦克斯韦方程 ; ;00;().,,,D D E l B s E B B B H l j D s H j D E u B A u A σρτρσ??=???=?=????=????=???=?=+????=+? ?=-?=????????? ???????????d d d d d d d 满足波动方程。Lorenz 力公式力学方程;Maxwell eqs.+电导定律电报方程。 III. 热力学统计物理 220;0.T k T t D t ρρ?? -?=??????-?=??? 热传导方程:扩 散方程:特别: 稳态(0t ρ?=?):20ρ?= (Laplace equation). IV. 量子力学的薛定谔方程: 2 2.2u i u Vu t m ?=-?+?

一维热传导方程的前向 、紧差分格式

页眉内容 中南林业科技大学 本科课程论文学院:理学院 专业年级:09信息与计算科学一班 课程:偏微分方程数值解法 论文题目:一维热传导方程的前向Euler和紧差分格式指导教师:陈红斌 2012年7月 学生姓名:唐黎学号: 分工:程序编写,数值例子 学生姓名:何雄飞学号: 分工:格式建立,资料收集 学生姓名:汪霄学号: 分工:文档编辑,资料整理 学生姓名:毛博伟学号: 分工:公式编辑,查找资料 学生姓名:倪新东学号: 分工:数据分析,查找资料 学生姓名:何凯明学号:

页眉内容 分工:数据分析,查找资料 目录 1引言 (1) 2物理背景 (1) 3网格剖分 (2) 4.1.1向前Euler格式建立 (2) (4) 4.1.4 数值例子 (7) (10) (12) (13) 总结 (17) 参考文献 (18) 附录 (19)

页眉内容 1 引言 本文考虑的一维非齐次热传导方程的定解问题: 其中a 为正常数,(,),(),(),()f x t x t t ?αβ为已知函数,(0)(0),(1)(0).?α?β== 目前常用的求解热传导方程的差分格式有前向Euler 差分格式、向后Euler 差分格式、Crank-Nicolson 格式、Richardson 格式[1,2,3].本文将给出前向Euler 格式和紧差分格式,并给出其截断误差和数值例子. 2 物理背景 热传导是由于物体内部温度分布不均匀,热量要从物体内温度较高的点流向温度较低的点处.以函数(),,,u x y z t 表示物体在t 时刻,(),M M x y =处的温度,并假设(),,u x y z 关于,,x y z 具有二阶连续偏导数,关于t 具有一阶连续偏导数.(),,k k x y z =是物体在(),,M x y z 处的热传导系数,取正值.设物体的比热容为(),,c c x y z =,密度为(),,x y z ρ.根据Fourier 热传导定律,热量守恒定律以及Gauss 公式得 如果物体是均匀的,此时,k c 以及ρ均为常数.令2k a c ρ =,上式方程化为 若考虑物体内有热源,其热源密度函数为(),,F F x y z =,则有热源的热传导方程为 其中F f c ρ =. 3 网格剖分 取空间步长N l h /=和时间步长M T /=τ,其中M N ,都是正整数.用两族平行直线),1,0(N j jh x j Λ==和),,1,0(M k k t k Λ==τ将矩形域}0,0{T t l x G ≤≤≤≤=分割成矩形网格,网格节点为),(k j t x .记),(k j k j t x u u =.以h G 表示网格内点集合,即 位于开矩形G 的网点集合;h G 表示所有位于闭矩形的网点集合;h h h G G -=Γ是网格界点集合. 引进如下记号:

相关主题