搜档网
当前位置:搜档网 › CURVED OPEN CHANNEL FLOW ON VEGETATION ROUGHENED

CURVED OPEN CHANNEL FLOW ON VEGETATION ROUGHENED

CURVED OPEN CHANNEL FLOW ON VEGETATION ROUGHENED
CURVED OPEN CHANNEL FLOW ON VEGETATION ROUGHENED

124

2012,24(1):124-129

DOI: 10.1016/S1001-6058(11)60226-6

CURV ED OPEN CHANNEL FLOW ON V EGETATION ROUGHENED INNER BANK*

HUAI Wen-xin, LI Cheng-guang, ZENG Yu-hong, QIAN Zhong-dong, YANG Zhong-hua

State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China, E-mail: wxhuai@https://www.sodocs.net/doc/4e994102.html,

(Received October 5, 2011, Revised December 14, 2011)

Abstract: A RNG kε?numerical model together with a laboratory measurement with Micro ADV are adopted to investigate the flow through a 180o curved open channel (a 4 m straight inflow section, a 180o curved section, and a 4m straight outflow section) partially covered with rigid vegetations on its inner bank. Under the combined action of the vegetation and the bend flow, the flow structure is complex. The stream-wise velocities in the vegetation region are much smaller than those in the non-vegetation region due to the retardation caused by the vegetation. For the same reason, no clear circulation is found in the vegetated region, while in the non-vegetation region, a slight counter-rotating circulation is found near the outer bank at both 90o and downstream curved cross-sections. A comparison between the numerical prediction and the laboratory measurement shows that the RNG kε? model can well predict the flow structure of the bend flow with vegetation. Furthermore, the shear stress is analyzed based on the numerical prediction. The much smaller value in the inner vegetated region indicates that the vegetation can effectively protect the river bank from scouring and erosion, in other words, the sediment is more likely to be deposited in the vegetation region.

Key words: RNG kε?numerical model, non-submerged rigid vegetation, bend flow, stream-wise velocities, shear stress

Introduction

Aquatic vegetations usually exist in natural cha- nnels, and they can retard the flow and change the internal flow structure to a certain extent. For this rea- son, the vegetation revetment has now frequently been adopted as an important ecological measure in the river regulation and ecological restoration works.

The flow structures in straight open channels with vegetation were much studied[1-4]. Stone and Shen[5], Li and Shen[6] experimentally studied the flow in straight rectangular channels with vegetation on the whole bed, and found that the vegetation density and arrangement can both affect the velocity distribution. Nezu and Onltsuka[7] investigated flow structures in an open channel partially covered with vegetation by *Project supported by the Natural National Science Foun- dation of China (Grant Nos. 11172218, 10972163, 51079102 and 50979078).

Biography: HUAI Wen-xin (1963-), Male, Ph. D., Professor Corresponding author: ZENG Yu-hong,

E-mail: yhzeng@https://www.sodocs.net/doc/4e994102.html, theoretical analysis and experimental measurement. Huai et al.[8] adopted large eddy simulation to investi- gate the flow characteristics in vegetated open cha- nnels, and they concluded that the vegetation can homogenize the mainstream flow structures both in supercritical and subcritical flow conditions. Kang and Choi[9] used a Reynolds stress model to simulate com- pound open-channel flows through vegetation. Naot et al.[10,11] used an algebra stress model to simulate seve- ral kinds of vegetation flows both in rectangular and compound open channels. Hui et al.[12], Chen and Kao[13], Nehal et al.[14], Pasche and Rouve[15] studied various aspects of flows through vegetation.

Up to now, the straight open channel flows with vegetation have obtained enough research attentions. However, little attention has been paid on the curved ones. This article applies a RNG kε

? turbulence model to simulate the curved open channel flows through partial non-submerged rigid vegetation, and the impacts of the non-submerged rigid vegetation both on the flow structures and the wall shear stresses are investigated in detail. To validate the model, the calculated results are compared with the experimental data.

125

1. Model description 1.1 Physical experiment

The experiment was conducted in a 180o curved Plexiglas flume, 1 m wide, 0.25 m deep, and consi- sting of a 4 m straight inflow section, a 180o curved section, and a 4 m straight outflow section. The discha- rge is 0.03 m 3/s and the water depth measured at the end of the channel is 0.148 m. Reinforcing steel bars were used to simulate the natural vegetation, and its diameter and height are 0.006 m and 0.15 m, respe- ctively. A 0.25 m wide band along the inner bank was planted perpendicularly with the artificial vegetation, and the interval size is 0.05 m. The sketch of this experiment is shown in Fig.1.

Fig.1 Sketch of experimental arrangement

Table 1 Radial layout of measuring lines on each cross-

section

Number of measuring lines

Radius (m)

a 1.55

b 1.65

c 1.75

d 1.85

e 2

f 2.15

g 2.3

h 2.45

Fig.2 Grid arrangement

The 3-D Doppler ultrasound anemometer was used to measure the flow velocities on 5 typical cross-

sections (0o , 45o , 90o , 135o , 180o °cross-section, res- pectively), and 8 vertical measuring lines (Table 1) were arranged on each cross-section. The experi- mental data are derived from detailed high-resolution measurements of the three velocity components on each measuring line. The sampling time is 60 s at each measuring point, and the sampling rate is as high as 50 Hz to ensure the measurement accuracy. 1.2 Mathematical model

The RNG k ε? turbulence model is obtained from the Navier-Stokes equations, using a statistical RNG methods. The main governing equations are as follows:

Continuity equation

=0i

i

u x ?? (1)

Momentum equation +=+i j i i i j j i j

j u u u u 1p

u u t x ?x x x ν§·

?????′′??¨?¨???????1

(2)

k ε? equation

+=+t i

i i j i i

k i j u k k k u u u ?t x x ?x x ννao§·????

?′′????¨?

????????1??(3)

+=+t i i i

?i u t x x ?x νεεενao§·???

?????¨????????1??

2

12

i i j j

u c u u c k x k ε

ε?′′?? (4) where ρ is the density of the fluid, u is the temporal average velocity, p is the pressure, ν is the kinematic viscosity, k and ε are the turbulent

kinetic energy and the dissipation rate, respectively.

i j u u ′′? stands for the Reynolds stress tensor, 2=+

3j

i i j t ij j i u u u u k?x

x ν§·??′′??¨?¨????1

,2=?t c k νε,=0.0845c μ,==0.07179k εσσ,2=1.68c ,

013

1=1.421+c ηηβη§

·

?

¨??

1

?

,=Sk ηε,()12=2ij ij S S S ,

1=

+2j

i ij j i u u S x x §·

??¨?¨????1

,0=4.38η, =0.012

β

126

Fig.3 Comparison between the calculated and measured vertical distributions of the stream-wise velocity

127 Fig.4 Comparison of secondary flow structures between the measured and calculated results on 5 cross-sections

1.3 Calculation method

The calculation domain is the same as the experi- mental one in length and width, while the calculation height is 0.2 m. In the vegetation region, unstructured grids are used. The interval dimensions are about 0.004 m in longitude and latitude, and 0.0125 m in the vertical direction and the cylinder is meshed into regu- lar hexagons (Fig.2). In the non-vegetation region, structured grids are used, with the interval dimensions of 0.01 m in longitude and latitude, and 0.0125 m in the vertical direction. The total grid number is about 7.5×106.

The Volume Of Fluid (VOF) model is used to solve the free surface. The mass flow inlet condition is imposed on the inflow boundary, and the pressure out- let condition is imposed on the outlet and the upper boundary. For sidewall, bed wall and cylinder wall, no-slip wall boundary condition is used. Finite volume method is used to discretize and solve the governing equations. The SIMPLE-Consistent (SIMPLEC) algo- rithm is used for the pressure-velocity coupling at each time step/iteration. When the residuals are less than 1×10–4 for the continuity equation and 1×10–6 for other equations, the convergence is assumed to be rea- ched.

2. Results and discussions

2.1 Distribution of stream-wise velocity

The calculated and measured vertical distribu- tions of the stream-wise velocity on five typical cross-

sections are shown in Fig.3. For each cross-section,

128

the velocity profiles for four lateral locations, one in the vegetated region (b), and the other three in the nonvegetated region ((d), (e), (g)) are compared.

In Fig.3, it can be seen that, under the retard effect of vegetation, the velocities on line (b) (in the vegetation region) are much smaller than those on lines ((d), (e), (g)) (in the non-vegetation region). Along the stream-wise direction, the velocities in the vegetation region decrease while heading downstream, reach the minimum at the 135o cross-section. There appears a small bounce at the 180o cross-section, which can be ascribed to the fact that the weakening of the transverse circulation in the non-vegetation region makes the transverse distribution a bit more homogeneous (see Fig.3). In the non-vegetation region, the vertical distributions of velocity at the entrance of the curve are “J” shaped approximately, while heading downstream, the maximal velocity is gradually shifted to the flume bed. The reason may be that the main circulation in the curve changes the inte- rnal flow structures, and the velocity distribution varies accordingly.

2.2 Secondary flow structures

Figure 4 shows a comparison of secondary flow structures between measured and calculated results on these five typical cross-sections. The dotted line repre- sents the interface between the vegetation region and the non-vegetation region. The predictions in the cur- ved reach agree well with the measured data, while in the inlet and outlet reaches of the curve, there are some discrepancies. The possible reason may be that the flow conditions are very complex and varying rapidly at the interface of the straight and curved rea- ches.

In the vegetation region, no clear circulation is found in the whole region, while in the non-vegetation region, under the combined effect of the centrifugal force, and the pull of gravity and vegetation, lateral flows toward the outer bank are generated at the entra- nce of the curve (0o), but no circulation forms. At the 45o cross-section, a circulation is fully formed and reaches the maximum in the transverse range. Then the scale gradually decreases and finally disappears at the outlet of the curve. Besides the primary circulation, a small counter-rotating circulation is generated near the outer bank of the 90o cross-section, and reaches the maximum both in length and scale at the 135o cross-section and remains at the outlet of the curve. These phenomena can not be clearly seen in the experiment for it is difficult to decide adequate mea- suring points. The existence of the outer bank circula- tion may partly explain why the primary circulation is downscaled in the downstream part of the 45o cross-section.

2.3 Wall shear stresses

The wall shear stresses play an important role in the process of sediment transport and erosion. Distri- butions of sidewall shear stresses and bed wall shear stresses on 5 cross-sections based on the RNG predi- ction are shown in Fig.5 and Fig.6, respectively.

Fig.5 Wall shear stresses on the inner on 5 cross-sections

Fig.6 Bed wall shear stresses on 5 cross-sections

In Fig.5, it can be seen that the wall shear stre- sses reach a local minimum both at the channel bed and the water surface. In the straight reach, influenced by the vegetation, the inner bank shear stresses are smaller than the outer ones, while according to Van Balen et al.[16], in the straight reach of a curved open channel without vegetation, the distribution and the magnitude of the bank shear stresses are quite the same for the inner bank and the outer bank . In the curved reach, the outer bank shear stresses increase gradually, while the inner bank shear stresses decrease gradually and a small bounce appears at the outlet (the 180o

cross-section) of the curve, which is similar to

129

the variation trend of the stream-wise velocity distri- bution. The inner bank shear stresses reach approxi- mately 0.1 times of the outer bank ones in the down- stream part of the curve, while for the non-vegetated channel, according to Van Balen et al.[16], the inner bank shear stresses reach about 0.4 times of the outer bank ones in the downstream part of the curve. So it is concluded that the vegetation can effectively protect the river bank from scour and erosion.

In Fig.6, the bed shear stresses in the vegetation region are much smaller than those in the non-vege- tation region, since velocities in the vegetation region are very small under the retard effect of vegetation. It can be concluded that the sediment is more likely to be deposited in this region. The variation trend in this region is similar to that of the stream-wise velocities along the curve. In the outer bank, the bed shear stre- sses are greatly increased in the downstream reach due to curvature.

3. Conclusions

A RNG kε

?numerical model together with a laboratory measurement with Micro ADV are adopted to investigate the curved open channel flow through partial non-submerged rigid vegetation. The effects of vegetation and bend curvature on the flow structures and the wall shear stresses are analyzed. Main findings are as follows:

(1) The RNG kε

?model can well predict the structure of the curved open channel flow through partial non-submerged rigid vegetation.

(2) Under the combined effect of vegetation and bend curvature, the stream-wise velocities in the vege- tation region are much smaller than those in the non- vegetation region, and a slight counter-rotating circu- lation is found near the outer bank at both 90o and downstream curved cross-sections in the non-vegeta- tion region.

(3) The result about the wall shear stresses indi- cates that the vegetation can effectively protect the river bank from scour and erosion. Nevertheless, since the bed shear stresses in the vegetation region are much smaller than those in the non-vegetation region, the sediment is more likely to be deposited in the vegetation region.

References

[1] LARMAEI M. M., MAHDI T. F. and GASKIN S.

Vegetation and shallow water hydraulics[C]. 33rd

IAHR Congress: Water Engineering for a Sustai-

nable Environment. Vancouver, Canada, 2009, 978-

94.[2] STOESSER T., SALVADOR G. and RODI W. et al.

Large eddy simulation of turbulent flow through subme-

rged vegetation[J]. Transport in Porous Media, 2009,

78(3): 347-365.

[3] KOTHYARI U. C., HAYASHI K. and HASHIMOTO

H. Drag coefficient of unsubmerged rigid vegetation

stems in open channel flows[J]. Journal of Hydraulic

Research, 2009, 47(6): 691-699.

[4] J?RVEL? J. Determination of flow resistance caused

by non-submerged woody vegetation[J]. International

Journal of River Basin Management, 2004, 2(1): 61-

70.

[5] STONE B. M., SHEN H. T. Hydraulic resistance of

flow in channels with cylindrical roughness[J]. Journal

of Hydraulic Engineering, 2002, 128(5): 500- 506. [6] LI R. M., SHEN H. W. Effect of tall vegetations on

flow and sediment[J]. Journal of the Hydraulics Divi-

sion, 1973, 99(5): 793-814.

[7] NEZU I., ONITSUKA K. Turbulent structures in partly

vegetated open-channel flows with LDA and PIV mea-

surements[J]. Journal of Hydraulic Research, 2001,

39(6): 629-641.

[8] HUAI Wen-xin, WU Zhen-lei and QIAN Zhong-dong

et al. Large eddy simulation of open channel flows with

non-submerged vegetation[J]. Journal of Hydrodyna-

mics, 2011, 23(2): 258-264.

[9] KANG H., CHOI S. U. 3D numerical simulation of

compound open channel flows with vegetated flood-

plains by Reynolds stress model[C]. The 2004 World

Water and Environmental Resources Congress. Salt

Lake City, Utah, USA, 2004, 1408-1417.

[10] NAOT D., NEZU I. et al. Unstable patterns in partly

vegetated channels[J]. Journal of Hydraulic Enginee-

ring, 1996, 122(11): 671-673.

[11] NAOT D., NEZU I., NAKAGAWA H. Hydrodynamic

behavior of partly vegetated open channels[J]. Journal

of Hydraulic Engineering, 1996, 122(11): 625-633. [12] HUI Er-qing, HU Xing-e and JIANG Chun-bo et al. A

study of drag coefficient related with vegetation based

on the flume experiment[J]. Journal of Hydrodyna-

mics, 2010, 22(3): 329-337.

[13] CHEN Y. C., KAO S. P. Velocity distribution in open

channels with submerged aquatic plant[J]. Hydrologi-

cal Processing, 2011, 25(13): 2009-2017.

[14] NEHAL Laounia, YAN Zhong-min and XIA J i-hong.

Study on the flow of water through non-submerged

vegetation[J]. Journal of Hydrodynamics, Ser. B,

2005, 17(4): 498-502.

[15] PASCHE E., ROUVE G. Overbank flow with vegeta-

tively roughened flood plains[J]. Journal of Hydraulic

Engineering, 1985, 111(9): 1262-1278.

[16]Van BALEN W., UI

J

TTEWAAL W. S.

J

., BLANCKAERT K. Large- eddy simulation of a mildly

curved open-channel flow[

J

]. Journal of Fluid Mechanics, 2009, 630: 413- 442.

《可可.香奈儿的传奇一生》笔记

《可可.香奈儿的传奇一生》 香奈儿(1883-1971,88岁)传记——(英)贾斯迪尼.皮卡蒂著(郭昌京等译) 南宁〈广西科学技术〉2011.11(硬皮精装16开/共335页/68元) 作者简介:(英)贾斯迪尼.皮卡蒂:英国著名传记作家。本书为应香奈儿公司之邀,特地为纪念香奈儿女士诞辰128周年而写。为香奈儿公司唯一官方授权传记,纪念诞辰128周年珍藏版,近200张照片。英国国家图书馆奖提名作品。 作为享誉全球的时尚女性,20世纪最杰出的时装大师之一,小黑裙的设计师,5号香水的缔造者,简约中透出奢华的香奈儿品牌的创始人,可可.香奈儿,这位时尚领袖对世人始终像个谜。

本书在实证调查基础上,以详实而优美的笔触揭开香奈儿传奇的一生——从孤寂的童年到在奥巴辛修道院度过的少女时期,从籍籍无名的小裁缝到一时无两的时尚女王,从两次世界大战时期的坎坷流离到最终病逝在巴黎丽兹饭店。生命逝去,但传奇永存。 {前言} 推介 ——她说:“我也曾为爱痛哭,但我现在不会了。当一个人不再相信幸福,就不会再哭泣。” ——艺术家:墨菲夫妇的人生座右铭:“活得好就是对敌人的最佳报复。”

{时尚观点} ——著名标志:狮子头(其星座);山茶花;星星图案;双C标志 ——别墅的基调似乎就是坚持不用任何矫饰,该有的都有了,每样东西都非常完美,没有一件华而不实多余的东西。设计拥有最大的私密性,也让来宾享有最大程度自由。——她向莫朗一再强调自己的审美信条,说:“女人对每个颜色都跃跃欲试,除了无色之色。我早就说,黑色包容一切,白色亦然,它们的美无懈可击,绝对和谐。在舞会上,身穿黑色和白色的女子永远都是焦点。”经典的小黑裙没有随“怒吼的20年代”结束而完全消失,加长版白纱礼服的诞生,也不是为1929年10月股市的崩溃默哀。1933年,发布了整个以白色演绎的春季系列。 香奈儿的床单始终是朴实无华的白色

香奈儿品牌形象分析范文

香奈儿品牌形象分析 香奈儿品牌简介 ?公司名称:香奈儿 ?外文名称:CHANEL ?总部地点:法国巴黎 ?成立时间:1910年 ?经营范围:高端皮包香水生产 ?创始人:Gabrielle Chanel 香奈儿chanel品牌简介 ?创始人Gabrielle Chanel香奈儿于1913年在法国巴黎创立香奈儿品牌。香奈儿的产品种类繁多,有服装、珠宝饰品及其配件、化妆品、香水,每一种产品都闻名遐迩,特别是她的香水与时装。香奈儿(CHANEL)是一个有80多年经历的著名品牌,香奈儿时装永远有着高雅、简洁、精美的风格,她善于突破传统,早20世纪40年代就成功地将“五花大绑”的女装推向简单、舒适,这也许就是最早的现代休闲服。 ?香奈儿的标志CHANEL“香奈儿”这个品牌是一个美丽而非凡的法国女子加布瑞卡·香奈儿(Gabrielle Chanel)创立并以她的名字命名的缩写。该标志就是香奈儿的爱称“可可”(coco)中两个字母“C”的组合。 ?双C的标志体现了高雅、简介、精美、崇尚自由的风格。 ?“香奈儿”对整个世纪来说是“经典”是“永远的时尚和个性”,更是一个“浪漫的传奇”。 品牌故事简介 ?一个有90多年经历的著名品牌,香奈儿时装永远有着高雅、简洁、精美的风格,她善于突破传统,早40年代就成功地将“五花大绑”的女装推向简单、舒适,这也许就是最早的现代休闲服。 ?香奈儿最了解女人,香奈尔的产品种类繁多,每个女人在香奈尔的世界里总能

找到合适自己的东西,在欧美上流女性社会中甚至流传着一句话“当你找不到合适的服装时,就穿香奈儿套装”。 ?香奈儿一生都没有结婚,她创造伟大的时尚帝国,同时追求自己想要的生活,其本身就是女性自主最佳典范,也是最懂得感情乐趣的新时代女性。她和英国贵族ETIENNE BALSAN来往,对方资助她开第一家女帽店,而另一位ARTHUR CAPEL 则出资开时尚店;她与西敏公爵一同出游,启发设计出第一款斜纹软呢料套装;生命中每一个男性都激发创意的泉源,她不是单靠幸运,而是非常努力认真的工作! 甚至一直到70多岁的高龄她都还复出视事。香奈儿集团在1983年由Karl Lagerfeld 出任时尚总监,但至今每一季新品仍以香奈儿精神为设计理念。 品牌定位及差异化 ?品牌定位: ?年龄层:25-38 准确的说它部分经典款适用更大年龄跨度 ?风格:法式奢华 ?气质:高雅简洁时尚创新 ?市场:大部分为独立旗舰店,部分高端酒店商场一线品牌。 ?差异化: ?货品组合:服装,饰品各一半。看店铺所在区域调整比例,坚持基本款的出洋。 ?终端形象:简洁,注重细节设计。坚持玻璃装置面板设计不变,内部材料的特殊性。终端建设—集中于富甲名流聚集的地方 ?终端销售是品牌、产品和所有的努力转换为价值的最后一关,良好的终端建设有助于产品的展示与销售。香奈儿5号香水在终端建设方面非常的重视,选择更是严谨和准确。为了更好的针对和吸引目标消费群,更大量的促进香奈儿5号香水的整体销售,特将其终端专柜、专店等开设在高档百货、五星级酒店、高级会所等富甲名流聚集的地方,而一般的场所则难以寻觅到香奈儿5号香水的芳踪。为何要这样操作呢是因为香奈儿5号香水围绕着本品牌的定位、所要传达的品牌核心价值所进行决定和选择的。 事实上,以品牌为中心走特色的、适于自己发展的终端建设道路能减少企业或品牌的

香奈儿传奇

“香奈儿传奇”演讲稿 第一部分:引言 上个世纪五十年代,法国人戏称皮雅芙的歌曲、萨冈的小说和香奈儿五号是法国三大重要出口商品。如今皮雅芙的歌曲成为了怀旧的经典,萨冈和她的小说亦化为不朽的传奇,陈列在了历史的走廊之中。只有香奈儿的名字依然站在时尚的前沿,激荡着一代又一代女人的青春梦想。无怪乎对于很多人来说,香奈儿是优雅的代名词。 香奈儿是怎样的一个女人?她是怎样走上历史的舞台,用自己的方式为人们解释优雅的含义? “香奈儿”这三个字早已不再只是可可小姐的姓氏了。在人们的心目中,“香奈儿”连同她的两个双C字相紧扣的标志早已成为了“优雅”、“魅力”的代名词。环绕在“香奈儿”身边的不仅是可以闻到的香水味道、可以看见的服装以及可以触摸到的服装质感,更重要的是,在人们的心中,“香奈儿”已经成为了他们认识“优雅”,解读“美丽”的一部分。在问及人们什么是“优雅”的时候,也许人们不能准确地描述词汇的含义,但是他们脑海中会呈现出香奈儿的样子。 是什么成就了这么一个女人,她的优雅从何而来? 在细细品味之后,我们能渐渐的悟出,原来是香奈儿的生活时尚态度塑造了她的优雅、她的美丽。 第二部分:品牌概述(略) 注册地:法国巴黎(1910年) 创建年代:1910年 品牌价值:56亿美元 品牌销售额:33亿美元 Coco Chanel的口头禅:“流行稍纵即逝,风格永存”依然是品牌背后的指导力量。 香奈儿逝世后,1983年起由设计天才卡尔拉格菲尔(KARL LAGERFELD)接班。Marylin Monroe喜欢裸睡,而Chanel No.5在床上唯一的穿着。可见Chanel No.5的魅力之大。 香奈儿女士最特别之处在于实用的华丽,她从生活周围撷取灵感,尤其是爱情。 Chanel提供了具有解放意义的自由和选择,将服装设计从男性观点为主的潮流转变成表现女性美感的自主舞台。 Coco Chanel一手主导了二十世纪前半叶女人的风格、姿态和生活方式,一种简单舒适的奢华新哲学,正如她生前所说:“华丽的反面不是贫穷,而是庸俗”。 第三部分:人物简介 Part.1人生际遇&爱情故事 “冷酷的女商人”、“天才设计师”、“难相处”、“自私”、“独来独往”、“工作狂”、“贵妇人之最”、“钟爱高卢烟”……这些修饰词使得可可·香奈儿俨然成了千面女郎。 她厌恶陈腐和传统,因此用自己的思想创造了一个时代。 她一生的崛起、名利、成就、遭遇都与男人有着不解之缘,但她却终身未嫁。 这位来自浪漫法兰西的卓越的女性时尚领袖,凭借其超越极限的创造力成为启动时尚革命的设计先锋。 她的指间永远夹着一支香烟,下巴永远高傲地抬起,眼睛里永远有无尽的激情。黑色是她的灵魂,精彩是她的标签,简约和优雅是她对时尚和奢华的诠释。她是一个永远保持活力和年

CHANEL香奈儿企业宣传手册

CHANEL品牌创立之初的设计风格和现代主义设计有着不解之缘香奈尔的第一家商店于1910年 在巴黎康朋街(Cambon)21 号开张了, 接着于1913年在多维尔开了一 家流行女装商店, 于1915年开了一家女式时装屋。 接着, 她于1918年将康朋街的总店搬到31号。创业经历 开设女帽店初露锋芒香奈尔的事业是从“头“做起,开设女帽店开始她不平凡的一生。香奈尔的女帽简洁、大方,尤其是硬草帽和圆顶狭边的钟形帽,受到她朋友和市场的欢迎,当时波烈式的羽毛头饰和大团帽正渐渐成为过去。打破传统的第一款“香奈尔”装 1913年,香奈尔到法国南部的滨海胜地杜维尔开设第一家时装店。推出第一种女装款式:针织羊毛运动装,

作为妇女户外活动的休闲装。香奈尔以这种源于板球运动装的简朴造型奉献给时装界,颇遭人非议,但她无视舆论,在杜维尔常常穿着这样的羊毛衫,配上简单的褶裙,骑马散步,招摇过市,表现了香奈尔的强烈个性,女人不再是男人的“花瓶“,同样是担负社会重任的公民。她把水手装和水手裤替代女长裙;她用质地薄软的内衣面料,创作出诺曼地渔夫式的套装;她往往把男装稍加修改,饰以一个恰到好处的饰针,便成为新颖的女时装。香奈尔的创造力是具有爆炸性的,她本人的衣着举止亦为世风之源。据说,有一次天气骤冷,香奈尔借了情人的马球套衫,束了腰,卷起袖,潇洒、迷人,这种偶尔的装束竟成为时髦一时的“香奈尔”装,被人竞相模仿。战争给杜维尔带来更多的阔佬,也使香奈尔的时装店扩展成大公司。香奈尔,终于闯入了法国时装界这个高傲无情的领地,她的时装和她本人一样销魂蚀骨地迷住了那个时代。彻底改变时装概念 1919年,战争结束时她已是出名的时装师了。她主张造型线简洁、朴实、舒适自如、色彩单纯、素雅,她喜欢黑、白两色,她的两件套装,被视为经久不衰的时代风格。 CHANEL经典在今天,如果说有哪个品牌能得到一家三代------祖母、母亲、女儿的同时钟爱,那首先应该是CHANEL。CHANEL对整个时装界来说是经典,是“永远的时尚和个性”,更是一个“浪漫传奇”。 Chanel Chanel Chanel CoCo Chanel 生平原名:Gabrielle Chanel 1883年8月5日出生于法国 1895,丧母,被送去一所孤儿院 1905,在咖啡馆中任歌手 1908,在巴黎开设第一家帽子店 1912,在Deauville开了

香奈儿的秘密情史 观后感

《香奈儿的秘密情史》观后感 姓名朱珈萱 专业艺术设计 学号2010443898 得分 2012年5月17日

《香奈儿的秘密情史》观后感 摘要:可可·香奈儿,流芳百世的一代名媛,她在事业上的成功被世人叹服,但她的情感生活却充满迥异色彩,她几乎一生都在追寻爱情,那么多的贵族富豪都拜倒在石榴裙下,她却终身未嫁。影片讲述了香奈儿传奇人生中所经历过的最炙热的一段恋情,通过人物的性格塑造及外部场景艺术的渲染,给我们展现了一个真实的世界女强人对事业的执着,对艺术的追求和在感情上希望得到尊重的真诚。也许此片不一定恢弘,不一定深刻,不一定唯美,但从此片中我们可以看到一个时尚教主香奈儿的影子,感受她作为一个女性的独立、坚强、淡定。 关键词:香奈儿;艺术;爱情;道德;音乐 前言 香奈儿作为国际知名品牌,拥有相当久远的历史及广阔的市场。影片讲述了香奈儿传奇人生中所经历过的最炙热的一段恋情,通过人物的性格塑造及外部场景艺术的渲染,给我们展现了一个真实的世界女强人对事业的执着,对艺术的追求和在感情上希望得到尊重的真诚。影片名为《香奈儿秘密情史》其实她的情史没有秘密可言,几乎每一桩情事都轰轰烈烈,尽人皆知,本片描述了她和著名音乐家斯特拉文斯基的一段恋情,而在香奈儿的情史中,这段恋情就似蜻蜓点水,并不重要,但却最具戏剧性,她要在道德与爱情之间做出选择。 正文 1913年的巴黎,可可·香奈儿在俄国作曲家伊戈尔·斯特拉文斯基(的《春之祭》首演中首次注意到了这位被观众的嘘声与喧哗沉重打击的音乐天才。七年后,二人再次相遇,可可慷慨邀请因俄国革命而流亡法国的伊戈尔携乐评人妻子卡特琳娜和四名子女搬入自己在巴黎郊外的府邸。与此同时,可可也在积极研发自己品牌的香水。 影片对香奈儿的性格塑造是成功的,从影片开始她冲动的用剪刀剪开紧裹腰身的束身衣,就表现了她独立而强悍的性格特点,她美丽,身材修长,气质高贵典雅,动作却有男人般的洒脱,说话办事果断精明,特别是那一双清澈的大眼睛,实时闪现犀利的目光,却又能飘出缕缕柔情,相信没有男人不会为之心动。 音乐对女人的诱惑是浪漫的,而音乐人的诱惑更充满甜美,这对居于同一幢房中的香奈儿和斯特拉文斯基的爱情发展顺理成章,虽然他多病的妻子就住在旁

相关主题