搜档网
当前位置:搜档网 › 发酵工程重点

发酵工程重点

发酵工程重点
发酵工程重点

气流输送:垂直管自由沉降速度Ut G=F浮a=0 U=Ut

当气流速度U>Ut 实现颗粒输送U=Ut 静止(流化态)

水平管1)湍流时,垂直方向的分速度产生2)层流时,气流流速为抛物线,由颗粒上下U 差,引得压力差产生作用力3)管内底部,由于自身旋转运动,使得颗粒上气流局部加速,下方气流局部减速而产生压差4)由于颗粒形状不规则,而产生的气流推动力的垂直分力作用5)颗粒之间碰撞,与管壁碰撞,而产生垂直方向的分力

带式输送机:原理:利用一根封闭的环形带,由鼓轮带动运动,其上的物料靠与皮带间的摩擦力运行

斗式提升机:垂直升送物料,连续输送机械它用胶带或链条作牵引件,将一个个料斗固定在牵引件上,牵引件有上下鼓轮张紧并带动运行

杂菌后果:1)生长菌丧失了生长能力2)杂菌生长速度比生长菌快,反应管中以杂菌为主3)杂菌会污染最终产物4)提取产物困难5)杂菌降解所需产物6)生长菌株发生溶菌现象

灭菌方法:加热灭菌(火焰灭菌、干热灭菌,湿热灭菌)、射线灭菌(紫外线、阳极射线、X 射线、)、化学药剂灭菌(漂白粉溶液、75%酒精苯酚溶液)

工业灭菌:湿热灭菌的原理:直接用高温蒸汽灭菌,蒸汽在冷凝时释放出大量潜能,蒸汽具用强大穿透力,蒸汽的湿热破坏菌体蛋白和核酸的化学键,使酶失活,微生物因代谢下降而灭亡。

高温短时灭菌:细菌孢子热死反应的活化能E很高,营养成分破换的活化能较低,随着温度越高,菌体孢子死亡率常数位数大于培养基成分破坏速率常数位数,所以当温度越大时,杂菌死亡速率要比营养成分破坏速率快很多,根据这一原理,培养基灭菌采用高温短时的方法能达到灭菌效果。

最佳灭菌条件的确定:1)分批灭菌温度和时间,应根据培养基的成分、物理状态、酸碱度、杂菌的生长状况、数量蒸汽的压力、流量、设备的热交换效果加以确定。另外还要顾及升温和降温过程的灭菌作用。2)为使料液得到彻底灭菌,设备应避免积垢、渗漏和存在死角,还应尽可能减少泡沫,若泡沫较多,覆盖液面,间歇升压。3)为使设备及其管路彻底灭菌,应使用具用足够压力的饱和蒸汽,避免夹带大量冷凝水,确保排气口压力达100千帕以上。4)在保证灭菌合格的前提下,还应在停止进气的时刻用无菌空气进行保压,防止设备及管路内压力迅速下降,导致外界空气窜入,无菌空气的压力应大于100千帕。5)升压过程不可急剧进行,以利于节约灭菌用气减少泡沫。

空气除菌的意义:好气性微生物的生长和合成代谢产物都需要消耗氧气,工业生产上均采用空气作为氧气来源,然而空气中有各种各样的微生物,为保证纯种培养必须将空气中的微生物除去或杀死。

好气性发酵对空气无菌度的要求:好气性发酵中需要大量无菌空气,但空气绝对无菌是很难做到的,也是不经济的,只要使在发酵过程中不至于造成杂菌而出现倒罐现象,这就是通风发酵对无菌空气的要求,不同类型的发酵由于菌种生长活力、繁殖速度、培养基成分和ph值级发酵产物的不同,对杂菌抑制的能力不同,因而对无菌空气的无菌程度要求也有所不同,在工程设计上,一般要求1000次使用周期中只允许有一个杂菌通过。

空气除菌的方法:1、辐射杀菌2、静电除菌3、热杀菌4、过滤除菌:1)绝对过滤:介质之间的孔隙小于被滤出的微生物2)介质过滤:采用定期灭菌的介质来阻截流过的空气所带的微生物。过滤介质:1、棉花2、玻璃纤维3、活性炭

几种典型的空气过滤除菌流程:1)两级冷却、分离、加热的空气除菌流程:一段加热,一段冷却2)冷却空气直接混合氏空气除菌流程:两段加热冷却

发酵罐的类型:机械搅拌发酵罐、气升氏发酵罐、自吸氏发酵罐、伍氏发酵罐、文氏管发酵罐

机械搅拌发酵罐结构:搅拌器、挡板:改变流体方向、消泡器、联轴器、轴封、轴承、人孔空气分布管、换热装置。原理:利用搅拌器的作用使空气和发酵液充分混合,促使氧在发酵液中溶解,以保证供给微生物的繁殖发酵所需的氧气

气升氏发酵罐:结构:罐体、上升管、空气喷嘴。特点:1)结构简单,冷却面积小2)无搅拌传动设备,节省动力50% 3)操作无噪音4)无需加消泡剂5)维修、操作、清洁方便,降低杂菌污染6)不能代替气量较小的发酵罐,对粘度较大的发酵罐溶氧系数低

自吸氏发酵罐:结构:罐体、自吸搅拌器、导轮、轴封、换热装置、消泡器。原理:转子由罐底上升入的主轴带动,当转子转动时,空气则吸入。

伍氏发酵罐:结构:套筒、搅拌器原理:搅拌时液体沿着套筒外向上至液面。然后由套筒内返回罐底,搅拌器是由6根弯曲的空气管子焊于圆盘上空气由轴导入经过搅拌器的管吹出,与搅拌器甩出的液体相混合,发酵液在套筒外侧上升,由套筒内部下降,形成循环。文氏发酵罐:原理:用泵将发酵液压入文氏管中,由于文氏管的收缩段中的液体流速增大,形成真空将空气吸入,并使气泡分散与液体混合,增大发酵液的溶解氧。

双膜理论:1)气泡和液体之间存在界面,两边分别有气膜和液膜均处于层流状态,氧分子只能借浓度差一扩散方式透过双膜,气体和液体空间中的氧分子浓度相同。2)在双膜之间的界面上,氧气的分压强于溶于液体的氧浓度处于平衡状态。3)传质状态是稳定状态。

搅拌器的作用:1、将空气泡打碎,增加气液接触面积,加速氧的溶解。2、使液体形成涡流,延长气泡在液体中的停留时间,增加气液接触时间。3、增加液体湍流程度,因而减少气泡液膜高度减少溶氧阻力,提高空气的利用率。4、有利于热交换和营养物质与菌体细胞的均匀接触,同时稀释固体代谢产物,有利于增强细胞的新陈代谢

轴功率的计算:搅拌器一既定的速度旋转时,用以克服介质的阻力所需的功率。

发酵的冷却装置:1、对于中小型发酵罐,多采用灌顶喷水淋于罐外壁表面进行冷却。2、对于大型发酵罐,罐内装有冷却蛇管或罐内蛇管和罐外壁喷洒联合冷却装置。3、为避免发酵车间的潮湿和积水,要求在罐底及周围装有集水槽。

啤酒发酵罐:1、圆柱锥底发酵罐2、联合罐3、朝日罐

沼气发酵基本条件:1)严格的密闭条件(厌氧环境)2)适宜温度:10-30 3)适当的酸碱度:6.8-7.2 4)充足的发酵原料:碳氮比:25:1-30:1 5)适量的水分6)加入优良菌种和接种物

SO2的作用:1)杀菌作用:能消灭葡萄皮上的野生酵母与杂菌的繁殖,使优良酵母获得最好的发酵条件。2)澄清作用:能使葡萄汁很快获得澄清。3)溶解作用:SO2添加到葡萄醩中,立即生产H2SO3,有利于果皮上的成分溶解,增加葡萄酒的色泽。4)增酸作用:SO2阻止了分解苹果酸和酒石酸的沉淀,又与苹果酸和酒石酸的K Ca等盐类作用,使酸增加。5)抗氧化作用:SO2具用强的防止葡萄酒氧化的作用

连续灭菌:将培养基在外连续进行加热,维持和冷却后进入到发酵温度,然后接种发酵。分批灭菌:将培养基置于反应器中用蒸汽加热,达到预订灭菌温度后维持一定时间再冷却。

发酵工程要点总结

第一章绪论 发酵:通过微生物、动物细胞和植物细胞的培养,大量生成和积累特定的代谢产物或菌体的过程。 发酵工程:是发酵原理和工程学的结合,是研究由生物细胞(包括微生物、动植物细胞)参与的工艺过程的原理的科学,是研究利用生物材料生产有用物质,服务于人类的一门综合性科学技术。这里所指的生物材料包括来自自然界微生物、基因重组微生物等以及各种来源的动物细胞和植物细胞。 发酵工程组成从广义上讲,由三部分组成:上游工程、发酵工程、下游工程 第二章发酵设备 固体发酵 液体发酵(厌氧发酵,好氧发酵) 厌氧发酵:酒精发酵罐 好氧发酵:通风搅拌发酵罐 通风搅拌发酵罐设备主要部件包括: 1罐身 酒精发酵罐2电机 3搅拌器 4轴封 5消泡器 6联轴器 7中间轴承 8空气吹泡管(或空气喷射器) 9挡板 10冷却装置 1.罐体:罐体由圆柱体或碟形封头焊接而成,材料为碳钢或不锈钢,大型发酵罐可用衬不锈钢或复合不锈钢制成,为了满足工艺要求,罐需要承受一定压力,罐壁厚度决定于罐径及罐压的大小。罐体上的管路越少越好 2.搅拌作用:打碎空气气泡,增加气液接触界面以提高气液间的传质效率使发酵液充分混和。3挡板的作用:防止液面中央产生漩涡,促使液体激烈翻动,提高溶解氧。竖立的蛇管、列管、排管也可以起挡板作用; 4消泡器:利用机械的方法打碎气泡 5仪表:测量相关参数 为什么压力表不用直管:会有培养基冲入,污染压力表;起不到缓冲作用;灭菌冷却后有冷凝水(含菌)掉入罐内,污染菌种,弯管液封,上面的杂菌不会掉入下面管道中。 6罐体各部分的尺寸有一定比例,高/径比约为2.5~4。 发酵罐的灭菌 (在夹套中)关好空气阀,蒸气上进下出,冲蒸气,压力大于2 kg/cm2(120℃),最好是4~5 kg/cm2(160℃)。当罐内温度>80℃,进蒸气口(蒸气阀)关掉,出蒸气口(排气阀)关小。打开空气阀,蒸气直接进罐,121℃,20~30min。从80℃~100℃上升很快,大于100℃后温度上升很慢,到118℃时就开始计时,计时25min时立即关掉蒸气阀。关掉蒸气阀后通入无菌空气,使罐内一直保持正压(高于大气压,空气不会倒灌入罐内)。(在夹套中)立即加自来水冷却,从下向上,使温度尽快降到55℃左右,到37~38℃时关掉水,也有缓冲性。升温降温时注意缓冲性灭菌时蒸气从夹套中进去,如从罐中进去,蒸气冷凝,产生冷凝水、无法接种、容易污染冬天温度低、散热快,低于30℃需加温。加温时蒸气由下进入、从上

发酵工程期末考试重点 终极版

●发酵工程:以微生物、动植物细胞为生物作用剂进行工业化生产的工程,包括发酵工艺和发酵设备。 ●主要研究内容:菌种选育与构建、大规模培养基和空气的灭菌、大规模细胞培养过程、细胞生长和产物形成动力学、生物反应器的优化设计和操作、发酵产品的分离纯化过程中的技术问题等。 ●发酵工程原理:指导发酵产品研究与开发,发酵工厂设计与建设以及发酵生产实践的理论。 ●初级代谢:是许多生物都具有的生物化学反应,蛋白质、核酸的合成等,均称为初级代谢。 ●初级代谢产物:指微生物通过代谢活动所产生的、自身生长和繁殖所必需的物质,如氨基酸、多糖等。 ●次级代谢:微生物以初级代谢产物为前提合成的对微生物本身的生命活动没有明确功能的物质的过程。 ●自然选育:不经过人工处理,利用菌种的自然突变而进行菌种筛选的过程。 ●杂交育种:将两个基因型不同的菌株经吻合使遗传物质重新组合,分离和筛选具有新性状的菌株。 ●诱变育种:利用物理、化学等诱变剂处理均匀而分散的微生物细胞群,在促进其突变率显着提高的基础上,采用简便、高效的筛选方法,从中挑选出少数符合目的

的突变株,以供科学实验或生产实践使用。 ●原生质体融合育种:两个亲本的原生质体在高渗条件下混合,由聚乙二醇作为助融剂,使它们互相凝集,发生细胞融合,接着两个亲本基因组由接触到交换,从而实现遗传重组。 ●前体:某些化合物加入发酵培养基中,能直接被微生物在生物合成过程中结合到产物中去,而自身结构并没有明显变化,产物的产量却因前体的加入而有较大的提高。 ●抑制剂:某些化合物可以抑制特定代谢途径的进行,使另一种代谢途径活跃,获得人们所需产物的积累。 如生产甘油加抑制剂亚硫酸钠,它与代谢过程中的乙醛生成加成物。这样使乙醇代谢途径中的乙醛不能成为NADH 2(还原型辅酶I)的受氢体,而使NADH 2在细胞中积累, 从而激活α-磷酸甘油脱氢酶的活性,使磷酸二羟基丙酮取代乙醛作为NADH 2的受氢体而还原为α-磷酸甘油,其水解后即形成甘油。 ●促进剂:指那些既不是营养物质又不是前体,但却能提高产量的添加剂,如加巴比妥盐能使利福霉素单位增加,并能使链霉菌推迟自溶,延长分泌期。 ●灭菌:用化学或物理的方法杀灭或除掉物料及其器皿中所有的生命体。消毒是指杀死病原微生物的过程。 ●分批灭菌:培养基置于发酵罐中加热,达到预定温度后维持一段时间,再冷却到发酵所需温度的灭菌。

生物制药考试重点

生物制药考试重点 第一章 药物是用于预防、诊断、治疗人的疾病。改善生活质量和影响人体生物学进程的物质。药物可分为化学药物、中药、生物药物三大类。P1 生物药物是指利用生物体、生物组织或其成分、综合应用多门学科的原理和方法进行加工、制造而成的一大类药物。P1 天然生化药物是指从生物体(动物、植物和微生物)中获得天然存在的生化活性物质。 抗生素是指由生物(包括微生物、植物和动物)在其生命过程中所产生的一类在微量浓度下就能选择性地抑制他种生物或细胞生长的生理活性物质及其衍生物。P2 生物制品,一般指的是用微生物及其代谢产物、原虫、动物毒素、人或动物的血液或组织等直接加工制成,或用现代生物技术方法制备的,用于预防、治疗、诊断特定传染病或其他有关疾病的药品。P3 自1982年重组人胰岛素投放市场以来,利用基因工程开发生物药物已经成为一个重要的发展方向。P4 1989年我国研发出第一个拥有自主知识产权的生物医药产品——重组人干扰素a-1b。(细胞因子)P5 生化制药主要是从动物、植物、微生物和海洋生物中提取、分离、和纯化生物活性物质,加工制造成为生化药物。天然的生化药物包括氨基酸、多肽、蛋白质、核酸、酶和辅酶、糖类、脂类药物等。P5 微生物制药是以发酵工程技术为基础、利用微生物代谢过程生产药物的制备技术。微生物制药生产的药物包括抗生素、酶抑制剂、免疫调节剂以及维生素、氨基酸、核苷酸等。P5 生物技术制药是利用现代生物技术(包括基因工程、细胞工程、酶工程、发酵工程和蛋白质工程等),生产多肽、蛋白质、酶和疫苗、单克隆抗体等。P5 迄今为止,已上市的基因工程药物多数以E.coli表达系统生产,其次是酿酒酵母和哺乳动物细胞(中国仓鼠卵细胞CHO和幼仓鼠肾细胞BHK)。P6 第二章 生物活性物质的制备技术很多,主要是利用它们之间特异性的差异,如分子大小、形状、酸碱度、极性、溶解度、电荷和对其他分子的亲和性等建立起来的。P9 传统的生化制药的基本工艺过程可分为:材料的选择和预处理,组织与细胞的破碎及细胞器的分离,活性物质的提取和纯化,活性物质的浓缩、干燥和保存。P9 细胞破碎后,一般采用差速离心方法分离细胞内质量不同的细胞组分,沉降于离心管内不同区域,分离后即所得所需组分。P14 某一物质在溶剂中的溶解度大小与该物质的分子结构及所使用的溶剂的理化性质有密切关系,一般遵循“相似相溶”的原则。P14 提取的原则是“少量多次”,即对于等量的提取溶液,分多次提取比一次提取的效果好得多。P14 生物活性物质的初步分离与纯化,一般采用沉淀分离法,即通过改变某些条件或加入某种物质,使溶液中某种溶质的溶解度降低,从而从溶液中沉淀析出。沉淀分离法包括盐析沉淀、等电点沉淀和有机溶剂沉淀等。P15 一般的透析时间是24h,每小时换水一次,整个过程在4.o C下进行。P16 电泳技术既可用于分离各种生物大分子,也可用于分析某种物质的纯度,还可用于相对分子质量的测定。P17 常用的干燥方法是真空干燥和冷冻干燥。P18

发酵工程复习重点.doc

微生物生物技术重点 第一章 1 发酵的概念 传统概念:指酵母作用于果汁或发芽谷物,进行酒精发酵时产生CO2的现象。 生物学概念:发酵是指微生物在无氧条件下分解代谢有机物质释放能量的过程。(生化)工业生物学家概念:利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程 现代概念:培养生物细胞(含动植物和微生物)来制取产物的所有过程 2 生物工程(Microbial engineering )是利用微生物的特定性状和功能,通过现代化工程技术生产有用物质或直接应用于工业化生产的技术体系;是将传统发酵与现代DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的现代发酵技术。 发酵工程的发展简史 1、传统的发酵时期——天然发几千年 酒(古埃及龙山文化)啤酒、黄酒、酱油、泡菜等 特点 多数产品为嫌气性发酵 非纯种培养 单凭经验传授技术,使产品质量不稳定 (不了解微生物与发酵的关系) 2、近代发酵工程时期——纯培养技术 1665 英国物理学家Robert Hooke(罗伯特·胡克)细胞壁 1680 荷兰列文·虎克(Antonie vanLeeuwenhoek) 活细胞人类认识到微生物的存在 特点 多数产品为嫌气性发酵 非纯种培养 单凭经验传授技术,使产品质量不稳定 (不了解微生物与发酵的关系) 由天然发酵阶段转向纯培养发酵(第一次转折 过程特点 产品的生产过程较为简单,对生产要求不高,规模不大 3、近代发酵工程时期——深层培养技术 出现于20世纪40年代,以抗生素的生产为标志青霉素的发现与大量需求 表面培养法(surface culture) 效价40U/mL,纯度20%,收率30% 二战期间,青霉素发酵生产成功 青霉素发酵生产的成功,给发酵工业带来两大功绩: 开拓了以青霉素为先锋的庞大抗生素发酵工业 建立深层培养法(submerged fermentation),把通气搅拌技术引入发酵工业。它使得需氧菌的发酵生产从此走上了大规模工业化生产途径。通气搅拌液体深层发酵技术是现代发酵工业最主要的生产方式 机械搅拌通气发酵技术的建立是第二次转折 4、近代发酵工程时期——代谢控制发酵技术 定义:以动态生物化学和微生物遗传学为基础,将微生物进行人工诱变,得到适合于生产某种产品的突变株,再在人工控制的条件下培养,即能选择性地大量生产人们所需要的物

发酵工程总结

绪论: 一、概念:发酵工程(Fermentation Engineering)指在最适发酵条件下,在发酵罐中大量培养细胞和生产代谢产物的技术。 二、发酵工程研究的主要内容 发酵工程主要包括代谢工程和发酵工艺两个主要内容 具体来说它一般包括微生物细胞或动植物细胞的悬浮培养,或利用固定化酶,固定化细胞所做的反应器加工底物,以及培养加工后产物大规模的分离提取等工艺。发酵工艺主要是在生物反应过程中提供各种所需的最适环境条件。如酸碱度、湿度、底物浓度、通气量以及保证无菌状态等研究内容。 四、发酵工程的特点 一个完整的发酵过程包括:1材料的预处理2生物催化剂的制备3生化反应器及发应条件的选择与监控 第二章:菌种的来源 一、工业化生产菌种的要求 ?能够利用廉价的原料,简单的培养基,大量高效地合成 产物 ?有关合成产物的途径尽可能地简单,或者说菌种改造的 可操作性要强 ?遗传性能要相对稳定 ?不易感染它种微生物或噬菌体 ?产生菌及其产物的毒性必须考虑(在分类学上最好与致病 菌无关) ?生产特性要符合工艺要求 二、自然界中菌种分离的一般过程(步骤): 土样的采取→预处理→培养→菌落的选择→产品的鉴定. 目的:高效地获取一株高产目的产物的微生物. 三、采样时要注意的问题: 气候、水分、空气;来源要广;结合产品的特点;标签:地点、时间、气候等四、目的微生物富集的一些基本方法 富集的目的:让目的微生物在种群中占优势,使筛选变得可能。 富集的三种方案: ?定向培养:采用特定的有利于目的微生物富集的条件,进行培养。 ?当不可能采用定向培养时,则可设计在一个分类学中考虑, ?不能提供任何有助于筛选产生菌的信息,这时只能通过随机分离的办法. 定向培养的方法 物理方法:加热、膜过滤等但主要是通过培养的方法 定向培养的富集方法 1、底物 2、pH条件 3、培养时间 4、培养温度等一切能提高目的微生物相对生长速度的手段,培养(固体、液体;分批连续)后使目的微生物在种群中占优势。 五、菌落的选出 1.从产物角度出发:在培养时以产物的形成有目的的设计培养基 利用简单、快速的鉴定方法,如抗生素

发酵工程完整版考试复习资料

一、名词解释 1传统发酵工程:通过微生物生长的繁殖和代谢活动,产 的生物反应过程。 将DNA重组细胞融合技术、酶工程技 综合对 发酵过程控制、优化及放大 指迄今所采用的微生物培养分离及培养 微生物。(特别是极端微生物) 4富集培养主要方法:是利用不同种类的微生物其生长繁 求不同,如温度、PH、培养基C/N 等,是目的微生物在最适条件下迅速生长繁殖,数量增加, 成为人工环境下 的优势种。方法:⑴控制培养基的营养成 消毒仅仅是杀死生物体或非生物体表 死营养细胞,而不能杀死细菌芽孢和 真菌孢子等,特别适合与发酵车间的环境和发酵设备、器 具的灭菌处理。灭菌杀灭所 有的生命体,因此灭菌特别适 的灭菌处理。 法及其区别:湿热灭菌法:指将物品置 高压饱和蒸汽、过热水喷淋等手段使微生 物菌体中的蛋白质、核酸发生变性而杀灭微生物的方法。 该法灭菌能力强,为热力灭菌中最有效、应用最广泛的灭 菌方法。药品、容器、培养基、无菌衣、胶塞以及其他遇 高温和潮湿不发生变化或损坏的物品,均可采用本法灭 菌。干热灭菌法:指将物品置于干热灭菌柜、隧道灭菌器 等设备中,利用干热空气达到杀灭微生物或消除热原物质 的方法。适用于耐高温但不宜用湿热灭菌法灭菌的物品灭 菌,如玻璃器具、金 属制容器、纤维制品、固体试药、液 用本法灭菌。 即在规定温度下杀死一定比例的微生物所用 8致死温度:杀死微生物的极限温 在致死 微生物所需要对 的致死时间。 制好的培养基放入发酵罐或其他装置中, 基和所用设备一起(实罐灭菌)进 行灭菌 10连续灭菌:将配制好的培养基向发酵罐等培养装置输 热、保温盒冷却等灭菌操作过程。 是指将 冷冻干燥管,沙土管中处于休眠 状 入试管斜面活化后,再经过摇瓶及种子罐 逐级扩大培养而和质量的纯种的过程 纯培养物称为种是指种子的 龄:是指种子始移入下一级 的培养是指移入的种子液体积和 影响呼吸所能允许的最低溶氧浓 13稀释度D:单位时间内连续连续流入发酵罐中的新鲜 的培养总体积的比值。 把导致菌体开始从系统中洗出时的稀 发酵过程中,引起温度变化的原因是由 于 生的净物在生长 繁殖过程中,本身产生的耗氧培养 的 发酵罐都有一定功率的做机械 运动,造成液体之间、液体与设备之间的摩擦,由此产生 。 依靠无菌压缩空气作为液体的提升力, 翻动实现混合和传质传热过程。其 特点是结构简单,无轴封,不易污染,氧传质效率高,能 耗低,安装维修方便。缺点:不适合高粘度或含大量固体 感菌体的生产。 培养基中某些成分的加入有助于 生长因子、前体。产物抑制和促进剂。 微生物生长不可缺少的微量的有机物质,不是 必需。 18前体:指加入到发酵培养基中能直接被微生物在生 物 到产物分子中去,其自身的结构并没有多 大变化,但是产物的产量却因其加入而有较大提高的一类 那些细胞生长非必需的,但加入 量的一些物质,常以添加剂的形式 20 分批发酵(序批式发酵):指一次性投料、接种直到发 留在发酵罐内。 在发酵过程中,连续向发酵罐流加培养基, 培养液。 搅拌器输入搅拌液体的功率,具 用以客服介质阻力所需用的功 率。 23供氧:指空气中的氧气从空气泡里通过气膜、气液 界 液体主指氧气从液体主流通 内。 生产菌种或选育过程中筛选出来的优良 传代和保藏之后,群体中某些生理特 征和形态特征逐渐减退或完全丧失的 现象。 25氨基酸发酵:指合成菌体蛋白质的氨基酸脱离其正 常 是对产品 使污染物 产生量、流失量和治理量达到最小,使资源充分利用。② 末端治理:把环境责任放在保护研究、管理等人员身上, 产生的污染物的 处理上,总是处于一种被动的、消极的地位。③因为工业 生产无法完全避免污染的产生,推行清洁生产的同时还需 要末端治理。 二、选择填空 1染菌概率:在实际生产过程中,要实现每批次发酵都 完 染几乎是不可能的,一般采用“染菌概率” 一般 为10-3 ①细菌②放线菌③酵母菌④霉菌⑤未培养 采集样品→样品预处理→目的菌富 酵性能鉴定→菌 种保藏 层的微生物数量最多,秋季采土样 物理方法、化学方法、诱饵法。 因突变;直接原因:连续 传 菌种保藏方法:①斜面低温保藏法②砂土管保藏法 ③冷 液保藏法⑥液体 石蜡保藏据微生物生理、生化特点,人为地 于不活泼、生长繁殖受抑制的 持菌种存活率②减少变异③保 持 优良性状 7液氮超低温保藏法:原理:在超低温(-130℃)状态下 延续,且不发生 加保护剂(甘油等)制成菌悬液封于安瓿管内 温速度的冻结后,贮藏在-150~-190℃液氮冰箱内;特 点:适合各类微生物①适合各类微生物②保存时间长③需 特殊设备④操作较复杂 8培养基成分: ①碳源(糖类,导致PH下降;油和脂肪, ,导致PH上升)②氮源(有机、无 量元素④水⑤生长调节物质。 ⑴一般首先是通过单因子实验确定培养基成 因子实验确定培养基个组分及其适宜的浓 度;⑵响应面分析法对培养基进行优化①最陡爬坡实验 10检测染菌方法:镜检查法 ②平板划线培养检 法④发酵过程异常现象观察法(溶 CO 2、粘度)。 种子带菌②过滤空气带菌③设备的 培养基霉菌不彻底⑤操作不当⑥噬 干热灭菌法,湿热灭菌法,射线灭菌法, 除菌法,火焰灭菌法 13空气除菌方法:辐射杀菌,加热杀菌,静电除菌,过 乙醇发酵;部分相关型,中间 复杂发酵类型:抗生 15DO值只是发酵与 配合起OUR: CER:CO2 的 产品的质量和经济效 式、固定化、 指在一定的搅拌转速下,在搅拌罐中增 加而漩涡基本消 18发酵罐构件:搅拌器,挡板,空气分布器,换热装置。 罐的基本体积上升,单位发酵液 清洁生产过程,清洁产品和 理,改进生产工艺,废 20工艺技术改革方式:改变原料,改进生产设备,改革 经济效益,环境效益,社会效 ,反应过程,后 23总成本费用=成本+销售费用+管理费用+财务费用 ①气泡与包围着气泡的液体之 间 体分子处于层流状态,氧气以 浓度差方式透过双膜,任何一点的氧浓度 氧分压相等;② 在双膜之间的界面上,氧分压与溶于液体中的氧浓度处于 平衡状态;③氧传递过程处于稳定状态时,传递途径上各 间而变化。 为了提高分离效率,通常富集培养课增加 数量。 是为了获得大量的活力强的种子,以便 中尽可能的缩短延迟期,种子最好 是在对数生长期接种。 27. S0 为底物初始St为发酵时间为t时底物的 残留 小。 、传热及混合效 30发酵罐放大极限为100级 成本的20% ~30% 32酒精发酵原料:淀粉质原料、糖质原料、纤维质原料。 三、简答 1影响微生物耗氧因素:①微生物本身遗传特征的影响 菌龄④发酵条件⑤代谢类 影响③碳氮比对菌体代谢调节的重要性④ PH对不同 3发酵工艺过程:①用作种子扩大培养及发酵生产的各 种 基、发酵罐及其附属设备的灭菌; ③扩大培养有活性的适量纯种,以一定比例形成大量的代 谢产物;④控制最适的发酵条件使微生物生长并形成大量 的代谢产物;⑤将产物提取并精制,以得到合格的产品; 酵过程中所产生的三废物质。(P8图) ①能在廉价原料制成的培养基上生长,且 生 量高、易于回收;②生长较快,发酵周期 短;③培养条件易于控制;④抗噬菌体及杂菌污染的能力 强;⑤菌种不易变异退化,以保证发酵生产和产品质量的 稳定;⑥对放大设备的适应性强;⑦菌种不是病原菌,不 性物质和毒素。 必须提供合成微生物细胞和发酵产 少培养基原料的单耗,即提高 单位营养物质的转化率。③有利于提高产物的浓度, 以提 高单位容积发酵罐的生产能力。④有利于提高产物的合成 速度,缩短发酵周期。⑤尽量减少副产物的形成,便于产 物的分离纯化,并尽可能减少“三废”物质。⑥原料价格 低廉,质量稳定,取材容易。⑦所用原料尽可能减少对发 酵过程中通气搅拌的影响,利于提高氧的利用率,降低能 ①原材料质量:生产过程中经常 其主要原因在于原材料质量 波动;②培养温度:温度对多数微生物的斜面孢子质量有 显著影响;③湿度:斜面孢子培养基的湿度对孢子的数量 和质量都有较大影响。湿度低,孢子生长快;湿度高,孢 子生长慢;④通气与搅拌:在种子罐中培养的种子除保证 供给易于利用的营养物质外,应有足够的通气量,以保证 菌种代谢的正常,提高种子的质量;⑤斜面冷藏时间:斜 面冷藏时间对孢子的生产能力有较大影响,通常冷藏时间 越长,生产能 力降低越多;⑥培养基:一般来说,种子罐 是培养菌体的,培养基的糖分要少而对微生物生长起主导 作用的氮源要多,而且其中无机氮源所占比例要大些;⑦ pH:各种微生物都有自己生长和合成酶的最适pH,为了 达到微生物的打了繁殖和酶合成的目的,培养基必须要保 ①能在廉价原料制成的培养基上生长,且 生 量高、易于回收;②生长较快,发酵周期 短;③培养条件易于控制;④抗噬菌体及杂菌污染的能力 强;⑤菌种不易变异退化,以保证发酵生产和产品质量的 稳定;⑥对放大设备的适应性强;⑦菌种不是病原菌,不 性物质和毒素。 ①分批作业操作简单,周期短,染菌 程产品质量易控制;②不利于测定其 过程动力学,存在底物限制或抑制问题,出现底物分解阻 遏效应以及二次生长现象;③对底物类型及初始浓度敏感 的次级代谢产物如一些抗生素等就不适合采用分批发酵; ④营养层分很快耗竭,无法维持微生物继续生长和生产; ①添加新鲜培养基,克服养分不足所 延长对数期生长期,增加生物量 等;②长时间发酵,菌种易变异,易染菌;③操作不当, 新加入的培养基与原有培养基不易完 全混合。 10补料分批发酵优缺点:①可以解除底物的抑制,产 物 应;③避免在分批发酵中因 一次性投糖过多造成细胞大量生长,耗氧量过多,以致通 风搅拌设备不能匹配的状况;③菌体可被控制在一 续的过度态阶段,可用来作为控制细胞质量的手段 ①无菌要求低;②菌体变异 11分批补料发酵的应用:①消除分解阻遏作用,保障通 浓度培养基的抑制作用并延 配置合适的培养基,调节培养基初始 使其具有很好的缓冲能力;②培养过程 中加入非营养物质的酸碱调节剂;③培养过程中加入基质 性酸碱调节剂;④加入生理酸性或碱性盐基质;⑤将pH 控制与代谢结合起来,通过补料来控制pH。 13搅拌式、气升式结构特征及其应用:①搅拌式: 带有 机 械搅拌的作用是使发酵液充分混合,保持液体中的固性物 料呈悬浮状态,并能打破空气气泡以提高气液间的传氧速 率。较适合对剪切力生长,不适于高粘度或 含大量固体的培依靠无菌压缩空气作为 液体的提升力,下翻动实现混合和传 质传热过程,特点是结构简单、无轴封、不易污染、氧传 质效率高、能耗低、安装维修方便。 14清洁生产与末端治理 的比较:①清洁生产:是对产品 使污染物 量和治理量达到最小,使资源充分利用。② 把环境责任放在保护研究、管理等人员身上, 产生的污染物的 处理上,总是处于一种被动的、消极的地位。③因为工业 生产无法完全避免污染的产生,推行清洁生产的同时还需 15味精清洁生产工艺优点:①取消离子交换工艺,减少 温结晶,节约大量冷冻 耗电;③因为采用闭路循环工艺,除了副产品中夹带少量 目标产物外,没有其他损失,故产品得率高;④实现物料 主体闭路循环,达到经济、环境和社会效应的三统一;⑤ 冷凝水可循环作为工艺用水,实现废水零排放。

发酵工程复习资料

第一章,绪论 一、填空: 微生物工程可分为发酵和提纯两部分,其中以发酵为主。 化学工程与发酵工程的本质区别在于化学工程利用非生物催化剂,发酵工程利用生物催化剂---酶。 二、判断: 发酵产品是经微生物厌氧生物氧化过程获得的。错 三、课后思考题: 1、发酵的定义:利用微生物的新陈代谢作用,把底物(有机物)转化成中间产物,从而获得某种工业产品。(工业上定义、广义、有氧无氧均可) 2、发酵流程: 3、比拟放大的基本过程:斜面菌种-摇瓶试验(培养基、温度、起始pH值、需氧量、发酵时间)-小型发酵罐-中试-大规模工业生产 4、发酵工程的发展经历了哪几个阶段? 1.)自然发酵时期 2)纯培养技术建立(第一个转折期) 3)通气搅拌的好气性发酵工程技术建立(第二个转折期) 4)人工诱变育种与代谢控制发酵工程技术建立(第三个转折期) 5)发酵动力学、连续化、自动化工程技术的建立(第四个转折期) 6)生物合成和化学合成相结合工程技术建立(第五个转折期) 5、微生物工业发展趋势 1)、几个转变 分解代谢→合成代谢 自然发酵→人工控制的突变型发酵→代谢控制发酵→通过遗传因子的人工支配建立的发酵(如工程菌) 2)、化学合成与生物合成相结合 3)、大型、连续化、自动化发酵 发酵罐的容量可达500t,常用的也达20-30t。 4)、人工诱变育种和代谢控制发酵

微生物潜力进一步挖掘,新菌株、新产品层出不穷。 5)、原料范围不断扩大 石油、植物淀粉、天然气、空气、纤维素、木质素等 6、举例说明微生物工业的范围 酿酒工业(啤酒、葡萄酒、白酒) 食品工业(酱、酱油、食醋、腐乳、面包、酸乳) 有机溶剂发酵工业(酒精、丙酮、丁醇) 抗生素发酵工业(青霉素、链霉素、土霉素等) 有机酸发酵工业(柠檬酸、葡萄糖酸等) 酶制剂发酵工业(淀粉酶、蛋白酶等) 氨基酸发酵工业(谷氨酸、赖氨酸等) 核苷酸类物质发酵工业(肌苷酸、肌苷等) 维生素发酵工业(维生素B12、维生素B2等) 生理活性物质发酵工业(激素、赤霉素等) 名贵医药产品发酵工业(干扰素、白介素等) 微生物菌体蛋白发酵工业(酵母、单细胞蛋白) 微生物环境净化工业(利用微生物处理废水等) 生物能工业(沼气、纤维素等天然原料发酵生产酒精、乙烯等能源物质) 微生物治金工业(微生物探矿、治金、石油脱硫等) 第二章发酵基础知识 1、写出生产以下产品的主要菌种: 啤酒(啤酒酵母)、黄酒(霉菌(根霉、曲霉)、酵母菌、细菌)、味精(谷氨酸棒杆菌、黄色短杆菌)、柠檬酸(黑曲霉)、食醋(霉菌、酵母菌、醋酸菌)、酸奶(乳酸菌(保加利亚乳杆菌、嗜热链球菌、乳酸链球菌)) 2、发酵工艺控制中,主要应监控温度、pH值、溶解氧、 泡沫、氧化还原电位等。 3、概念:单菌发酵: 现代发酵工业中最常见,传统发酵工业中很难实现。 混合菌发酵: 自然发酵和人工接种发酵 液态发酵: 发酵基质呈流动状态,如啤酒发酵、柠檬酸发酵等。 固态发酵: 发酵基质呈不流动状态。如固态酱油发酵、米醋发酵、大曲酒(白酒)发酵等。半固态发酵: 发酵基质呈半流动状态,如黄酒发酵、传统稀醪酱油发酵等。 4、发酵产品主要类型 微生物菌体、代谢产物、酶 5、如何理解:传统工艺,原料决定菌种;现代工艺,菌种决定原料? 传统工艺,原料决定菌种:传统工艺中,发酵原料是一种选择培养基。 传统工艺就是利用这种选择作用,把自然界带入的各种野生菌,在发酵基质上进行选择富集培养,这些微生物生长和代谢的结果可生产出有特殊风味的食品。 现代工艺,菌种决定原料:在使用纯种发酵剂前,我们必须对原料进行灭菌,以防止其他杂菌对发酵的干扰。 6、发酵产品主要有哪些附加值 1)发酵有利于食品保藏食品发酵后,改变了食品的渗透压、酸度、水的活性等,从而抑制了腐败微生物的生长,有利于食品保藏。 2)发酵产品有保健作用有些食品经过微生物发酵后,不仅能产生酸类和醇类等,还能产生某些抗菌素可抑制致病菌和肠内腐败菌。

发酵工程总结

1 绪论 1-1何谓发酵?生物化学和工业上的发酵有何不同? 生物化学意义上的发酵是指细胞在无氧条件下,分解葡萄糖或有机物产生能量的过程。 工业意义上的发酵是泛指利用培养细胞(包括动物、植物和微生物)获得产物的任何有氧或无氧的过程。 1-2何谓发酵工程?其主要内容是什么?请简述其与生物技术的关系。 发酵工程是利用生物体为工业化生产服务的一门工程技术,即利用生物体的生命活动产生的酶,对无机或有机原料进行酶加工(生物反应过程),获得产品的工程化技术。 它是研究生物技术产业化的一门学科,其主体包括生物反应工程和产品提取、精制的下游工程。主要研究内容: 1)优良菌种的选育; 2)合适的生物反应工程包括生物反应过程的优化、反应器的选择和下游工程生物技术是应用自然科学和工程学的原理,依靠生物催化剂(酶或细胞)的作用将物料进行加工以提供产品或为社会服务的技术。它包括基因工程、细胞工程、发酵工程、酶工程、生化工程等五大工程。生物技术的核心是基因工程,但又离不开发酵工程。发酵工程是基因工程和酶工程的表达,即大部分生物工程的产品均要通过发酵工程来完成。所以说,发酵工程在生物工程中是最关键的过程。现代发酵工程处于生物技术的中心地位,绝大多数生物技术的目标都是通过发酵工程来实现的。因此生物技术的主要应用领域往往就是发酵工程的研究对象。 1-3请简述发酵工程的发展史。 1)基因工程出现之前的时代(1982年前); 1859年发现发酵原理、设计了便于灭菌的密闭式发酵罐; 1929,1940年发现和分离出青霉素,青霉素发酵、将通气搅拌引入发酵工业; 1956年谷氨酸等氨基酸、核苷酸等发酵成功、代谢控制育种理论的建立; 60年代采用烷烃、乙酸、天然气等为原料的石油发酵; 2)基因工程出现后的时代(1982年后)。 80 年代随着基因工程技术的发展,人们可定向选育高产菌株; 1991年综述代谢工程,在对细胞内代谢网络系统分析的基础上开始运用基因工程技术改造细胞代谢途径,以改进细胞性能或提高产物生产能力。 组学的发展…… 系统工程和合成生物学…… 1-4 何谓初级代谢和次生代谢?举例说明初级代谢产物和次生代谢产物。 初级代谢:微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的过程称为初级代谢。常见的初级代谢产物有:乙醇、氨基酸、呈味核苷酸、有机酸、多羟基化合物、多糖(黄原胶、结冷胶)、糖类和维生素。

最新发酵工程复习资料重点

发酵工程复习资料重 点

发酵工程(Fermentation Engineering)的定义 应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会服务的一门科学。 淀粉质原料进行蒸煮的目的是使植物组织和细胞膜彻底破裂,淀粉成为溶解状态进行液化;同时对进料进行灭菌;排除原料中的一些不良成分及气味。 为了实现这些目的,蒸煮设备必须达到下列要求: (1)能使淀粉细胞完全破裂,淀粉溶解成均匀的糊状物; (2)尽量减少淀粉和糖分的损耗,避免产生其它不必要的有害的化学变 化; (3)节省蒸汽,减少热损失; (4)设备能承受较高的压力,具有耐磨性,能使物料在锅内充分翻动,受 热均匀; (5)结构简单,操作方便,投资少。 连续蒸煮有低温长时间的罐式连续蒸煮,中温的柱式连续蒸煮和高温短时间的管式连续蒸煮 后熟器 在连续蒸煮中,后熟器是利用经加热器或蒸煮锅(罐)加热后的料液余热,在一定压力和温度下维持一定时间的继续蒸煮,因此,后熟器又称维持器。对后熟器的要求是,料液在后熟器中的整个截面上均匀地由下向上推动,力求做到先进先出。

真空冷却指的是醪液在一定的真空度下(即醪液进入负压状态)醪液本身产生大量蒸气(二次蒸气),并被抽出,这样便消耗了醪液大量的热量,因而醪液很快冷到与真空度相应的温度,这种醪液冷却法就称为真空冷却 糖化设备主要是糖化罐,其容积按1m3的糖化醪需要的1.3m3容积来计算。其旋转方向与冷却水在蛇管中水流的方向相反 ?连续糖化罐的作用是连续地把糊化醪与水稀释,并与液体曲或麸曲乳混 合,在一定温度下维持一定时间,保持流动状态,以利于酶的活动。二级真空冷却的连续糖化法。对蒸煮醪的前冷却和后冷却均采用真空冷却的糖化工艺,叫二级真空冷却糖化法 发酵罐的定义:是为一个特定生物化学过程的操作提供良好而满意的环境的容器。 ?1.按微生物生长代谢需要分类: ?好气:抗生素、酶制剂、酵母、氨基酸,维生素等产品是在好气发酵罐 中进行的;需要强烈的通风搅拌,目的是提高氧在发酵液中的传质系 数; ?厌气:丙酮丁醇、酒精、啤酒、乳酸等采用厌气发酵罐。不需要通气。 ? 2. 按照发酵罐设备特点分类: ?机械搅拌通风发酵罐:包括循环式,如伍式发酵罐,文氏管发酵罐,以 及非循环式的通风式发酵罐和自吸式发酵罐等。

最新发酵工程重点总结

发酵工程重点总结

第一章 发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程发酵工程:利用微生物(或动植物细胞)的特定性状,通过现代工程技术,在生物反应器中生产有用物质的技术体系。该技术体系主要包括菌种选育与保藏、菌种扩大生产、代谢产物的生物合成与分离纯化制备等技术。 发酵工业的特点?(7点) 1.发酵过程一般是在常温常压下进行的生化反应,反应安全,要求条件较简单。 2.可用较廉价原料生产较高价值产品。 3.反应专一性强。 4.能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修饰。 5.发酵过程中对杂菌污染的防治至关重要。 6.菌种是关键。 7.发酵生产不受地理、气候、季节等自然条件限制。 工业发酵的类型? 厌氧发酵 1. 按微生物对氧的不同需求需氧发酵 兼性厌氧发酵 液体发酵(包括液体深层发酵) 2.按培养基的物理性状浅盘固体发酵 深层固体发酵(机械通风制曲) 分批发酵 按发酵工艺流程补料分批发酵 单级恒化器连续发酵 连续发酵多级恒化器连续发酵 带有细胞再循环的单级恒化器连续发酵 发酵生产的基本工业流程? 1. 用作种子扩大培养及发酵生产的各种培养基的配制; 2. 培养基、发酵罐及其附属设备的消毒灭菌; 3. 扩大培养出有活性的适量纯种,以一定比例接种入发酵罐中; 4. 控制最适发酵条件使微生物生长并形成大量的代谢产物; 5. 将产物提取并精制,以得到合格的产品; 6. 回收或处理发酵过程中所产生的三废物质。

工业发酵的过程的工艺流程图? 第二章 1、发酵工业菌种分离筛选的一般流程? 调查研究(包括资料查阅) 试验方案设计 含微生物样品的采集(如何使样品中所含微生物的可能性大?) 样品预处理(如何在后续的操作中使这种可能性实现) 菌种分离 根据目的菌株及其产物特点分 选择性分离方法随机分离方法 (定向筛选←选择压力) (用筛选方案- 检测系统进行间接分离) 富集液体培养固体培养基条件培养 (初筛) 菌种纯化 复筛 菌种纯化 初步工艺条件摸索再复筛生产性能测试 较优菌株1-3株 保藏及进一步做生产试验某些必要试验和 或作为育种的出发菌株毒性试验等 2、菌种选育改良的具体目标。(4点)? 1.提高目标产物的产量

发酵工程考试整理

1发酵:把利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程统称为发酵。 2发酵工程:应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学 酶活性调节:是指一定数量的酶,通过其分子构象或分子结构的改变来调节其催化反应的速率。3为什么要采用高浓度微生物的培养?微生物液体发酵大都采用分批培养,这 种培养方式的缺点 是:发酵液中最终细 胞浓度不高。如果通 过改进工艺技术,使 发酵液中微生物细 胞增殖到很高的浓 度,那么,高浓度的 细胞将会产生高浓 度的发酵产物,这样 就可以大大提高发 酵设备的利用率,降 低生产成本。基于这 种目的,人们开始研 究微生物高细胞浓 度的培养技术。采用 高细胞浓度培养技 术,发酵液中菌体浓 度比分批式培养可 高10倍以上 高浓度细胞培养的 方法:1流加培养2 高细胞浓度连续培 养3菌体循环利用等 4四大工程:发酵工 程 ( Fermentation )2 酶工程 (蛋白质工 程) 3基因工程 4细 胞工程 5菌种:用于发酵过 程作为活细胞催化 剂的微生物,包括细 菌、放线菌、酵母菌 和霉菌四大类。 6具有生产价值的发 酵类型有五种:①微 生物菌体发酵;②微 生物酶发酵;③微生 物代谢产物发酵;④ 微生物的转化发酵; ⑤生物工程细胞的 发酵 7初级代谢产物:在

菌体对数生长期所产生的产物,是菌体生长繁殖所必需的。8液体深层发酵优点:①液体悬浮状态是很多微生物的最适生长环境。②在液体中,菌体及营养物、产物(包括热量)易于扩散,使发酵可在均质或拟均质条件下进行,便于控制,易于扩大生产规模。③液体输送方便,易于机械化操作。④厂房面积小、生产效率高,易进行自动化控制,产品质量稳定。⑤产品易于提取、精制等。因而液体深层发酵在发酵工业中被广泛应用。 9自然选育在生产过 程中,不经过人工处 理,利用菌种的自发 突变而进行菌种筛 选的过程 10诱变育种:就是人 为地利用物理或化 学等因素,使诱变对 象细胞内的遗传物 质发生变化,引起突 变,并通过筛选获得 符合要求的变异菌 株的一种育种方法。 11表型迟延现象:突 变基因的出现并不 等于突变表型的出 现,表性的改变落后 于基因型改变的现 象成为表型延迟现 象。 12原料:从工艺角度 来看,凡是能被生物 细胞利用并转化成 所需的代谢产物或 菌体的物料,都可作 为发酵工业生产的 原料。 13培养基灭菌的定 义:是指从培养基中 杀灭有生活能力的 细菌营养体及其孢 子,或从中将其除 去。工业规模的液体 培养基灭菌,杀灭杂 菌比除去杂菌更为 常用。 14灭菌与消毒的区 别:灭菌:用物理或 化学方法杀死或除 去环境中所有微生 物,包括营养细胞、 细菌芽孢和孢子。 消毒:用物理或化学

生物技术制药试题及重点

第一章绪论 填空题 1. 生物技术制药的特征 _高技术、高投入、高风险、高收益、长周期。 2. 生物药物广泛应用于医学各领域,按功能用途可分为三类,分别是_治疗药物、预防药物、诊断药物。 3. 现代生物药物已形成四大类型:一是应用DNA重组技术制造的基因重组多肽、蛋白 质类治疗剂;二是基因药物_______________ ;三是来自动物植物和微生物的天然生物药 物;四是合成与部分合成的生物药物; 4. 生物技术的发展按其技术特征来看,可分为 三个不同的发展阶段,传统生物技术阶段;近代生物技术阶段;现代生物技术阶段。 5. 生物技术所含的主要技术范畴有基因工程; 细胞工程;酶工程;发酵工程;蛋白质核酸工程和生化工程; 选择题 1?生物技术的核心和关键是(A ) A细胞工程B蛋白质工程C酶工程D 基因工程 2. 第三代生物技术(A )的出现,大大扩大了现在生物技术的研究范围 A基因工程技术B蛋白质工程技术C海 洋生物技术D细胞工程技术 3. 下列哪个产品不是用生物技术生产的(D)A青霉素B淀粉酶C乙醇D氯化钠 4. 下列哪组描述(A )符合是生物技术制 药的特征 A高技术、高投入、高风险、高收益、长周期B 高技术、高投入、低风险、高收益、长周期 C高技术、低投入、高风险、高收益、长周期 D高技术、高投入、高风险、低收益、短周期 5. 我国科学家承担了人类基因组计划(C )的测序工作 A10% B5% C 1% D 7% 名词解释 (2)近代生物技术阶段的技术特征是微生物 发酵技术,所得产品的类型多,不但有菌体的初 级代谢产物、次级代谢产物,还有生物转化和酶 反应等的产品,生产技术要求高、规模巨大,技 术发展速度快。代表产品有青霉素,链霉素,红 霉素等抗生素,氨基酸,工业酶制剂等。 (3)现代生物技术阶段的技术特征是DNA 重 组技术。所得的产品结构复杂,治疗针对性强, 疗效高,不足之处是稳定性差,分离 纯化工艺更复杂。代表产品有胰岛素,干扰素和 疫苗等。 3. 生物技术在制药中有那些应用? 生物技术应用于制药工业可大量生产廉价的防治 人类重大疾病及疑难症的新型药物,具体体现在 以下几个方面: (1)基因工程制药,利用基因工程技术可生 产岀具有生理活性的肽类和蛋白质类药物,基因 工程疫苗和抗体,还可建立更有效的药物筛选模 型,改良现有发酵菌种,改进生产工艺,提供更 准确的诊断技术和更有效的治疗技术等。随着基 因技术的发展,应用前景会更广阔。 (2)细胞工程和酶工程制药 该技术的发展为现代制药技术提供了更强大的技 术手段,使人类可控制或干预生物体初次生代谢 产物和生物转化等过程,使动植物能更有效的满 足人类健康方面的需求。 (3)发酵工程制药 发酵工程制药的发展主要体现在对传统工艺的改 进,新药的研制和高效菌株的筛选和改造等。 第二章基因工程制药 填空题 1. 基因工 程药物制造的主要步骤是:目的 基因的获得;构建DNA重组体;构建工程菌;目 的基因的表达;产物的分离纯化; 产品的检 验。 1. 生物技术制药 采用现代生物技术可以人为的创 造一些条件,借助某些微生物、 植物或动物来生产所需的医学药 品,称为生物技术制药。 2. 生物技术药物 一般说来,采用DNA重组技术 或其它生物新技术研制的蛋白 质或核酸来药物称为生物技术药 物。 3. 生物药物 生物技术药物是重组产品概念在 医药领域的扩大应用,并与天然 药物、微生物药物、海洋药物和 生物制品一起归类为生物生物药 物。 简答题 1.生物技术药物的特性是什 么? 生物技术药物的特征是: (1)分子结构复杂 (2)具有种属差异特异性 (3)治疗针对性强、疗效高 (4)稳定性差 (5)免疫原性 (6)基因稳定性 (7)体内半衰期短 (8)受体效应 (9)多效应和网络效应 (10)检验特殊性 2.简述生物技术发展的不同阶段 的技术特征和代表产品? (1)传统生物技术的技术特征 是酿造技术,所得产品的结构较 为简单,属于微生物的初级代谢 产物。代表产品如酒、醋、乙 醇,乳酸,柠檬酸等。

发酵工程知识点

第一章发酵工程概述 一、发酵工程:是利用微生物特定的形状和功能,通过现代化工程技术生产有用物质或直接应用与工业化生产的技术体系,是将传统发酵与现代的DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的发酵技术。 二、发酵工程简史: 1590 荷兰人詹生制作了显微镜 1665 英国人胡克制作的显微镜观察到了霉菌近代发酵工程建立初期 1864 巴斯德灭菌法 1856 psateur 酵母导致酒精发酵 19世纪末 Koch 纯种分离和培养技术 三、发酵工程技术的特点 (1)主体微生物的特点 ①微生物种类繁多,繁殖速度快、代谢能力强,容易通过人工诱变获得有益的突变株; ②微生物酶的种类很多,能催化各种生化反应 ③微生物能够利用有机物、无机物等各种营养源 ④可以用简易的设备来生产多种多样的产品 ⑤不受气候、季节等自然条件的限制等优点 (2)发酵工程技术的特点 ①发酵工程以生命体的自动调节方式进行,数十个反应能够在发酵设备中一次完成 ②反应通常在常温下进行,条件温和,耗能少,设备简单

③原料通常以糖蜜,淀粉等碳水化合物为主 ④容易生产复杂的高分子化合物 ⑤发酵过程中需要防止杂菌污染 (3)发酵工程反应过程的特点 ①在温和条件下进行的 ②原料来源广泛,通常以糖、淀粉等碳水化合物为主 ③反映以生命体的自动调节形式进行(同(2)①) ④发酵分子通常为小分子产品,但也很容易生产出复杂的高分子化合物 四、发酵工程的一般特征 ①与化学工程相比,发酵工程中微生物反应具有以下特点: 作为生物化学反应,通常在常温常压下进行,没有爆炸之类的危险,不必考虑防爆问题,还有可能使一种设备具有多种用途 ②原料通常以糖蜜、淀粉等碳水化合物为主,加入少量的各种有机或无机氮源,只要不含毒,一般无精制的必要,微生物本身就有选择的摄取所需物质 ③反应以生命体的自动调节方式进行因此数十个反应过程能够像单一反应一样,在称为发酵罐的设备内很容易进行 ④能够容易的生产复杂的高分子化合物,是发酵工业最有特色的领域 ⑤由于生命体特有的反应机制,能高度选择性的进行复杂化合物在特定部位的氧化还原官能团导入等反应 ⑥生产发酵产物的生物物质菌体本身也是发酵产物,富含维生素、蛋白质、酶等有用物质,因此除特殊情况外,发酵液等一般对生物体无害。 ⑦发酵生产在操作上最需要注意的是防止杂菌污染。进行设备的冲洗、灭菌,空气过滤

相关主题