搜档网
当前位置:搜档网 › 无刷直流(BLDC)电机的构造原理及电源控制方案

无刷直流(BLDC)电机的构造原理及电源控制方案

无刷直流(BLDC)电机的构造原理及电源控制方案
无刷直流(BLDC)电机的构造原理及电源控制方案

半导体器件应用网

https://www.sodocs.net/doc/471259396.html,/news/190158_p2.html 无刷直流(BLDC)电机的构造原理及电源控制方案

【大比特导读】无刷直流(Brushless Direct Current,BLDC)电机是一种正快

速普及的电机类型,它可在家用电器、汽车、航空航天、消费品、医疗、工业

自动化设备和仪器等行业中使用。

引言

无刷直流 (Brushless Direct Current, BLDC)电机是一种正快速普及的电机类型,它

可在家用电器、汽车、航空航天、消费品、医疗、工业自动化设备和仪器等行业中使用。

正如名称指出的那样, BLDC 电机不用电刷来换向,而是使用电子换向。BLDC 电机和

有刷直流电机以及感应电机相比,有许多优点。其中包括:

?更好的转速-转矩特性

?快速动态响应

?高效率

?使用寿命长

?运转无噪音

?较高的转速范围

此外,由于输出转矩与电机体积之比更高,使之在需要着重考虑空间与重量因素的应

用中,大有用武之地。在本应用笔记中,我们将详细讨论 BLDC 电机的构造、工作原理、

特性和典型应用。描述 BLDC 电机时常用术语的词汇表,请参见附录 B:“词汇表”。

构造和工作原理

BLDC 电机是同步电机中的一种。也就是说,定子产生的磁场与转子产生的磁场具有相

同的频率。BLDC 电机不会遇到感应电机中常见的“差频”问题。BLDC 电机可配置为单相、

两相和三相。定子绕组的数量与其类型对应。三相电机最受欢迎,使用最普遍。本应用笔

记主要讨论三相电机。"

BLDC 电机的定子由铸钢叠片组成,绕组置于沿内部圆周轴向开凿的槽中 (如图 3 所示)。定子与感应电机的定子十分相似,但绕组的分布方式不同。多数 BLDC 电机都有三

个星型连接的定子绕组。这些绕组中的每一个都是由许多线圈相互连接组成的。在槽中放

置一个或多个线圈,并使它们相互连接组成绕组。沿定子圆周分布这些绕组,以构成均均

匀分布的磁极。

有两种类型的定子绕组:梯形和正弦电机。以定子绕组中线圈的互连方式为依据来区分这两种电机,不同的连接方式会产生不同类型的反电动势 (Electromotive Force,EMF)。更多信息,请参见“反电动势的定义”。正如它们的名称所示,梯形电机具有梯形的反电动势,正弦电机具有正弦形式的反电动势,如图 1 和图 2 所示。除了反电动势外,两类电机中的相电流也有梯形和正弦之分。这就使正弦电机输出的转矩比梯形电机平滑。但是,随之会带来额外的成本,这是因为正弦电机中线圈在定子圆周上的分布形式会使绕组之间有额外的互连,从而增加了耗铜量。

根据控制电源的输出能力,选择定子的额定电压合适的电机。48 伏或更低额定电压的电机适用于汽车、机器人和小型机械臂运动等应用。 100 伏或更高额定电压的电机适用于家用电器、自动化和工业应用。

转子

转子用永磁体制成,可有 2 到 8 对磁极,南磁极和北磁极交替排列。

要根据转子中需要的磁场密度选择制造转子的合适磁性材料。传统使用铁氧体来制造永磁体。随着技术的进步,稀土合金磁体正越来越受欢迎。铁氧体比较便宜,但缺点是给定体积的磁通密度低。相比之下,合金材料单位体积的磁场密度高,生成相同转矩所需的体积小。同时,这些合金磁体能改善体积与重量之比,比使用铁氧体磁芯的同体积电机产生的转矩更大。稀土合金磁体有钕 (Nd)、钐钴 (SmCo)以及钕铁硼铁氧体合金 (NdFeB)等。进一步提高磁通密度,缩小转子体积的研究仍在持续进行中。

图 4 展示了转子中不同磁体排列的横截面。

霍尔传感器

和有刷直流电机不同,BLDC 电机的换向是以电子方式控制的。要使 BLDC 电机转动,必须按一定的顺序给定子绕组通电。为了确定按照通电顺序哪一个绕组将得电,知道转子的位置很重要。转子的位置由定子中嵌入的霍尔效应传感器检测。

多数 BLDC 电机在其非驱动端上的定子中嵌入了三个霍尔传感器。

每当转子磁极经过霍尔传感器附近时,它们便会发出一个高电平或低电平信号,表示北磁极或南磁极正经过该传感器。根据这三个霍尔传感器信号的组合,就能决定换向的精确顺序。

注:霍尔效应原理:磁场会对位于其中的带电导体内运动的电荷载流子施加一个垂直于其运动方向的力,该力会使正负电荷分别积聚到导体的两侧。这在薄而平的导体中尤为明显。电荷在导体两侧的积累会平衡磁场的影响,在导体两侧建立稳定的电势差。产生这一电势差的过程就叫做霍尔效应,由 E. H. Hall 在 1879 年发现。

图 5 展示了 BLDC 电机的横截面,转子具有相互交替的南北永磁体磁极。霍尔传感器嵌入在电机的静止部分中。将霍尔传感器嵌入定子的过程很复杂,因为这些霍尔传感器相对转子磁体的位置稍有不对齐,都会在判断转子位置时造成错误。为了简化在定子上安装霍尔传感器的过程,有些电机可能除了主转子磁体外,还在转子上安装霍尔传感器磁体,它们的体积比转子磁体小。每当转子转动时,霍尔传感器磁体就会产生和主磁体一样的效果。霍尔传感器通常装在 PCB 电路板上,固定在非驱动端的外壳盖上。这使得用户可以整体调整所有的霍尔传感器,以便与转子磁体对齐,从而获得最佳性能。

根据霍尔传感器的位置,有两种输出。霍尔传感器输出信号之间的相移可以是 60度或120度。电机制造商据此定义控制电机时应遵循的换向顺序。

工作原理

每次换向,都有一个绕组连到控制电源的正极 (电流进入绕组),第二个绕组连到负极(电流从中流出),第三个处于失电状态。转矩是由定子线圈产生的磁场和永磁体之间的相互作用产生的。理想状态下,转矩峰值出现在两个磁场正交时,而在两磁场平行时最弱。为了保持电机转动,由定子绕组产生的磁场应不断变换位置,因为转子会向着与定子磁场平行的方向旋转。“六步换向”定义了给绕组加电的顺序。

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

一种无刷直流电动机控制系统设计

一种无刷直流电动机控制系统设计

————————————————————————————————作者:————————————————————————————————日期:

一种无刷直流电动机控制系统设计 摘要:介绍了MOTORALA公司专门用于无刷直流电机控制的芯片MC33035和 MC33039的特点及其工作原理,系统设计分为控制电路与功率驱动电路两大部分,控制电路以MC33035/33039为核心,接收反馈的位置信号,与速度给定量合成,判断通电绕组并给出开关信号。在驱动电路设计中,采用三相Y联结全控电路,使用六支高速MOSFET 开关管组成。通过实验,电机运行稳定。 关键词:无刷直流电机;MC33035/33039;控制电路;驱动电路 Design of control system for Brushless DC Motors SUN GuanQun;SHI Ming;TONG LinYi;XU YiPing Abstract:It introduces the MOTORALA company used for the characteristics o f the chip MC33035 and MC33039 which control the brushless direct curren t motor exclusively and its work principle. The system design divides into tw o major parts: the control circuit and the power driver circuit, the control circ uit take MC33035/33039 as the core, receive feedback position signal, with th e speed to the quota synthesis, the judgment circular telegram winding and p roduces the switching signal. In the actuation circuit design, uses the three-p hase Y joint all to control the electric circuit, uses six high speed MOSFET swit ching valve to compose. Through the experiment, the electric motor moveme nt stable is reliable. Keywords:Brushless DC motor;MC33035/33039;control circuit;drive circuit 1.引言 永磁直流无刷电机是近年来迅速成熟起来的一种新型机电一体化电机。该电机由定子、 转子和转子位置检测元件霍尔传感器等组成,由于没有励磁装置,效率高、结构简单、工作特 性优良,而且具有体积更小、可靠性更高、控制更容易、应用范围更广泛、制造维护更方便 等优点,使无刷电机的研究具有重大意义。 本系统设计是利用调压调速,根据调整供电PWM电源的占空比进而调整电压的方式实 现。本设计采用无刷直流电机专用控制芯片MC33035,它能够对霍尔传感器检测出的位置 信号进行译码,它本身更具备过流、过热、欠压、正反转选择等辅助功能, 组成的系统所需 外围电路简单,设计者不必因为采用分立元件组成庞大的模拟电路,使得系统的设计、调试 相当复杂,而且要占用很大面积的电路板。 MC33035和MC33039这两种集成芯片也可以方便地完成无刷直流电动机的正反转、 运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

直流无刷电机的控制系统设计方案

直流无刷电机的控制系统设计方案1 引言 1.1 题目综述 直流无刷电机是在有刷直流电机的基础上发展起来的,它不仅保留了有刷直流电机良好的调试性能,而且还克服了有刷直流电机机械换相带来的火花、噪声、无线电干扰、寿命短及制造成本高和维修困难等等的缺点。与其它种类的电机相比它具有鲜明的特征:低噪声、体积小、散热性能好、调试性能好、控制灵活、高效率、长寿命等一系列优点。基于这么多的优点无刷直流电机有了广泛的应用。比如电动汽车的核心驱动部件、电动车门、汽车空调、雨刮刷、安全气囊;家用电器中的DVD、VCD、空调和冰箱的压缩机、洗衣机;办公领域的传真机、复印机、碎纸机等;工业领域的纺织机械、医疗、印刷机和数控机床等行业;水下机器人等等诸多应用[1]。 1.2 国内外研究状况 目前,国内无刷直流电机的控制技术已经比较成熟,我国已经制定了GJB1863无刷直流电机通用规范。外国的一些技术和中国的一些技术大体相当,美国和日本的相对比较先进。当新型功率半导体器件:GTR、MOSFET、IGBT等的出现,以及钕铁硼、钐鈷等高性能永磁材料的出现,都为直流电机的应用奠定了坚实的基础。近些年来,计算机和控制技术快速发展。单片机、DSP、FPGA、CPLD等控制器被应用到了直流电机控制系统中,一些先进控制技术也同时被应用了到无刷直流电机控制系统中,这些发展都为直流电机的发展奠定了坚实的基础。 经过这么多年的发展,我国对无刷电机的控制已经有了很大的提高,但是与国外的技术相比还是相差很远,需要继续努力。所以对无刷直流电机控制系统的研究学习仍是国内的重要研究内容[2]。 1.3 课题设计的主要内容 本文以永磁方波无刷直流电机为控制对象,主要学习了电机的位置检测技术、电机的启动方法、调速控制策略等。选定合适的方案,设计硬件电路并编写程序调试,最终设计了一套无位置传感器的无刷直流电机调速系统。本课题涉及的技术概括如下:

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

开题报告无刷直流电机的控制系统

合肥师范学院本科生毕业论文(设计)开题报告 (学生用表) 装 订 线

第l章主要叙述了无刷直流电机的发展趋势、无刷直流电机的控制技术、研究背景及意义。 第2章首先介绍了无刷直流电机的基本结构和工作原理,然后给出了常见的无刷直流电机的数学模型及其推导过程,在此基础上对无刷直流电机的稳态特性进行了详细分析。 第3章对本控制系统的总体结构和设计进行介绍。主要包括控制系统的整体方案,控制芯片,控制技术以及控制策略的选择。 第4章对控制系统的硬件电路进行设计,包括DSP最小系统、功率驱动电路、采样检测电路、保护电路等的设计,并对各个部分进行了详细的分析。 第5章以TI公司的CCS开发环境为开发工具,对整个控制系统的软件部分进行了设计。 第6章总结与展望,总结了本文的主要工作,展望了以后工作的研究方向。 五、可行性分析 此次研究是在指导老师的指导下搜集,查阅相关资料,确定能够通过应用DSP 芯片进行控制是最优方案,采用TI公司的TMS320F2812作为控制器。根据现在无刷直流电机的控制技术的发展水平和未来的发展趋势及可操作性进行分析,该课题能够顺利进行。 六、设计方案 6.1无刷直流电机的基本结构 无刷直流电机的设计思想来源于利用电子开关电路代替有刷直流电机的机械换向器。普通有刷直流电机由于电刷的换向作用,使得电枢磁场和主磁场的方向在电机运行的过程中始终保持相互垂直,这样能够产生最大的转矩,从而驱动电机不停地运转下去。无刷直流电机取消电刷实现了无机械接触换相,做成“倒装式直流电机"的结构,将电枢绕组和永磁磁钢分别放在定子和转子侧。无刷直流电机必须具有由控制电路、功率逆变桥和转子位置传感器共同组成的换相装置以实现电机速度和方向的控制[5]。因此,可以认为无刷直流电机是典型的机电一体化器件,其基本结构由电动机本体、驱动控制电路及转子位置传感器三部分组成,如图所示。 无刷直流电机的构成 6.2无刷直流电机的工作原理 普通直流电机的电枢在转子上,而定子产生固定不变的磁场。为了使直流电机旋转,需要通过换相器和电刷不断地改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转[6]。 无刷直流电动机为了去掉电刷,将电枢放到定子上,而转子做成永磁体,这样的结构正好与普通直流电动机相反。然而即便是这样的改变仍然不够,因为直流电通入定子上的电枢以后,产生的不变磁场还是不能使电动机转动起来。为了达到使电动机

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

直流无刷伺服电机运动控制系统设计

直流无刷伺服电机运动控制系统设计 Motionchip是一种性能优异的专用运动控制芯片,扩展容易,使用方便。本文基于该芯片设计了一款可用于直流有刷/无刷伺服电机的智能伺服驱动器,并将该驱动器运用到加氢反应器超声检测成像系统中,上位机通过485总线分别控制直流有刷电机和无刷电机,取得了很好的控制效果,满足了该系统的高精度要求。 在传统的电机伺服控制装置中,一般采用一个或多个单片机作为伺服控制的核心处理器。由于这种伺服控制器外围电路复杂,计算速度慢,从而导致控制效果不理想。近年来,许多新的电机控制算法被研究并运用于电机控制系统中,如矢量控制、直接转矩控制等。随着这些控制算法的日益复杂,必须具备高速运算能力的处理器才能实现实时计算和控制。为了适应这种需要,国外许多公司开发了控制电机专用的高档单片机和数字信号处理器(DSP)。现在,通常使用的伺服控制器的控制核心部分大都由DSP和大规模可编程逻辑器件组成,这种方案可以根据不同需要,灵活的设计出性能很好的专用伺服控制器,但是一般研制周期都比较长。 MotionChip的特点 MotionChip是瑞士Technosoft公司开发的一种高性能且易于使用的电机运动控制芯片,它是基于TMS320C240的DSP,外围设置了许多电机伺服控制专用的可编程配置管脚。TMS320C240是美国TI公司推出的电机控制专用16位定点数字信号处理器,其具有高速的运算能力和专为电机控制设计的外围接口电路。MotionChip很好的利用了该DSP的优点,并集成多种电机控制算法于一身,以简化用户设计难度为目的,设计成为一种新颖的电机专用控制芯片。MotionChip有着集成全部必要的配置功能在一块芯片的优点,它是一种为各种电机类型进行快速和低投入设计全数字、智能驱动器的理想核心处理器。具有如下特点: ?可用于控制5种电机类型:直流有刷/无刷电机、交流永磁同步电机、交流感应电机和步进电机,且易于嵌入到用户的硬件结构中; ?可以选择独立或主从方式工作,并可根据需要,设置成通过网络接口进行多伺服控制器协同工作; ?全数字控制环的实现,包括电流/转矩控制环、速度控制环、位置控制环; ?可实现各种命令结构:开环、转矩、速度、位置或外环控制,步进电机的微步进控制,并可实现控制结构的配置,其中包括交流矢量控制; ?可以配置使用各种运动和保护传感器(位置、速度、电流、转矩、电压、温度等); ?使用各种通讯接口,可以实现RS232/RS485通讯、CAN总线通讯; ?基于Windows95/98/2000/ME/NT/XP平台,强大功能的IPM Motion Studio 高级图形编程调试软件:可通过RS232快速设置,调整各参数与编程运动控制程序。其功能强大的运动语言包括:34种运动模式、判决、函数调用,事件驱动运动控制、中断。因此便于开发和使用。 ?可以通过动态链接库TMLlib,利用VC/VB实现PC机控制;也可以与Labview和PLC无缝连接,通过动态链接库,用户可以在上层开发电机的控制程序,研究控制策略。 运动控制系统设计

无刷直流电机结构

无刷直流电机结构、类型和基本原理 一、概述 直流电动机的主要长处是调速和启动特性好,堵转转矩大,被广泛应用于各种驱动装置和伺服系统中。但是,直流电动机都有电刷和换向器,其间形成的滑动机械接触严峻地影响了电动机的精度、性能和可靠性,所产生的火花会引起无线电干扰。缩短电动机寿命,换向器电刷装置又使直流电动机结构复杂、噪声大、维护困难,长期以来人们都在寻求可以不用电刷和换向器装置的直流电动机。 随着电子技术的迅速发展,各种大功率电子器件的广泛采用,这种愿望已被逐步实现。本章要介绍的无刷直流电动机利用电子开关线路和位置传感器来代替电刷和换向器,使这种电动机既具有直流电动机的特性。又具有交流电动机结构简朴、运行可靠、维护方便等优点;它的转速不再受机械换向的限制,若采用高速轴承,还可以在高达每分钟几十万转的转要中运行。 元刷直流电动机用途非常广泛,可作为一般直流电动机、伺服电动机和力矩电动机等使用,尤其适用于高级电子设备、机器人、航空航天技术、数控装置、医疗化工等高新技术领域。无刷直流电动机将电子线路与电机融为一体,把先进的电子技术应用于电机领域,这将促使电机技术更新、更快地发展。 二、无刷直流电动机的基本结构和类型 (一)基本结构 无刷直流电动机是一种自控变频的永磁同步电动机,就其基本组成结构而言.可以认为是由电动机本体、转子位置传感器和电子开关电路三部分组成的“电动机系统”。其基本结构如图5一20所示。 电动机本体在结构上是一台普通的凸极式同步电动机.它包括主定子和主转子两部分,主定子上放置空间互差120。的三相对称电枢绕组Ax、BY、cz,接成星形或三角形,主转子是用永久磁钢制成

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

无刷直流电机控制系统的设计

无刷直流电机控制系统 的设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。

直流无刷电机工作原理

直流无刷电机工作原理 直流电机简介 无刷直流电机(BLDC)是永磁式同步电机的一种,而并不是真正的直流电机,英文简称BLDC。区别于有刷直流电机,无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机。 工作原理 直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。 直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 无刷电机优缺点 直流电动机具有快速响应,大起动转矩,从零速到额定转速,额定转矩可提供的性能,但直流电机的优点也是它的缺点,因为DC额定负载机密生产性能不断转移的时刻,电枢与转子磁场须保持恒定90度,这将用刷子和换向器。碳刷,换向器,继而引发电机,碳粉,所以除了元件造成损害的,有限的场合使用。交流无碳刷及整流子,免维护,可靠,应用范围广,但直流电机马达的特点,实现同等性能的必须使用复杂的控制得以实现。今天,功率半导体开关频率成分的快速发展,加快了许多,提升驱动电机的性能。微处理器的速度也越

无刷直流电机控制器的设计

无刷直流电机控制器的设计 3.1 无刷直流电机控制器的概述 无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简 单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便。 电机控制器是无刷直流电动机正常运行并实现各种调速伺服功能的指挥中心,它主要完成以下功能:对各种信号进行逻辑综合,以给驱动电路提供各种控制信号;产生PWM调制信号,实现电机的调速;对电机进行速度环和电流环调节,使系统具有较好的动态和静态性能;实现短路、过流、欠压、堵转等故障保护功能。 现代控制技术的发展与微处理器的发展息息相关,可以说,每一次微处理器的进步都推动了控制技术的一次飞跃。在微处理器出现之前,控制器只能由模拟系统构成。由模拟器件构成的控制器只能实现简单的控制,功能单一、升级换代困难,而且由分立器件构成的系统控制精度不高,温度漂移,器件老化严重,使得维护成本增高,限制了它的发展和应用范围。随着微处理器的迅速发展和推广,控制器由模拟式转换成了数模混合式,并进一步发展到全数字式,技术的进步使得许多模拟器件难以实现的功能都可以方便地用软件实现,使系统的可靠性和智能化水平大大提高。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便[9][10]。 控制器是电动自行车的驱动系统,它是电动自行车的大脑。其主要作用是在保证电动自行车正常工作的前提下,提高电机和蓄电池的效率、节省能源、保护

无刷电机结构图及里面的霍尔信号工作原理

无刷电机结构图及里面的霍尔信号工作原理 (2009-05-30 17:33:55) 转载 标 签: 教育 霍耳的红线一般接5-12v直流电。推荐5-7v。 霍耳的信号线传递电机里面磁钢相对于线圈的位置,根据三个霍耳的信号控制器能知道此时应该如何给电机的线圈供电(不同的霍耳信号,应该给电机线圈供相对应方向的电流),就是说霍耳状态不一样,线圈的电流方向不一样。 霍耳信号传递给控制器,控制器通过粗线(不是霍耳线)给电机线圈供电,电机旋转,磁钢与线圈(准确的说是缠在定子上的线圈,其实霍耳一般安装在定子上)发生转动,霍耳感应出新的位置信号,控制器粗线又给电机线圈重新改变电流方向供电,电机继续旋转(线圈和磁钢的位置发生变化时,线圈必须对应的改变电流方向,这样电机才能继续向一个方向运动,不然电机就会在某一个位置左右摆动,而不是连续旋转),这就是电子换相。 电动车用无刷直流电机工作原理 摘要: 无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为bldc.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kw,可设计到400kw,可以解决产业界节电与高性能驱动的需求。. 关键词:无刷直流电机永磁同步电机直流变频钕铁硼 abstract: brushless direct current motor has the same dc motor output characteris tics, also named bldc. bldc have higher output torque in low speed, higher efficiency and better speed precision than any control modes of frequency converter drives. this chapte r introduce capacity up to 400kw for the industrial application. key words:brushless direct current motor permanent magnetic synchronous motor bldc ndfeb [中图分类号]tm921 [文献标识码]b 文章编号1561-0330(2003)06-00 1 无刷直流电动机简介 无刷直流电动机的学名叫“无换向器电机”或“无整流子电机”,是一种新型的无级变速电机,它由一台同步电机和一组逆变桥所组成,如图1所示。它具有直流电机那样良好的调速特性,但是由於没有换向器,因而可做成无接触式,具有结构简单,制造方便,不需要经常性维护等优点,是一种现想的变速电机。 在工作原理上有二种不同的工作方式: (1)直流无刷电机:又称“无换向器电机交一直一交系统”或“直交系统”,如图1所示。是将三相交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。(2)交流无刷电动机:它是利用交-交变频器向同步机供给交流电。

基于单片机的无刷直流电机的控制系统

绪论 随着计算机进入控制领域,以及新型的电力电子功率器件的不断出现,采用全控型的开关功率元件进行脉冲调制(paulse width modulation,简称PWM)控制的无刷直流电机已成为主流。随着半导体工业,特别是大功率电子器件及微控制器的发展,变速驱动变的更加现实且成本更低。 本文充分利用单片机的数字信号处理器运算快、外围电路少、系统组成简单、可靠的特点,将其应用于无刷电机的驱动设计。实验表明,该设计使得无刷直流电机的组成简化和性能的改进成为可能,有利于电机的小型化和智能化。 (一)电机的分类 电机按工作电源种类可分为: 1.直流电机 (1)有刷直流电机 ①永磁直流电机 ·稀土永磁直流电动机 ·铁氧体永磁直流电动机 ·铝镍钴永磁直流电动机 ②电磁直流电机 ·串励直流电动机 ·并励直流电动机 ·他励直流电动机 ·复励直流电动机 (2)无刷直流电机 稀土永磁无刷直流电机 2.交流电机 (1)单相电动机

(2)三相电动机 (二)无刷直流电机及其控制技术的发展 1831年,法拉第发现了电磁感应现象,奠定了现代电机的基本理论基础。从19世纪40年代研制成功第一台直流电机,经过大约17年的时间,直流电机技术才趋于成熟。随着应用领域的扩大,对直流电机的要求也就越来越高,有接触的机械换向装置限制了有刷直流电机在许多场合中的应用。为了取代有刷直流电机的电刷-换向器结构的机械接触装置,人们曾对此作过长期的探索。1915年,美国人Langnall发明了带控制栅极的汞弧整流器,制成了由直流变交流的逆变装置。20世纪30年代,有人提出用离子装置实现电机的定子绕组按转子位置换接的所谓换向器电机,但此种电机由于可靠性差、效率低、整个装置笨重又复杂而无实用价值。 科学技术的迅猛发展,带来了电力半导体技术的飞跃。开关型晶体管的研制成功,为创造新型直流电机——无刷直流电机带来了生机。1955年,美国人Harrison首次提出了用晶体管换相线路代替电机电刷接触的思想,这就是无刷直流电机的雏形。它由功率放大部分、信号检测部分、磁极体和晶体管开关电路等组成,其工作原理是当转子旋转时,在信号绕组中感应出周期性的信号电动势,此信号电动势份别使晶体管轮流导通实现换相。问题在于,首先,当转子不转时,信号绕组内不能产生感应电动势,晶体管无偏置,功率绕组也就无法馈电,所以这种无刷直流电机没有起动转矩;其次,由于信号电动势的前沿陡度不大,晶体管的功耗大。为了克服这些弊病,人们采用了离心装置的换向器,或采用在定子上放置辅助磁钢的方法来保证电机可靠地起动。但前者结构复杂,而后者需要附加的起动脉冲。其后,经过反复的试验和不断的实践,人们终于找到了用位置传感器和电子换相线路来代替有刷直流电机的机械换向装置,从而为直流电机的发展开辟了新的途径。20世纪60年代初期,接近开关式位置传感器、电磁谐振式位置传感器和高频耦合式位置传感器相继问世,之后又出现了磁电耦合式和光电式位置传感器。半导体技术的飞速发展,使人们对1879年美国人霍尔发现的霍尔效应再次发生兴趣,经过多年的努力,终于在1962年试制成功了借助霍尔元件(霍尔效应转子位置传感器)来实现换相的无刷直流电机。在⒛世纪70年代初期,又试制成功了借助比霍尔元件的灵敏度高千倍左右的磁敏二极管实现换相

三相无刷直流电机控制系统设计

广东工业大学 硕士学位论文 三相无刷直流电机控制系统设计姓名:孙心华 申请学位级别:硕士专业:电力电子与电力传动指导教师:童怀 20080501 摘要 摘要 三楣无刷直流电机是近年来迅速发展起来的一种新型电机,它剃用电子挨耀代替机械换相,既具有直流电机的调速性能,又具有交流电机结构简单、运行可靠、维护方便等优点,并且体积小、效率高,在许多领域已得到了广泛的运用。本文首先介绍了三相无捌直流电机在国内外的发展及其控制系统的研究现状,详细论述了三相永磁无刷直流电机的构成、运行原理、特性分析和其转子位置信号的检测方法;然后设计了控制系统的硬件电路及相应软件,最后对设计的控制系统进行调试并分析了影响系统可靠性的睽素及给毒了相应解决的方案。根据控制系统的设计参数、成本及灵活性等各方面的要求,本控制系统设计了以A tmega8L单片机及ECN30206集成驱动器为核心的硬件平台。Atmega8L 单片枫对蠢ECN30206构成豹功率驱动电路进行转速PID闭环控制、并定时采集电流信号对电流进行过流保护及采用 Max7219串行显示转速、电流、相关故障信息, 通过光电隔离对永磁无刷直流电机诸如转向等控制及接收外部信息,通过RS- 485总线接蹬与外部其它系统交换信怠、对各种信息进行分析处理、协调各部分的工作。 在软件方面编制了基于硬件平台的程序,协调硬件工作。本控制系统软件由 一个前意念系统努加两个中断服务子程序,前看台主程序豳对系统初始化模块、 转子转速计算及转速PID闭环控制组成,初始化模块主要对A tmega8L单片机三个

定时器T0、T1、T2,ADC转换器,通用串行口U ART,输入输出I/O口的初始化, 系统初始化之后再对无刷直流电机转子转速进行计算,计算结果再与设定值进行比较,将比较差值送PID控制器控制PWM的占空比来控制专用驱动控制器ECN30206 的VSP引脚电压输入,从而控制转速,达到闭环控制的目的,中断程序主要惩来睾 行中断接收上位枫发来的无刷直流电机转向及转速设定僮、定时中断检测电流 及显示转速值及相关故障。 本文所设计的无刷直流控制系统实现了电机的转向、转速闭环PID控制、各 种参数及故障的显示。本控制系统保护功能较完善,硬件结构简单,成本较低, 主 控制部分、驱动部分及显示部分用户可以任意选择使用。 广东工业人学工学硕上学位论文 关键词:三相无刷直流电机;Atmega8L单片机; ECN30206集成驱动器;PID闭环控制 Abstract Ab stract Three phase brushless DC motor(BLDCMwith permanent excitation,whose electrical commutator iS used to instead of mechanical,has not only the same good characteristics of speed control as traditional DC motor,but also the good characteristics of AC Motor such as structure simple,operation reliable,maintenance friendly.Brushless DC motor has set wide application due to its high power density,ease to control,high efficiency over wide speed range. The paper firstly introduced the study status of permanent magnet brushless DC motor in home and abroad,and then discussed its structure,operation principles, characteristics as well as its rotor position signal detection methods in detail;secondly, designed

相关主题