搜档网
当前位置:搜档网 › BioEdit及MEGA分析序列同源性简介

BioEdit及MEGA分析序列同源性简介

BioEdit及MEGA分析序列同源性简介
BioEdit及MEGA分析序列同源性简介

利用系统进化分析软件对序列进行同源性分析

1.0目的

1.1为了保持国际上各个耐药性实验室的高检验水准,进行分子进化分

析是有很重要作用的。它不仅可以保证流行病学目的顺利实现,而

且有利于发现检测阶段可能产生的潜在的交叉污染。

1.2利用此软件进行分析所得的信息对于进行艾滋病毒在人群中传播

的流行病学研究具有十分重要的意义。

1.3通过对实验室之前分析的数据与当前数据进行比较,可以发现在此

前实验过程中由于标本处理不当所导致的潜在的实验室污染。

1.4对于确保得到高质量的实验结果并及时发现可能出现在实验室里

的问题具有重要意义。

2.0仪器设备

2.1计算机一台。

2.2Windows 95以上的操作系统。

2.3BioEdit 以及MEGA 4 分析软件。

2.3.1均为免费软件,可以从互联网上下载,在计算机上进行安装。

3.0操作过程

3.1局限及要求

3.1.1经过序列编辑软件拼接处理后的txt文件或fasta文件均可,

例如ChromasPro软件。

3.1.2可以在MEGA上分析的分子序列或距离矩阵数据。

3.1.3Mega 4软件只能将长度相等的序列转换为MEGA输出文

件,因此,任何多序列文件必须通过BioEdit软件进行对齐

修剪,然后才能进入通过Mega软件转换成*.meg格式进行

分析。

3.1.4该数据集的大小受限于计算机上可用的物理(RAM)和虚

拟内存。

3.1.5分析的序列必须包括两个或两个以上长度相同的序列,所有

序列分析之前必须用MEGA软件对齐。

3.1.6核苷酸和氨基酸序列应该用英文字母连续书写,不区分大小

写。一些特殊的特殊符号,例如表示对齐缺口,碱基缺失等

的符号也可以包含在序列中。

3.1.7空格和制表符经常用于数据文件中,因此会被MEGA忽略。

ASCII字符,如(.)(- )(?),一般都作为特殊符号

来表示序列中的不同碱基,分别表示第一个序列,对齐缺口

及碱基缺失。

3.1.8BioEdit 软件进行序列比对

3.1.9双击BioEdit图标打开BioEdit 序列对比编辑器窗口。

3.1.10从工具栏上,单击new alignment图标打开一个新窗口。

3.1.11点击File菜单, 选择import and sequence alignment file

3.1.12出现一个新窗口, 选择要导入的文件存储地址及文件名, 点

击open. 所有需要的序列都会在导入窗口中呈现。

3.1.13点击Edit并选择Select All Sequences,现在可以准备对所

有的序列进行比对。

3.1.14点击Accessory Application并选择ClustalW Multiple

alignment ,打开一个新窗口。

3.1.15点击窗口下方的Run ClustalW,将打开一个新窗口,点

击下方的OK.

3.1.16序列比对将进行,进行的时间取决于所要比对的序列的长度

及数量。

3.1.17比对结束后,经过比对的序列将呈现在一个新窗口中。

3.1.18将模式(Mode)栏中改为edit,即可对序列进行剪切,使其

长度一致。

3.2 比对及编辑结束后,点击File并选择Save保存比对后的文件.

3.3用MEGA软件分析进行距离和系统进化分析

3.3.1双击MEGA4 图标打开MEGA

4.

3.3.2序列比对格式转换:

3.3.2.1从File菜单中, 选择Convert To Mega Format,

打开Text File Editor and Format Converter 窗口。

3.3.2.2选择屏幕中间的File and Format对话框。

3.3.2.3选择要导入的文件存储地址及文件名,点击OK,

在Text File Editor and Format Converter窗口中出

现mega 格式的文件。

3.3.2.4保存文件,关掉此页面返回MEGA

4.主界面。

3.3.3打开mega 文件

3.3.3.1从File菜单中打开mega文件, 选择open data, 或

从窗口中打开Click me to active a data file.

3.3.3.2打开文件后, Input Data 对话框将出现. 在左侧一

栏选择Nucleotide Sequences,默认右侧当前选择,点

击OK.

3.3.3.3出现一个Confirm对话框, 点击Yes.

3.3.3.4Select Genetic Code box opens被打开,通常默认所有

选项,点击OK .

3.3.3.5文件名及信息将会出现在窗口下方。

3.3.4打开Mega文件后

3.3.

4.1File 菜单中, 进行编辑, 导出或转换文件。

3.3.5Data菜单中, 可以用不同形式浏览文件,例如转换成氨基

酸形式。

3.3.6距离分析

3.3.6.1Distances菜单中, 选择Compute Pairwise. 出现

Analysis Preferences 窗口。

3.3.6.2在Distance options列表中, 选择Nucleotide:

Kimura 2-parameter for Models, 选择Distances

only for Comput, 并选择d: Transitions +

transversions for Substitutions to include.

3.3.6.3Include Sites list, 选择Complete Deletion for

Handling Gap/Missing Data, 选择1st, 2nd, 3rd for

Codon Positions/Sites Included, 点击OK.

3.3.6.4Pairwise Distances 窗口打开,在文件中将显示每两

个序列距离的矩阵。

3.3.7File菜单中, 选择Export/Print Distances,在Text File

Editor and Format Converter 窗口中将出现一个名为

Distances 的文件,它显示了所有的信息及距离矩阵,保存

后可以用记事本或写字板打开。

3.3.8进化分析

3.3.8.1Phylogeny菜单中,选择Neibour-Joining(NJ),

Analysis Preferences 框将打开。

3.3.8.2在Distance options列表中, 选择Nucleotide:

Kimura 2-parameter for Models, 选择Distances

only for Comput, 选择d: Transitions +

transversions for Substitutions to include.

3.3.8.3Include Sites list, 选择Complete Deletion for

Handling Gap/Missing Data, 选择1st, 2nd, 3rd for

Codon Positions/Sites Included.

3.3.8.4在Test of Phylogeny列表中, 选择Bootstrap for

Test of Inferred Phylogeny.

3.3.8.5屏幕的右侧将出现一个小对话框,选择1000 for

Replications, 然后点击OK, 进程框将打开。

3.3.8.6进程结束后, Tree Explorer窗口将显示两种进化

树。同源树Original tree是我们所需要的。

3.3.8.7File菜单中, you can save the tree data as可以将所做

的树通过Save键保存成Tree Session File(*.mts), 或

者选择Export Current Tree得到Tree Data

File(*.tre)文件, 两种格式的文件都能被MEGA或其

他软件所识别。

3.3.8.8Image菜单中, 选择Copy to Clipboard, 进化树即

可被复制并粘贴到word文档或ppt文档中进一部编

辑。

3.3.9交叉污染的判断:

3.3.9.1如果有两个或者更多的序列在进化树中距离非常接

近或者两个分支有相同的结点且有相同的水平距离,

而序列之间又没什么流行病学联系, 那么这些标本

则需要从核酸提取阶段进行重复检测,以此验证它们

之间的相近关系并排除交叉污染。

3.4亚型的初步分析:

3.4.1用NCBI 基因分型工具进行亚型的初步分析。

3.4.2双击下面的网址

https://www.sodocs.net/doc/49109059.html,/projects/genotyping/formpage.cgi

3.4.3在相应位置填入序列的FASTA/GI /Accession 格式文件。

3.4.4点击亚型按钮。

3.4.5出现一个扫描窗口,如果序列是单一的亚型,记录结果,如

果是复杂的重组亚型,则需要对序列进行详细的系统进化分

析。

临床微生物检测的基因同源性分析

临床微生物检测的基因同源性分析 医院感染的流行病学研究是临床微生物学工作者的重要课题,在医院感染监测的研究中,一个很重要的问题就是如何确定感染途径和传播途径,以采取有效预防和控制措施,从而防止医院感染或者暴发流行,因此对微生物鉴定和菌株同源性分析提出了更高的要求。 目前,传统的细菌鉴定和同源性分析技术已不能很好地满足医院感染诊断和流行病学调查的需要,从型、亚型、株,甚至分子水平上去认识细菌变得愈来愈重要了。近年来分子生物学的理论和技术在细菌感染诊断中的渗透和广泛应用,使得细菌鉴定、耐药基因的检测、分子流行病学调查变得更加准确、简洁和快速。细菌DNA同源性分析技术如脉冲场凝胶电泳、聚合酶链反应、DNA探针杂交以及序列分析等方法是目前在分子水平上分析细菌的主要手段,它在鉴定细菌感染的爆发、确定院内交叉感染、感染病原菌之间的基因同源性等方面有着重要的作用,本文将对常用基因同源性分析方法的机理和过程做简要综述。 一、质粒分型(Plasmid profile assay): 1、原理: 质粒是可移动的染色体外元件,可以自发丢失或者被宿主稳定地获得,因此流行病学上相关的分离菌株有可能表现出不同的质粒图谱。把质粒提取出来,进行常规的琼脂糖电泳分析,就可以知道分离菌株携带质粒的大小和数目。 2、实验过程:a.质粒抽提;b.0.8%琼脂糖电泳;c.EB染色、凝胶成像。 3、实验方法的评价: 优势: a.步骤比较简单,对实验仪器要求不高。 b.在评价那些从局限的时间和地点(如一个医院中的急性爆发)分离出来的菌株非常有效。 缺点: a.实验结果的重复性不好。 b.分辨力不高。 二、染色体DNA的限制性内切核酸酶分析 (Restriction Endonuclease Assay REA) 1、原理: 限制性内切核酸酶(REA)在特异的核酸识别序列切割DNA,DNA被消化后,所得到的限制性片段的数目和大小是由酶的识别位点和DNA的组成共同决定的。在传统的限制性内切核酸酶分析中,人们用含有相对多的限制性位点的内切核酸酶消化细菌的DNA,这样就会得到成百上千条长度在0.5-50Kb范围内的DNA 片段。恒定的电场琼脂糖电泳,可以根据分子质量的大小将这些DNA片段分开,然后通过EB染色并在紫外灯下观察其图谱。同一种的不同分离菌株的DNA序列的变异可造成限制性位点数目和分布的变化,所以可以导致其REA图谱出现差异。 2、实验流程:a.染色体DNA抽提;b.限制性内切酶消化DNA(主要是Hind III); c.0.7%琼脂糖电泳; d.EB 染色、凝胶成像。

红外光谱分析概述

红外光谱分析概述(上) 1.红外光谱 红外光谱是反映红外辐射强度或其他与之相关性质随波长(波数)变化的谱图。目前,它是一种被广泛应用于研究表征物质的化学组成,在分子层次上的结构及分子间相互作用的有力手段。红外射线发现于1800年,在用普通温度计测量可见光谱的温度效应时,在红光一端的外侧观察到有较强的热效应。后来,实验证实了这是由一种肉眼看不见、波长比红光更长的电磁辐射所造成的,这种电磁辐射被称为红外光。通常将红外辐射的波长范围定为0.8~1000微米,并可粗略地分为三个波段:(1)近红外的波段为0.8~2.5微米,波数为12500~4000厘米-1;(2)中红外的波段为2.5~25微米,波数为4000~400厘米-1;(3)远红外的波段为25~1000微米,波数为400~10厘米,目前,实验上已能测定到2500微米,波数为4厘米-1。相应地有近红外光谱、中红外光谱和远红外光谱。 红外光谱的形式虽然多种多样,从本质上可分为发射光谱和吸收光谱两大类。物体的红外发射光谱是指样品在通过受激或自发辐射的条件下,所发射的红外光的强度随波长(波数)变化的光谱图,红外发射光谱主要决定于物体的温度和化学组成。吸收光谱是指样品对红外辐射的吸收能力随波长(波数)变化的光谱图,在实验上,使红外光与样品发生相互作用,测定红外光与物质相互作用前后光强的变化与波长(波数)之间的关系, 称红外吸收光谱。 2.分子的振动和转动光谱 对于分子体系而言,其振动和转动是量子化的,其能级差所对应的光子的波长落在红外光范围,因此是红外光谱(拉曼光谱)的主要研究对象。研究指出,红外光谱的研究范围不仅仅局限于分子的振动、转动跃迁,某些特殊体系的电子能级跃迁亦可能落在红外光谱波段范围内,例如,超大规模共轭体系的电子跃迁、某些稀土离子的f-f能级跃迁等等。不过目前绝大多数的红外光谱研究工作仍集中于分子的振动能级跃迁上,以最简单的双原子为例,其振动吸收Eν可近似地表示为: 式中h为普朗克常数;ν为振动量子数(取正整数);n0为简谐振动频率。当ν=0时,分子的能量最低,称为基态。处于基态的分子受到频率为n0的红外射线照射时,分子吸收了能量为n0的光量子,跃迁到第一激发态,得到频率为n0的红外吸收带, 它称为分子振动的基频。反之,处于该激发态的分子也可发射频率为n0的红外射线而恢复到基态。n0的数值决定于分子的约化质量μ和力常数κ: κ决定于原子的核间距离、原子的特性和化学键及键级等。 在多原子分子体系中,各原子在平衡位置附近作相对运动。这些振动方式可以被分解为各种简正振动的线性组合,所谓简正振动就是指分子中各原子以同一频率、同一相位在平衡位置附近作简揩振动。含N个原子的非线分子有3N-6个简正振动方式;线性分子有3N-5种简正振动方式。 对于分子的转动而言,往往可以假定分子为刚性转子,则其转动能量Er为: 红外光谱分析概述(中)

时间序列分析与建模简介

第五章时间序列分析与建模简介 时间序列建模( Modelling via time series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box 和 Jenkins。本章扼要介绍吴宪民和 Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{ x k }视为以正态同分布白噪声序列{ a k }为 输入的动态系统的输出。用差分模型ARMA (n,m) 为(z-1) x k = (z-1) a k 式(5-1-1) 其中: (z-1) = 1- 1 z-1-…- n z-n (z-1) = 1- 1 z-1-…- m z-m

离散传函 式(5-1-2) 为与参考书符号一致,以下用B表示时间后移算子 即: B x k = x k-1 B即z-1,B2即z-2… (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数G i 格林函数G i 用以把x t 表示成a t 及a t 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.AR(1): x t - 1 x t-1 = a t 即: G j = 1 j(显示) 例2.ARMA (1,1): x t - 1 x t-1 = a t - 1 a t G 0= 1 ; G j =( 1 - 1 ) 1 j-1 ,j 1 (显示) ∑∞=- = j j t j t a G x

季节性时间序列分析方法

第七章季节性时间序列分析方法 由于季节性时间序列在经济生活中大量存在,故将季节时间序列从非平稳序列中抽出来,单独作为一章加以研究,具有较强的现实意义。本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建立、季节调整方法X-11程序。 本章的学习重点是季节模型的一般形式和建模。 §1 简单随机时序模型 在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。比如:建筑施工在冬季的月份当中将减少,旅游人数将在夏季达到高峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。对于这各时间数列我们可以说,变量同它上一年同一月(季度,周等)的值的关系可能比它同前一月的值的相关更密切。 一、季节性时间序列 1.含义:在一个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。具有周期特性的序列就称为季节性时间序列,这里S为周期长度。 注:①在经济领域中,季节性的数据几乎无处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、月度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若干种周期,如客运量数据(S=12,S=7)2.处理办法: (1)建立组合模型; (1)将原序列分解成S个子序列(Buys-Ballot 1847) 对于这样每一个子序列都可以给它拟合ARIMA模型,同时认为各个序列之间是相互独立的。但是

这种做法不可取,原因有二:(1)S 个子序列事实上并不相互独立,硬性划分这样的子序列不能反映序列{}t x 的总体特征;(2)子序列的划分要求原序列的样本足够大。 启发意义:如果把每一时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相比的净增值,用数学语言来描述就是定义季节差分算子。 定义:季节差分可以表示为S t t t S t S t X X X B X W --=-=?=)1(。 二、 随机季节模型 1.含义:随机季节模型,是对季节性随机序列中不同周期的同一周期点之间的相关关系的一种拟合。 AR (1):t t S t S t t e W B e W W =-?+=-)1(11??,可以还原为:t t S S e X B =?-)1(1?。 MA (1):t S t S t t t e B W e e W )1(11θθ-=?-=-,可以还原为:t S t S e B X )1(1θ-=?。 2.形式:广而言之,季节型模型的ARMA 表达形式为 t S t S e B V W B U )()(= (1) 这里,?? ? ??----=----=?=qS q S S S pS P S S S t d S t B V B V B V B V B U B U B U B U X W ΛΛ2212211)(1)()(平稳。 注:(1)残差t e 的内容;(2)残差t e 的性质。 §2 乘积季节模型 一、 乘积季节模型的一般形式 由于t e 不独立,不妨设),,(~m d n ARIMA e t ,则有 t t d a B e B )()(Θ=?φ (2) 式中,t a 为白噪声;n n B B B B ???φ----=Λ22111)(;m m B B B B θθθ----=ΘΛ22111)(。 在(1)式两端同乘d B ?)(φ,可得: t S t d S t D S d S t d S a B B V e B B V X B U B W B U B )()()()()()()()(Θ=?=??=?φφφ (3) 注:(1)这里t D S S X B U ?)(表示不同周期的同一周期点上的相关关系;t d X B ?)(φ则表示同一周期内不同周期点上的相关关系。二者的结合就能同时刻划两个因素的作用,仿佛是显像管中的电子扫

《时间序列分析》案例

《时间序列分析》案例案例名 称:时间序列分析在经济预测中的应用内容要 求:确定性与随机性时间序列之比较设计作 者:许启发,王艳明 设计时 间:2003年8月

案例四:时间序列分析在经济预测中的应用 一、案例简介 为了配合《统计学》课程时间序列分析部分的课堂教学,提高学生运用统计分析方法解决实际问题的能力,我们组织了一次案例教学,其内容是:对烟台市的未来经济发展状况作一预测分析,数据取烟台市1949—1998年国内生产总值(GDP)的年度数据,并以此为依据建立预测模型,对1999年和2000年的国内生产总值作出预测并检验其预测效果。国内生产总值是指一个国家或地区所有常住单位在一定时期内生产活动的最终成果,是反映国民经济活动最重要的经济指标之一,科学地预测该指标,对制定经济发展目标以及与之相配套的方针政策具有重要的理论与实际意义。在组织实施时,我们首先将数据资料印发给学生,并讲清本案例的教学目的与要求,明确案例所涉及的教学内容;然后给学生一段时间,由学生根据资料,运用不同的方法进行预测分析,并确定具体的讨论日期;在课堂讨论时让学生自由发言,阐述自己的观点;最后,由主持教师作点评发言,取得了良好的教学效果。 经济预测是研究客观经济过程未来一定时期的发展变化趋势,其目的在于通过对客观经济现象历史规律的探讨和现状的研究,求得对未来经济活动的了解,以确定社会经济活动的发展水平,为决策提供依据。 时间序列分析预测法,首先将预测目标的历史数据按照时间的先后顺序排列,然后分析它随时间的变化趋势及自身的统计规律,外推得到预测目标的未来取值。它与回归分析预测法的最大区别在于:该方法可以根据单个变量的取值对其自身的变动进行预测,无须添加任何的辅助信息。 本案例的最大特色在于:它汇集了统计学原理中的时间序列分析这一章节的所有知识点,通过本案例的教学,可以把不同的时间序列分析方法进行综合的比较,便于学生更好地掌握本章的内容。 二、案例的目的与要求 (一)教学目的 1.通过本案例的教学,使学生认识到时间序列分析方法在实际工作中应用的必要性和可能性; 2.本案例将时间序列分析中的水平指标、速度指标、长期趋势的测定等内容有机的结合在一起,以巩固学生所学的课本知识,深化学生对课本知识的理解; 3.本案例是对烟台市的国内生产总值数据进行预测,通过对实证结果的比较和分析,使学生认识到对同一问题的解决,可以采取不同的方法,根据约束条件,从中选择一种合适的预测方法; 4.通过本案例的教学,让学生掌握EXCEL软件在时间序列分析中的应用,对统计、计量分析软件SPSS或Eviews等有一个初步的了解; 5.通过本案例的教学,有助于提高学生运用所学知识和方法分析解决问题的能力、合作共事的能力和沟通交流的能力。 (二)教学要求 1.学生必须具备相应的时间序列分析的基本理论知识; 2.学生必须熟悉相应的预测方法和具备一定的数据处理能力; 3.学生以主角身份积极地参与到案例分析中来,主动地分析和解决案例中的问题; 4.在提出解决问题的方案之前,学生可以根据提供的样本数据,自己选择不同的统计分析方法,对这一案例进行预测,比较不同预测方法的异同,提出若干可供选择的方案; 5.学生必须提交完整的分析报告。分析报告的内容应包括:选题的目的及意义、使用数据的特征及其说明、采用的预测方法及其优劣、预测结果及其评价、有待于进一步改进的思路或需要进一步研究的问题。 三、数据搜集与处理 时间序列数据按照不同的分类标准可以划分为不同的类型,最常见的有:年度数据、季度数据、月度数据。本案例主要讨论对年度数据如何进行预测分析。考虑到案例设计时的侧重点,本案例只是对烟

光谱分析

碱土光谱分析:从图中不难看出,从380nm~430nm随波长增加而逐渐上升,但反射率很低,反射率在0.5以下;430nm~780nm反射率呈平稳上升趋势,在近可见光波段反射率已达0.8;在近红外波段反射率增长趋势更显趋缓 水的光谱分析:清水的反射率在各个波段均较低(<%2).380nm~430nm随波长的增加反射率迅速增加,即紫光波段透射能力较弱,之后随波长的增加反射率逐渐减小,至760nm的近红外波段反射率几乎为零。 绿叶光谱分析:总体看来呈现五谷四峰的状态,450nm处于低谷处于蓝色光波段、670nm处于低谷处于红色波段(低谷的原因在于绿色植物在这两个波段的吸收率比较大,故反射率较低);500nm处反射率较高,原因是绿色反射率较高,非叶绿色吸收带;700~130nm反射率较高,其原因是其细胞结构(细胞质、细胞壁等结构);其后的三谷两峰是水的吸收带(绿叶饱含水分)。 枯叶光谱分析:枯叶的光谱反射率很显然在各个波段均低于绿叶,尤其在可见光(紫光、蓝光、红光)段其反射率几乎为零,原因在于对红光和蓝光的吸收率更大了,没有了叶绿素;700~1300nm反射率也低于绿叶,原因在于其细胞结构也不再完整,对可见光的反射能力也下降了;接下来的三谷两峰也较低于绿叶,原因是含水量明显减少(几乎为零)。 红叶光谱分析:红叶在可见光波段(红色波段除外),反射率几乎为零,究其原因:没有叶绿素,对任何波段的可见光都有很强的吸收能力,唯独强烈反射红色波段。近红外波段,随波长的增加反射率呈现出缓慢上升的情况,原因:有其细胞结构,反射率挺高的。 正常植被土:反射率非常低,也没有明显的峰谷和峰谷,近乎为零。原因是土颜色呈现出灰黑色,且还是粘土,光泽度较低,有机质含量较高含水量也很大。

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

DNA序列比对同源性分析图解BLAST

1、进入网页:https://www.sodocs.net/doc/49109059.html,/BLAST/ 2、点击Search for short, nearly exact matches 3、在search栏中输入引物系列: 注:文献报道ABCG2的引物为5’-CTGAGATCCTGAGCCTTTGG-3’; 5’-TGCCCATCACAACATCATCT-3’ (1)输入方法可先输入上游引物,进行blast程序,同样方法在进行下游引物的blast程序。 这种方法叫繁琐,而且在结果分析特异性时要看能与上游引物的匹配的系列,还要看与下游引物匹配的系列——之后看两者的交叉。

(2)简便的做法是同时输入上下游引物:有以下两种方法。输入上下游引物系列都从5’——3’。 A、输入上游引物空格输入下游引物 B、输入上游引物回车输入下游引物 4、在options for advanced blasting中: select from 栏通过菜单选择Homo sapiens Expect后面的数字改为10

5、在format中: select from 栏通过菜单选择Homo sapiens Expect后面的数字填上0 10

6、点击网页中最下面的“BLAST!” 7、出现新的网页,点击Format!

8、等待若干秒之后,出现results of BLAST的网页。该网页用三种形式来显示blast的结果。(1)图形格式: 图中①代表这些序列与上游引物匹配、并与下游引物互补的得分值都位于40~50分 图中②代表这些序列与上游引物匹配的得分值位于40~50分,而与下游引物不互补 图中③代表这些序列与下游引物互补的得分值小于40分,而与上游引物不匹配 通过点击相应的bar可以得到匹配情况的详细信息。

同源性分析标准操作规程

同源性分析标准操作规程 持有部门:检验科 制定部门:丰都县人民医院医院感染管理科执行时间: 2013年11月1日 一、同源性分析的应用 包括感染暴发的判断,感染病原菌的确定及感染源的寻找。 二、基本方法 1.细菌的表型特征分型技术(如血清型、耐药表型等)。 2.基因分型技术(如.PFGE、Rep—PCR、AFLP等)。 三、操作步骤 (一)表型分型(血清型、耐药表型) 1.标本孵育:从患者感染部位采集标本,并接种于相应培养基(培养瓶)中孵育。 2.分离菌种:分离病原菌(细菌或真菌),并鉴定细菌(真菌)种类。 3.血清分型:如可能则对同种细菌进行血清分型,如军团菌等。 4.药敏试验:根据细菌(真菌)种类选择药敏卡(纸片),进行药敏试验。 5.结果分析:分析血清型和药敏谱,如结果相同或药敏相差不大则提示有同源性。 (二)基因分型(PFGE) 1.菌栓制备:将细菌悬液与2%低熔点琼脂糖凝胶混合,制备菌栓。 2.细菌消化:分别用含溶菌酶和(或)蛋白酶K的裂解液对菌栓进行消化。 3.洗涤菌栓:可用无菌水反复清洗或PMSF中和多余的蛋白酶K。 4.酶切:按照各种不同限制性内切酶的说明进行酶切。 5.制胶:用PF(讵电泳凝胶模具制备:PF(逼级琼脂糖凝胶。 6.电泳:根据不同细菌酶切片段的大小选择适当的脉冲参数,进行电泳。 7.凝胶成像:胶块染色后在凝胶成像仪下成像。 8.结果分析:根据Tenover等制定的标准对凝胶图像进行分析,判断菌株之间的同源性。 四、注意事项 1.不同的分型方法,在分型能力、重复性、分辨能力、操作和成本等方面都不尽相同,可根据情况进行选择。 2.表型分型方法的分辨能力普遍比基因分型方法低,但简便、快速,适用于对感染暴发的初筛。

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

小麦TaeEF1β基因的克隆、同源性及表达分析

浙江农业学报ActaAgriculturaeZhejiangensis?2019?31(1):98-103http://www.zjnyxb.cn陈炫?张天烨?羊健?等.小麦TaeEF1β基因的克隆二同源性及表达分析[J].浙江农业学报?2019?31(1):98-103. DOI:10 3969/j.issn.1004 ̄1524 2019 01 13 收稿日期:2018 ̄03 ̄25 基金项目:国家自然科学基金(3150160)?国家农业产业体系(CARS ̄3 ̄1)?国家小麦转基因专项(2016ZX08002001) 作者简介:陈炫(1992 )?女?陕西咸阳人?硕士研究生?主要从事植物病理学研究?E ̄mail:vivianccx@163.com?通信作者?陈剑平?E ̄mail:jpchen2001@126.com小麦TaeEF1β基因的克隆二同源性及表达分析 陈一炫1?张天烨1?羊一健2?张恒木2?陈剑平2?? (1.浙江农林大学林业与生物技术学院?浙江杭州311300?2.浙江省农业科学院病毒学与生物技术研究所?浙江杭州310021) 摘一要:真核翻译延伸因子(eukaryotictranslationelongationfactor?eEFs)是一种重要的多功能调控蛋白?eEF1β是eEF1的组成部分?在蛋白质生物合成过程中发挥着重要的作用?本文通过RT ̄PCR扩增克隆小麦(TriticumaestivumL.)的eEF1β基因?并命名为TaeEF1β?氨基酸同源性分析发现?TaeEF1β具有高度保守性?且其保守结构域位于137~226aa处?qRT ̄PCR结果表明?中国小麦花叶病毒(Chinesewheatmosaicvi ̄rus?CWMV)侵染小麦植株后?可以诱导TaeEF1β基因转录水平的上调表达?另外?本文也进一步分析了TaeEF1β基因在小麦根二茎二叶的表达水平和CWMV侵染不同时间点的表达情况? 关键词:真核翻译延伸因子?中国小麦花叶病毒?同源性分析 中图分类号:S435 12文献标志码:A文章编号:1004 ̄1524(2019)01 ̄0098 ̄06Genecloning?homologyandexpressionanalysisofTaeEF1βinTriticumaestivumL.CHENXuan1?ZHANGTianye1?YANGJian2?ZHANGHengmu2?CHENJianping2?? (1.CollegeofForestryandBiotechnology?ZhejiangA&FUniversity?Hangzhou311300?China?2.InstituteofVirolo ̄gyandBiotechnology?ZhejiangAcademyofAgriculturalSciences?Hangzhou310021?China) Abstract:Eukaryotictranslationelongationfactor(eEFs)isanimportantmultifunctionalprotein.eEF1βwassub ̄unitoftheeukaryotictranslationelongationfactor ̄1(eEFs ̄1)complexandplayedanimportantroleinproteinbio ̄synthesis.TheeEF1βgenewasobtainedbycloningwithRT ̄PCRfromwheatandnamedasTaeEF1β.TheaminoacidsequencesofTaeEF1βwerehighlyconservedandtheconserveddomainwaslocatedin137 ̄226aa.TheresultsofqRT ̄PCRshowedthatTaeEF1βwereup ̄regulatedintheCWMV ̄infectedplants.Inthisstudy?theexpressionofTaeEF1βinthestems?leavesandrootsofwheatanddifferentstagesofCWMVinfectionwasalsodetectedbyqRT ̄PCR.Keywords:eukaryotictranslationelongationfactor?Chinesewheatmosaicvirus?homologyanalysis 一一真核翻译延伸因子(eukaryotictranslatione ̄longationfactor?eEFs)最早作为一个对噬菌体Qβ 的依赖于RNA的RNA聚合酶(RNA ̄dependentRNApolymerase?RdRp)活性具有重要作用的辅助因子被发现并鉴定[1]?在真核细胞中包括3类延伸因子?分别为eEF1α(eukaryotictranslationelongationfactor1α)二eEF1β和eEF2[2]?EF1β在真核生物中的结构比在细菌中更复杂?该蛋白由EF1β ̄alpha二EF1β ̄gamma和EF1β ̄beta三个亚基组成?在蛋白质的合成过程中?eEF1β主要作为

BioEdit及MEGA分析序列同源性简介

利用系统进化分析软件对序列进行同源性分析 1.0目的 1.1为了保持国际上各个耐药性实验室的高检验水准,进行分子进化分 析是有很重要作用的。它不仅可以保证流行病学目的顺利实现,而 且有利于发现检测阶段可能产生的潜在的交叉污染。 1.2利用此软件进行分析所得的信息对于进行艾滋病毒在人群中传播 的流行病学研究具有十分重要的意义。 1.3通过对实验室之前分析的数据与当前数据进行比较,可以发现在此 前实验过程中由于标本处理不当所导致的潜在的实验室污染。 1.4对于确保得到高质量的实验结果并及时发现可能出现在实验室里 的问题具有重要意义。 2.0仪器设备 2.1计算机一台。 2.2Windows 95以上的操作系统。 2.3BioEdit 以及MEGA 4 分析软件。 2.3.1均为免费软件,可以从互联网上下载,在计算机上进行安装。 3.0操作过程 3.1局限及要求 3.1.1经过序列编辑软件拼接处理后的txt文件或fasta文件均可, 例如ChromasPro软件。 3.1.2可以在MEGA上分析的分子序列或距离矩阵数据。 3.1.3Mega 4软件只能将长度相等的序列转换为MEGA输出文 件,因此,任何多序列文件必须通过BioEdit软件进行对齐 修剪,然后才能进入通过Mega软件转换成*.meg格式进行 分析。 3.1.4该数据集的大小受限于计算机上可用的物理(RAM)和虚 拟内存。 3.1.5分析的序列必须包括两个或两个以上长度相同的序列,所有 序列分析之前必须用MEGA软件对齐。 3.1.6核苷酸和氨基酸序列应该用英文字母连续书写,不区分大小 写。一些特殊的特殊符号,例如表示对齐缺口,碱基缺失等 的符号也可以包含在序列中。 3.1.7空格和制表符经常用于数据文件中,因此会被MEGA忽略。 ASCII字符,如(.)(- )(?),一般都作为特殊符号

时间序列分析简介与模型

第二篇 预测方法与模型 预测是研究客观事物未来发展方向与趋势的一门科学。统计预测是以统计调查资料为依据,以经济、社会、科学技术理论为基础,以数学模型为主要手段,对客观事物未来发展所作的定量推断和估计。根据社会、经济、科技的预测结论,人们可以调整发展战略,制定管理措施,平衡市场供求,进行各种各样的决策。预测也是制定政策,编制规划、计划,具体组织生产经营活动的科学基础。20世纪三四十年代以来,随着人类社会生产力水平的不断提高和科学技术的迅猛发展,特别是近年来以计算机为主的信息技术的飞速发展,更进一步推动了预测技术在国民经济、社会发展和科学技术各个领域的应用。 预测包含定性预测法、因果关系预测法和时间序列预测法三类。本篇对定性预测法不加以介绍,对后两类方法选择以下几种介绍方法的原理、模型的建立和实际应用,分别为:时间序列分析、微分方程模型、灰色预测模型、人工神经网络。 第五章 时间序列分析 在预测实践中,预测者们发现和总结了许多行之有效的预测理论和方法,但以概率统计理论为基础的预测方法目前仍然是最基本和最常用的方法。本章介绍其中的时间序列分析预测法。此方法是根据预测对象过去的统计数据找到其随时间变化的规律,建立时间序列模型,以推断未来数值的预测方法。时间序列分析在微观经济计量模型、宏观经济计量模型以及经济控制论中有广泛的应用。 第一节 时间序列简介 所谓时间序列是指将同一现象在不同时间的观测值,按时间先后顺序排列所形成的数列。时间序列一般用 ,,,,21n y y y 来表示,可以简记为}{t y 。它的时间单位可以是分钟、时、日、周、旬、月、季、年等。

一、时间序列预测法 时间序列预测法就是通过编制和分析时间序列,根据时间序列所反应出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年可能达到的水平。其容包括:收集与整理某种社会现象的历史资料;将这些资料进行检查鉴别,排成数列;分析时间序列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模型,以此模型去预测该社会现象将来的情况。 二、时间序列数据的特点 通常,时间序列经过合理的函数变换后都可以看作是由三个部分叠加而成,这三个部分是趋势项部分、周期项部分和随机项部分。 1. 趋势性 许多序列的一个最主要的特征就是存在趋势。这种趋势可能是向下的也可能是向上的,也许比较陡,也许比较平缓,或者是指数增长,或者近似线性。总之,时间序列的趋势性是依据时间序列进行预测的本质所在。 2. 季节性/周期性 当数据按照月或季观测时,通常的情况是这样的:时间序列会呈现出明显的季节性。对季节性也不存在一个非常精确的定义。通常,当某个季节的观测值具有与其它季节的观测值明显不同的特征时,就称之为季节性。 3. 异常观测值 异常观测值指那些严重偏离趋势围的特殊点。异常观测值的出现往往是由于某些不可抗 1958 年自然灾害和1966年左右“文化大革命”对我国经拒的外部条件的影响。如1960 济的影响,造成经济指标陡然下降现象;1992年,我国银行紧缩政策造成的房地产业泡沫破灭,而使得房地产业的经济数据发生突然变化的例子等等。 4. 条件异方差性 所谓条件异方差性,表现出来就是异常数据观测值成群地出现,故也称为“波动积聚性”。由于方差是风险的测度,因此波动存在的积聚性的预测对于评估投资决策是很有用的,对于期权和其它金融衍生产品的买卖决策也是有益的。 5. 非线性 对非线性的最好定义就是“线性以外的一切”。非线性常常表现为“机制转换”(regime witches)或者“状态依赖”(State pendence)。其中状态依赖意味着时间序列的特征依赖于其现时的状态;不同的时刻,其特征不一样。当时间序列的特征在所有的离散状态都不一样时,就成为机制转换特性。 三、时间序列的分类 1. 按研究的对象的多少可分为单变量时间序列和多变量时间序列。 如果所研究的对象是一个变量,如某个国家的国生产总值,即为单变量时间序列。果所研究的对象是多个变量,如按年、月顺序排列的气温、气压、雨量数据,为多变量时间序列。多变量时间序列不仅描述了各个变量的变化规律,而且还表示了各变量间相互依存关系的动态规律性。 2. 按时间的连续性可将时间序列分为离散时间序列和连续时间序列。 如果某一序列中的每一个序列值所对应的时间参数为间断点,则该序列就是一个离散时间序列。如果某一序列中的每个序列值所对应的时间参数为连续函数,则该序列就是一个连续时间序列。 3. 按序列的统计特性可分为平稳时间序列和非平稳时间序列两类。

第五讲传统时间序列分析与动态时间序列模型

第五讲 传统时间序列分析 一、趋势模型与分析 1、趋势模型 确定型时间序列分析是根据时间序列自身发展变化的基本规律和特点即趋势,选取适当的趋势模型进行分析和预测。 趋势模型的一般形式是:?()t y f t = 式中,t 是时间变量,一般取值为,0,1,2, 或2,1,0,1,2,-- 。 趋势模型的具体形式多种多样,例如经济领域不少现象近似指数增长?t y = 0(1)t y r +,0y 其中为增长初期水平,r 为增长率。常用的其他趋势模型还有: (1)直线模型?t y a bt =+ (2)指数模型?t t y ab = (3)幂函数模型?b t y at =或?bt t y ae = (4)对数模型?ln()t y a b t =+ (5)多项式模型01?k t k y b bt b t =+++ (6)修正指数曲线?t t y L ab =+或?bt t y L ae =+ (7)双曲线模型?t y L b =+ (8)Compertz 曲线?t b t y La = (9)Logistic 曲线?(1)bt t y L ae =+ 2、模型的选择 趋势模型形式的选择是定性分析和定量分析相结合的过程。 定性分析要求:在选取模型之前,要弄清的条件和预测对象的性质、特点。例如,指数曲线模型成立的条件是后一期与前一期之比为常数,即发展速度为常

数。实际现象的逐期增长率不可能严格等于某一常数,但常会围绕某一常数上下波动。如果分析对象具备上述特点,可以考虑采用指数模型。有些模型是从其他领域特别是生物学领域移植过来的。比如Logistic曲线最初用于研究生物种群发展规律,假定物种的增长取决于两个因素:种群的现有规模和环境(生存空间、光照、水和食物等),其中环境是限制性因素,在有限的环境中物种不可能无限增长,而是存在增长极限L。如果用Logistic曲线分析某种现象,必须首先确认:该现象是否发展到一定规模后增长速度会逐步下降,该现象是否存在增长的极限等。 除定性分析外,根据资料把握现象的特点也是选择模型的重要环节。定量分析需要用到多种初等分析方法。常用的方法是绘制曲线图,直观的判断现象大体符合哪种模型。有时数据中不仅包含趋势,还存在周期波动和较强的随机变动,造成趋势识别的困难,需要对数据进行预处理,方法主要包括数据的平滑和周期调整(如季节调整),后面知识将分别来介绍。 3、模型的估计与预测 趋势模型的估计与预测与线性回归模型的方法相似。 二、季节模型与分析 1、季节模型的类型 季节模型反映具有季节变动规律的时间序列模型。季节变动是指以一年为一个周期的变化。引起季节变动的首要因素四季更迭。 传统的时间序列分析把时间序列的波动归结为四大因素:趋势变动(T)、季节变动(S)、循环变动(C)和不规则变动(I)。其中循环变动指周期为年数的变动,通常指经济周期。不规则变动即随机变动。四种变动与原序列(Y)的

临床微生物检测的基因同源性分析

临床微生物检测的基因 同源性分析 Revised as of 23 November 2020

临床微生物检测的基因同源性分析 医院感染的流行病学研究是临床微生物学工作者的重要课题,在医院感染监测的研究中,一个很重要的问题就是如何确定感染途径和传播途径,以采取有效预防和控制措施,从而防止医院感染或者暴发流行,因此对微生物鉴定和菌株同源性分析提出了更高的要求。 目前,传统的细菌鉴定和同源性分析技术已不能很好地满足医院感染诊断和流行病学调查的需要,从型、亚型、株,甚至分子水平上去认识细菌变得愈来愈重要了。近年来分子生物学的理论和技术在细菌感染诊断中的渗透和广泛应用,使得细菌鉴定、耐药基因的检测、分子流行病学调查变得更加准确、简洁和快速。细菌DNA同源性分析技术如脉冲场凝胶电泳、聚合酶链反应、DNA 探针杂交以及序列分析等方法是目前在分子水平上分析细菌的主要手段,它在鉴定细菌感染的爆发、确定院内交叉感染、感染病原菌之间的基因同源性等方面有着重要的作用,本文将对常用基因同源性分析方法的机理和过程做简要综述。 一、质粒分型(Plasmidprofileassay): 1、原理: 质粒是可移动的染色体外元件,可以自发丢失或者被宿主稳定地获得,因此流行病学上相关的分离菌株有可能表现出不同的质粒图谱。把质粒提取出来,进行常规的琼脂糖电泳分析,就可以知道分离菌株携带质粒的大小和数目。

3、实验方法的评价: 优势: a.步骤比较简单,对实验仪器要求不高。 b.在评价那些从局限的时间和地点(如一个医院中的急性爆发)分离出来的菌株非常有效。 缺点: a.实验结果的重复性不好。 b.分辨力不高。 二、染色体DNA的限制性内切核酸酶分析(RestrictionEndonucleaseAssayREA) 1、原理: 限制性内切核酸酶(REA)在特异的核酸识别序列切割DNA,DNA被消化后,所得到的限制性片段的数目和大小是由酶的识别位点和DNA的组成共同决定的。在传统的限制性内切核酸酶分析中,人们用含有相对多的限制性位点的内切核酸酶消化细菌的DNA,这样就会得到成百上千条长度在范围内的DNA片段。恒定的电场琼脂糖电泳,可以根据分子质量的大小将这些DNA片段分开,然后通过EB染色并在紫外灯下观察其图谱。同一种的不同分离菌株

光谱分析

光谱分析 根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.历史上曾通过光谱分析发现了许多新元素,如铷,铯,氦等.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。 由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来. 光谱分析在科学技术中有广泛的应用.检查半导体材料硅和锗是不是达到了高纯度的要求时,帮助人们发现了许多新元素.研究天体的化学组成. 复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。例如,太阳光经过三棱镜后形成按红、橙、黄、绿、蓝、靛、紫次序连续分布的彩色光谱。红色到紫色,相应于波长由7,700—3,900埃的区域,是为人眼所能感觉的可见部分。红端之外为波长更长的红外光,紫端之外则为波长更短的紫外光,都不能为肉眼所觉察,但能用仪器记录。 因此,按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光谱和连续光谱。原理 发射光谱分析是根据被测原子或分子在激发状态下发射的特征光谱的强度计算其含量。 吸收光谱是根据待测元素的特征光谱,通过样品蒸汽中待测元素的基态原子吸收被测元素的光谱后被减弱的强度计算其含量。它符合郎珀-比尔定律: A= -lg I/I o= -lgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。

相关主题