搜档网
当前位置:搜档网 › 低速大扭矩液压马达运转无力的现象分析

低速大扭矩液压马达运转无力的现象分析

低速大扭矩液压马达运转无力的现象分析
低速大扭矩液压马达运转无力的现象分析

低速大扭矩液压马达运转无力的现象分析

19世纪50年代末期,最初的低速大扭矩液压马达是由油泵的一个定转子部件发展而来的,这个部件由一个内齿圈和一个与之相配的齿轮或转子组成。

一,低速大扭矩液压马达回转无力

液压马达是执行机构,设在液压传动的末端,是把液压能转换为机械能,使平台回转。此马达采用轴向柱塞点接触中转速的液压马达。

1、现象

工作时平台转动速度低于6r/min

2、原因分析

液压马达与轴向柱塞泵的结构与工作原理基本相同。轴向柱塞泵是通过吸油和压油产生动力,即把机械能转换为液体压力能。而液压马达进入的是高压力油,排出去的是低压力油,即将液体压力能转换为机械能。由此看来液压马达实质上相当于多个单缸柱塞油缸的组合,即把多个单向油缸周向均布,柱塞的外端顶在斜盘。当油泵向油缸提供压力油时,柱塞在压力油的作用下伸出,并在斜盘上下滑,于是产生了一个转矩,油泵连续不断地向液压马达提供压力油,液压马达就连续不断的转动,并通过齿轮传动箱使最终驱动齿轮与车架固定的内齿圈啮合而带动平台旋转。

由上可知,液压马达的构造与工作原理与前述液压油缸的工作原理基本相同,如果液压马达出现转动速度缓慢的故障时,其分析、诊断与排除的方法与工作装置的液压油缸和轴向柱塞泵相类似,故在此不再赘述。分析、诊断与排除液压马达故障时请参看前述内容。二,低速大扭矩液压马达“爬行”状态

1、现象

平台转动时出现忽停忽动,即转动不连续。速度缓慢,力量不足等现象。

2、原因分析

低速大扭矩液压马达是一个能量转换装置,即输入液体压力能转换机械能输出,若不考虑压马达本身效率时,应该是能量的输入等于输出。由此看来,液压马达转动无力必然是输入液压马达的能量减少,当能量难以克服平台转动阻力时,就出现了停转。

根据液压传动原理可知,液压马达这是靠液体压力来转动的。液压马达在操纵阀接通压力油路的情况下停转,必然是因输入液压马达柱塞油缸的油液工作压力不足以克服平台运转阻力而停转。待积蓄的能量足够克服阻力时,液压马达使克服阻力而冲跳转动,系统内的油液压力又陡降,马达又停顿,这样反复下去形成平台“爬行”,或者是阻止液压马达转动的阻力过大导致“爬行”。至于能引起输入液压油液的流量减少和工作压力减少,请参看大臂油缸举升缓慢的原因分析与诊断。

总之,液压马达“爬行”使系统内油液压力不稳定,油液压力不稳定多数是因系统内有空气所致,系统内进入空气的原因与第一部分相同。

液压马达转动阻力过大的原因导致马达的本身机械效率低。如柱塞与配合磨擦副阻力过大,斜盘与柱塞磨擦阻力过大、轴承不良引起磨擦阻力过大,或者是传动箱机械传动效率低。或者是平台的转盘机械擦阻力过大所致。

三、诊断与排除

如果液压工作装置的油缸也有“爬行”的现象,其故障在液压系统的总油路部分,应按第一部分大臂油缸举升缓慢所述的诊断方法进行诊断,重点检查气穴,查明原因后并对症排除。

如果工作装置的大臂液压油缸工作正常,液压马达出现“爬行”的故障应在液压马达和传动的末端,即机械传动箱和平台转盘部分。

(1)对液压马达安全阀的检查

试调液压马达操纵阀下部的安全阀。将安全阀螺帽拧下,用内六方扳手旋转调整螺塞,每转动一圈改变压力2.345MPa。因此压力表测试应为9.8MPa。若低于9.8MPa,说明“爬行”故障多是由液压马达的设定压力过低所致。

(2)检查液压马达和机械传动部分如果测试液压马达安全阀调定压力为9.8MPs,说明“爬行”是液压马达至回转平台部分机械磨擦阻力过大。

用手摸液压马达外壳,若有烫手感觉,说明液压马达磨擦力过大,证明它是引起“爬行”的故障原因,应予以排除。

如果液压马达温度正常,可再用手模传动箱和转盘等处温度状况,或者观察润滑情况。如果手感有温度较高的部位,且润滑也很差,表明多数是“爬行”故障原因所在,即磨擦阻力过大,应予以排除。

液压换向阀阀芯卡紧故障分析

液压换向阀阀芯卡紧故障分析 目前,液压系统中广泛使用的各种液压换向阀中,均存在着阀芯卡紧现象。其中有液压卡紧,也有机械卡紧。为解决液压卡紧,国内外都在设计中采用阀芯外工作表面加工若干个平衡槽的办法,其效果很好。对于机械卡紧也都制定了一些相应的技术规范来限制其配合间隙和偏心量等主要影响因素。但尽管这样,卡紧现象仍时有发生,下面就卡紧产生的原因和解决办法作详细讨论。 1、产生卡紧的原因 1.1 液压卡紧 来自滑阀副几何形状误差和同轴度误差所引起的径向不平衡压力,即液体在高压下通过偏心环状锥形间隙,并且沿液体流动方向缝隙是逐渐扩大的,这时就会产生通常所说的液压卡紧现象。 1)阀芯因加工误差而带有倒锥(锥体大端朝向高压腔),在阀芯与阀孔中心线平行且不重合时,阀芯受到径向不平衡力的作用。使阀芯和阀孔的偏心矩越来越大, 直到两者表面接触而发生卡紧现象。此时,径向不平衡力达到最大值。 2)阀芯无几何形状误差,但是由于装配误差使阀芯在阀孔中歪斜放置,或者颗粒状污染物凝聚楔入阀孔与阀芯的间隙,使阀芯在孔中偏斜放置,产生很大的径向不平衡力及转矩。 3)在加工或工序间转移过程中,将阀芯碰伤,有局部凸起及残留毛刺。这时凸起部分背后的液压流将造成较大的压降,产生一个使凸起部分压向阀孔的力矩。这也是液压卡紧的一种成因。 4)设计时为防止径向不平衡力的产生,杜绝液压卡紧,在阀芯上开若干个环形槽,以均衡阀芯受到的径向压力,一般称为平衡槽。但在加工中有时环形槽与阀芯不同心;或由于淬火变形,造成磨削后环形槽深浅不一,这样亦会产生径向不平衡力导致液压卡紧。 1.2 机械卡紧 换向阀在使用中除发生液压卡紧外,有时还会发生机械卡紧,机械卡紧一般有下列原因。 1)液压油中的污染物(如砂粒、铁屑、漆皮)楔入阀芯与阀孔间隙使之卡紧。

液压与气动的仿真

第一单元液压传动基础 1 薄壁小孔流.exe 液体流经薄壁小孔的情况如动画所示。液流在小孔上游大约d/2处开始加速并从四周流向小孔。由于流 线不能突然转折到与管轴线平行,在液体惯性的作用下,外层流线逐渐向管轴方向收缩,逐渐过渡到与 管轴线方向平行,从而形成收缩截面A 。对于圆孔,约在小孔下游d/2处完成收缩。通常把最小收缩面积 c Ac与孔口截面积之比值称为收缩系数Cc,即Cc=Ac/A。其中A为小孔的通流截面积。 液流收缩的程度取决于Re、孔口及边缘形状、孔口离管道内壁的距离等因素。对于圆形小孔,当管道直 径D与小孔直径d之比D/d≥7时,流速的收缩作用不受管壁的影响,称为完全收缩。反之,管壁对收缩程 度有影响时,则称为不完全收缩。 2 非恒定流动.exe 当液体流动时,可以将流动液体中空间任一点上质点的运动参数,例如压力p、流速v及密度g表示为空 间坐标和时间的函数,例如: 压力p=p(x,y,z,t) 速度v=v(x,y,z,t) 密度=(x,y,z,t) 在流体的运动参数中,只要有一个运动参数随时间而变化,液体的运动就是非定常流动或非恒定流动。 3 恒定流动.exe 当液体流动时,可以将流动液体中空间任一点上质点的运动参数,例如压力p、流速v及密度g表示为空 间坐标和时间的函数,例如: 压力p=p(x,y,z,t) 速度v=v(x,y,z,t) 密度=(x,y,z,t) 如果空间上的运动参数p、v及在不同的时间内都有确定的值,即它们只随空间点坐标的变化而变化,不 随时间t变化,对液体的这种运动称为定常流动或恒定流动。 4 蕾诺实验.exe 1883年奥斯本?雷诺(Osborne Reynolds)所作的有名的实验。对流体的流动模式有了更完整的说明。雷 诺实验装置,主要为一水平玻璃管,安置于一大水槽中,玻璃管一端成喇叭状,另一端设一排水阀(A), 打开阀(A)可控制水在玻璃管中的流速。水槽上方有一瓶染色墨汁,将阀(B)打开,墨汁可流至玻璃管入 口处,以利观察玻璃管中流体的流动情形。当流速小时,染料自始至终均成一直线,而不向周围扩散, 称为层流(laminar flow)。而当流速甚大时,管内染料则将整支管子染色,此乃因其向周围扩散之故, 称为扰流(turbulent flow)。

液压专业术语翻译

A ability 性能;能力load-carrying ability 承载能力absorber 吸收器;吸收剂;过滤器;减震器accessories 辅件,附件,配件hydraulic accessories 液压辅件accumulate 储存;蓄能;累积accumulator 蓄能器;蓄电池;累加器 accuracy 准确性;精度action 作用;动作;作用力;行程actuated 操纵,控制directly actuated 直接操纵的,直接控制的pilot actuated 先导控制的,液控的actuator 执行元件;液压缸;马达adapter 接头;衬套;压环;连接件pipe adapter 管接头admission 供给,供油,供气alignment 找正,定心,对中amplifier 放大器differential pressure amplifier 压差放大器flow amplifier 流量放大器assembly 组合,组件,机组axis 轴 B back-flow 回流back-up 支撑hydrostatic back-up 静压支撑barrel 桶,缸体base 底座;支座bearing 支承;轴承;方位radial ball bearing 径向球轴承rolling bearing 滚动轴承sliding bearing 滑动轴承thrust bearing 止推轴承bed 台pump test bed 泵实验台behavior 性能;工况bend 弯头;弯管blade 叶片flat blade 平面叶片forward inclined blade 前倾叶片guide blade 导叶

工程建设机械液压卡紧的危害、原因及消除措施通用范本

内部编号:AN-QP-HT130 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 工程建设机械液压卡紧的危害、原因及消除措施通用范本

工程建设机械液压卡紧的危害、原因及 消除措施通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 1 液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时

液压马达的工作原理

液压马达工作原理 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速围正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。 液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。因为液压马达在工作中输出的转矩大小是由负载转矩决定的。但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。 根据液压动力元件的工作原理可知,马达转速n、理论流量q i与排量V之间具有下列

仿真分析液压卡紧现象

仿真分析液压卡紧现象 1、仿真分析方法 基于Fluent软件对液压卡紧现象进行仿真分析。首先利用Inventor软件建立带有锥度的间隙密封卡紧模型,使用ICEM对模型流体域进行网格划分,最后采用Fluent对网格模型进行压力场仿真,对获取的数据进行分析计算,得到最优的间隙密封结构。 2、模型参数 滑阀卡紧力仿真几何模型以阀芯、阀套间隙密封中流场为基型,采用三维模型的形式。模型的基本参数为:密封长度为20mm,阀套的直径为20.05,阀心的大端直径为20.01,小端直径为20mm。

顺锥模型示意圈如图所示,其中1d 、2d 、0D 、e 别为小端直径、大端直径、阀套孔直径、偏心量,1P 、2P 为进出口压差,参数设置如前文所述。将倒锥模型导入到Fluent 软件中。 滑阀间隙密封内部流场仿真分析结果如图所示,图1为阀总表面压力分布图,图2为模型上下对称面压力分布曲线。由图可知,压力沿X轴从12Mpa 到2MPa 依次减小,由于仿真模型的偏屯、量是沿着Y轴正方向,根据前文的理论分析可知,由于阀忘下对称面间隙高度小,压力下降慢,故下对称面的压力高于上对称面压力,与仿真结果一致,如图所示。最终会产生一个使阀芯沿Y轴负方向运动的力,使阀,芭对中。在Fluent 中设置力监测器,得出阀芯沿Y轴的受力为14.31N ,使阀巧对中。因此,阀芯的顺锥模型有利于滑阀的对中。

倒锥模型与顺锥模型结构上基本相同,只是在阀芯的安装方向上有所不同,倒锥模型阀狂大端朝向高压进口腔。将模型导入到Fluent中,边界条件与顺锥设置相同。 由图可知,压力在阀巧表面沿X轴方向依次减小,但是分布并不均匀,滑阀上对称面压降比上对称面的压降慢,在曲线上显示为上对称面曲线在下对称面曲线上方,两曲线形成一封闭区域,由公式可知,封闭区域对阀拉圆周表面积分即为阀巧卡紧力大小。在Fluent中设置力传感器,监测得到阀孩受到的卡紧力为12.20N,方向沿着Y轴正方向,最终会使阀总向阀孔底侧壁面移动,直到卡死。

工程建设机械液压卡紧的危害原因及消除措施

工程建设机械液压卡紧的危害原因及消除措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

工程建设机械液压卡紧的危害、原因及消除措施1液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟缓,甚至动作错乱的现象; 2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动而不能实现吸油和压油等)的现象,使手柄的操作力增大。 2产生液压卡紧现象的原因

1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后将阀芯顶死阀体孔上。 2.阀芯与阀孔因加工和装配误差,阀芯在阀孔内倾斜成一定角度,压力油经上下缝隙后,上缝隙不断增大,下缝隙不断减小,其压力降曲线也不同,压力差值产生偏心力和一个使阀芯阀体孔的轴线互不平衡的力矩,使阀芯在孔内更倾斜,最后阀芯卡死在阀孔内。 3.阀芯上面因碰伤有局部凸起或毛刺,产生一个使凸起部分压向阀套的力矩,将阀芯卡死在阀孔内。 4.为减少径向不平衡力,往往在阀芯上加工若干条环形均压槽。加工时环形槽与阀芯外圆若不同心,经热处理后再磨加工,可导致环形均压槽深浅不一,产生径向不平衡力而卡死阀心。 5.污物颗粒进入阀芯与阀孔配合间隙,使阀芯在阀孔内偏心放置,将产生径向不平衡力导致液压卡紧。

JB-T 08728-1998 低速大扭矩液压马达

IC S 23.100.10 J20 JB/T8728-1998 低速大扭矩液压马达 L ow speed high to rque hydraulic motor 1998-03-19 发布1998-07-01 实施中华人民共和国机械工业部发布

JB/T8728-1998 前言 本标准的附录A是标准的附录。 本标准由全国液压气动标准化委员会提出并归口。 本标准起草单位:机械工业部天津工程机械研究所。 本标准主要起草人:温华平。 本标准于1998年3月首次发布。 I

1 1 范围 本标准规定了内曲线径向柱塞马达、曲轴连杆径向柱塞马达、曲轴无连杆径向柱塞马达、径向钢球马达、双斜盘轴向柱塞马达等五种低速大扭矩液压马达的结构类型、基本参数、技术要求、试验方法、检验规则和标志、包装。 本标准适用于以液压油或性能相当的其他矿物油为介质的内曲线径向柱塞马达、曲轴连杆径向柱塞马达、曲轴无连杆径向柱塞马达、径向钢球马达、双斜盘轴向柱塞马达等五种结构类型的低速大扭矩液压马达。其他结构类型的低速大扭矩液压马达可参照使用。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 786.1—93 液压气动 图形符号 GB 2346—88 液压气动系统及元件 公称压力系列 GB 2347—80 液压泵及马达公称排量系列 GB/T 2353.2—93 液压泵和马达安装法兰与轴伸尺寸系列与标记(二) 多边形法兰(包括圆形法 兰) GB 2828—87 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T 2878—93 液压元件螺纹连接 油口型式和尺寸 GB 3767—83 噪声源声功率级的测定 工程法及准工程法 GB 7935—87 液压元件 通用技术条件 GB 7936—87 液压泵、马达空载排量 测定方法 GB/T 14039—93 液压系统工作介质固体颗粒污染等级代号 JB/T 2184—77 液压元件 型号编制方法 JB/T 5058—91 机械工业产品质量特性重要度分级导则 JB/T 7858—95 液压元件 清洁度评定方法及液压元件清洁度指标 3 定义 本标准采用下列定义。 3. 1 额定压力 额定工况下的压力。 3. 2 空载压力 机械工业部 1998-03-19 批准 中华人民共和国机械行业标准 低速大扭矩液压马达 Low spe ed high torque hydraulic motor JB/T 8728-1998 1998-07-01 实施

低速大扭矩液压马达运转无力的现象分析

低速大扭矩液压马达运转无力的现象分析 19世纪50年代末期,最初的低速大扭矩液压马达是由油泵的一个定转子部件发展而来的,这个部件由一个内齿圈和一个与之相配的齿轮或转子组成。 一,低速大扭矩液压马达回转无力 液压马达是执行机构,设在液压传动的末端,是把液压能转换为机械能,使平台回转。此马达采用轴向柱塞点接触中转速的液压马达。 1、现象 工作时平台转动速度低于6r/min 2、原因分析 液压马达与轴向柱塞泵的结构与工作原理基本相同。轴向柱塞泵是通过吸油和压油产生动力,即把机械能转换为液体压力能。而液压马达进入的是高压力油,排出去的是低压力油,即将液体压力能转换为机械能。由此看来液压马达实质上相当于多个单缸柱塞油缸的组合,即把多个单向油缸周向均布,柱塞的外端顶在斜盘。当油泵向油缸提供压力油时,柱塞在压力油的作用下伸出,并在斜盘上下滑,于是产生了一个转矩,油泵连续不断地向液压马达提供压力油,液压马达就连续不断的转动,并通过齿轮传动箱使最终驱动齿轮与车架固定的内齿圈啮合而带动平台旋转。 由上可知,液压马达的构造与工作原理与前述液压油缸的工作原理基本相同,如果液压马达出现转动速度缓慢的故障时,其分析、诊断与排除的方法与工作装置的液压油缸和轴向柱塞泵相类似,故在此不再赘述。分析、诊断与排除液压马达故障时请参看前述内容。二,低速大扭矩液压马达“爬行”状态 1、现象 平台转动时出现忽停忽动,即转动不连续。速度缓慢,力量不足等现象。 2、原因分析 低速大扭矩液压马达是一个能量转换装置,即输入液体压力能转换机械能输出,若不考虑压马达本身效率时,应该是能量的输入等于输出。由此看来,液压马达转动无力必然是输入液压马达的能量减少,当能量难以克服平台转动阻力时,就出现了停转。 根据液压传动原理可知,液压马达这是靠液体压力来转动的。液压马达在操纵阀接通压力油路的情况下停转,必然是因输入液压马达柱塞油缸的油液工作压力不足以克服平台运转阻力而停转。待积蓄的能量足够克服阻力时,液压马达使克服阻力而冲跳转动,系统内的油液压力又陡降,马达又停顿,这样反复下去形成平台“爬行”,或者是阻止液压马达转动的阻力过大导致“爬行”。至于能引起输入液压油液的流量减少和工作压力减少,请参看大臂油缸举升缓慢的原因分析与诊断。 总之,液压马达“爬行”使系统内油液压力不稳定,油液压力不稳定多数是因系统内有空气所致,系统内进入空气的原因与第一部分相同。 液压马达转动阻力过大的原因导致马达的本身机械效率低。如柱塞与配合磨擦副阻力过大,斜盘与柱塞磨擦阻力过大、轴承不良引起磨擦阻力过大,或者是传动箱机械传动效率低。或者是平台的转盘机械擦阻力过大所致。 三、诊断与排除 如果液压工作装置的油缸也有“爬行”的现象,其故障在液压系统的总油路部分,应按第一部分大臂油缸举升缓慢所述的诊断方法进行诊断,重点检查气穴,查明原因后并对症排除。

液压系统常见故障及排除方法

液压系统常见故障及排除方法: 液压系统大部分故障并不是突然发生的,一般总有一些预兆。如噪声、振动、冲击、爬行、污染、气穴和泄漏等。如及时发现并加以适当控制与排除,系统故障就可以消除或相对减少。 一、振动和噪声 (一)液压元件的合理选择 (二)液压泵吸油管路的气穴现象 排除方法:(1)增加吸油管道直径,减少或避免吸油管路的弯曲,以降低吸油速度,减少管路阻力损失。 (2)选用适当地吸油过滤器,并且要经常检查清洗,避免堵塞。(3)液压泵的吸入高度要尽量小。自吸性能差的液压泵应由低压辅助泵供油。。 (4)避免油粘度过高而产生吸油不足现象。 (5)使用正确的配管方法。 (三)液压泵的吸空现象 液压泵吸空主要是指泵吸进的油中混入空气,这种现象不仅容易引起气蚀,增加噪声,而且还影响液压泵的容积效率,使工作油液变质,所以是液压系统不允许存在的现象。 主要原因:油箱设计和油管安排不合理,油箱中的油液不足:吸油管浸入油箱太浅:液压泵吸油位置太高:油液粘度太大:液压泵的吸油口通流面积过小,造成吸油不畅:滤油器表面被污物阻塞:管道泄漏或回油管没有浸入油箱而造成大量空气进入油液中。 排除方法:(1)液压泵吸油管路联接处严格密封,防止进入空气。(2)合理设计油箱,回油管要以45度的斜切口面朝箱壁并靠近箱壁插入油中。流速不应应太高,防止回油冲入油箱时搅动液面而混入空气。油箱中要设置隔板。使油中气泡上浮后不会进入吸油管附近。 (3)油箱中油液要加到油标线所示的高度吸油管一定要浸入油箱的2/3深度处,液压泵的吸油口至液面的距离尽可能短,以减少吸油阻力。若油液粘度太高要更换低的油液。滤油器堵塞要及时清除污物。这样就能有效的防止过量的空气浸入。 (4)采用消泡性好的工作油液,或在油内加入消泡剂。 (四)、液压泵的噪声与控制 从液压泵的结构设计上下功夫。 (五)、排油管路和机械系统的振动 避免措施:(1)用软管连接泵与阀、管路。 (2)配置排油管时防止共振与驻波现象发生。 (3)配管的支撑应设在坚固定台架上。

液压卡紧的危害、原因及消除措施

工程建设机械液压卡紧的危害、原因及消除措施 ◇江苏徐州工程兵指挥学院工程装备教研室侯宪春马晓军 1 液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟缓,甚至动作错乱的现象; 2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动而不能实现吸油和压油等)的现象,使手柄的操作力增大。 2 产生液压卡紧现象的原因 1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后将阀芯顶死阀体孔上。 2.阀芯与阀孔因加工和装配误差,阀芯在阀孔内倾斜成一定角度,压力油经上下缝隙后,上缝隙不断增大,下缝隙不断减小,其压力降曲线也不同,压力差值产生偏心力和一个使阀芯阀体孔的轴线互不平衡的力矩,使阀芯在孔内更倾斜,最后阀芯卡死在阀孔内。 3.阀芯上面因碰伤有局部凸起或毛刺,产生一个使凸起部分压向阀套的力矩,将阀芯卡死在阀孔内。 4.为减少径向不平衡力,往往在阀芯上加工若干条环形均压槽。加工时环形槽与阀芯外圆若不同心,经热处理后再磨加工,可导致环形均压槽深浅不一,产生径向不平衡力而卡死阀心。 5.污物颗粒进入阀芯与阀孔配合间隙,使阀芯在阀孔内偏心放置,将产生径向不平衡力导致液压卡紧。 6.阀芯与阀孔配合间隙大,阀芯与阀孔台肩尖边与沉角槽的锐边毛刺倾倒的程度不一样,引起阀芯与阀孔轴线不同心,产生液压卡紧。 7.阀心与阀体孔配合间隙过小,污垢颗粒楔入间隙,装配扭斜别劲,温度变化引起变形,困油等也是卡阀现象产生的原因。 3 消除减少液压卡紧的方法和措施 1.提高阀芯和阀体孔的加工精度,提高其形状精度和位置精度。

液压马达分类与原理

创作编号: BG7531400019813488897SX 创作者:别如克* 液压马达分类与原理 (一)液压马达分类 (二)齿轮马达的工作原理 图2-12为外啮合齿轮马达的工作原理图。图中I为输出扭矩的齿轮,B为空转齿轮,当高压油输入马达高压腔时,处于高压腔的所有齿轮均受到压力油的作用(如中箭头所示,凡是齿轮两侧面受力平衡的部分均未画出),其中互相啮合的两个齿的齿面,只有一部分处于高压腔。设啮合点c到两个齿轮齿根的距离分别为阿a和b,由于a 和b均小于齿高h,因此两个齿轮上就各作用一个使它们产生转矩的作用力pB(h—a)和pB(h—b)。这里p代表输入油压力,B代表齿宽。在这两个力的作用下,两个齿轮按图示方向旋转,由扭矩输出轴输出扭矩。随着齿轮的旋转,油液被带到低压腔排出。 图2-12 啮合齿轮马达的工作原理图 齿轮马达的结构与齿轮泵相似,但是内于马达的使用要求与泵不同,二者是有区别的。例如;为适应正反转要求,马达内部结构以及进出油道都具有对称性,并且有单独的泄漏油管,将轴承部分泄漏的油液引到壳体外面去,而不能向泵那样由内部引入低压腔。这是因为马达低压腔油液是由齿轮挤出来的,所以低压腔压力稍高于大气压。若将泄漏油液由马达内部引到低压腔,则所有与泄漏油道相连部分均承受回油压力,而使轴端密封容易损坏。 (三)叶片马达的工作原理 图2-13为叶片马达的工作原理图。当压力为p的油液从进油口进入叶片1和叶片3之间时,叶片2因两面均受液压油的作用,所以不产生转矩。叶片1和叶片3的一侧作用高压油,另一侧作用低压油.并且叶片3伸出的面积大于叶片1伸出的面积,因此使转子产生顺时针方向的转矩。同样,当压力油进入叶片5和叶片7之间时,叶片

低速大扭矩马达

低速大扭矩液压马达选型 在动力传递中如果需要得到低速大扭矩,当然可以选用一台电动机也可选用一台汽油机,柴油机或透平发动机,甚至是一台高速液压马达。但是,在这些原动机后面需要加上一个能产生大扭矩的减速器。如果选用一台特殊设计的低速大扭矩液压马达,它将直接产生低速大扭矩。 1.为什么要用一台低速大扭矩液压马达 高速原动机加上一个减速器的方案有一定缺点,这种装置往往比较笨重,如果把原动机放在一个危险的地方,往往会引起爆炸事故。此外,离合器、齿轮箱以及其它机械形式的减速器,往往使扭矩、转速或二者兼有损失。 采用低速大扭矩液压马达有许多优点,最大好处是结构简单,工作零件最少,因此比较可靠。另外,这种液压马达比带减速器的传动装置要便宜得多,而且传递效率也比较高。再者,由于低速大扭矩液压马达与相同功率的电动机相比,一般体积较小,而且转动惯量也要小得多。 2.各种低速大扭矩液压马达的比较 影响低速大扭矩液压马达工作性能的因素很多,要直接进行比较是不可能的,但是却不妨作一般评述。 基鲁德液压马达(即奥尔必特液压马达)的价格低廉是可取的,机械效率还可以,但是较大的漏损使容积效率降低,一般在低压条件下适用。 2)叶片式液压马达有较多的漏损通道,低速运转时容积效率较低。这种液压马达的径向是平衡的,这有利于提高机械效率和延长使用寿命,适用于低压系统。 3)转叶式液压马达的制造公差比较严格,因此一般价格较高。它的优点是在不同转速下容积效率稳定,径向平衡。 4)径向柱塞式液压马达漏损很少,因此在它的转速范围内都具有较高的容积效率,而且启动扭矩大。偏心曲轴式(单作用)液压马达的启动扭矩在85%左右,等加速度导轨曲面(多作用)液压马达则高达95%。 偏心曲轴或偏心圆轴的径向柱塞式液压马达,其柱塞的简谐运动会使扭矩和速度发生变化,因此在高速中能产生振动和流量脉动。在极低速下运转,可能产生扭矩或速度的波动,甚至使输出轴“抱死”。使用时应注意制造厂关于最高和最低转速范围的规定。 等加速度导轨曲面的径向柱塞式液压马达,能消除上述由于柱塞的简谐运动造成的种种缺点。因为这种液压马达柱塞速度的瞬时总和为一个恒定值。但是这类液压马达的造价较高。 5)轴向柱塞式液压马达特别在低的工作压力下有较高的容积效率,启动扭矩特性也较好。 6)多作用导轨曲面的轴向钢球液压马达在运转中是平衡的,没有脉动或振动,钢球柱塞四周的运动间隙很小,可以有较高的容积效率,扭矩效率约80%。 3.理想的性能特征 一种理想的低速大扭矩液压马达应有较高的启动和制动扭矩效率,它的容积和机械效率也应较高,在满载下能平滑启动,并在整个速度范围内提供全扭矩输出。 低速大扭矩液压马达在整个速度范围内的扭矩脉动应该很小或者为零,并且在一定压力和一个平均速度下保持速度稳定。由于压力平衡,可以改善在慢速下运转的平稳性。 4.大扭矩究竟有多大 大扭矩的范围是30—5000尺磅(4—700公斤·米)。 问题在于扭矩是排量和压力共同决定的。这就产生这样一个问题,如果0.325升/转已经产生大扭矩,8.2升/转将发生极大的扭矩,那么32.5升/转产生的扭矩不是要用“天文”数字来表达了吗? 事实上,小型低速大扭矩液压马达的扭矩只有0.006升/转,在105公斤/厘米’的压力下可发生0.83公斤,米的扭矩,,而大型的达37.5升/转,在210公斤·厘米’的压力下可发生12750公斤·米的扭矩。前者的重量只有4.5公斤,外径约152毫米,后者重量1350公斤,外径约1092毫米。这样两种液压马达很难用文字来比较的。 同时,对低速的要求也不够明确。在实际应用中,从几百转/分至上转/分以下。 5.怎样选用低速大扭矩液压马达

液压系统主要故障分析

液压系统故障大致可以分为三类: 1、压力异常。一般液压管路设计时会预留很多的压力测量点,使用压力表测出该点的实际数值与正常 值进行比较分析,即可确定发生压力异常的液压元件。 2、速度异常。逐一调节节流阀、调速阀、变量泵等调速机构,对应测试执行原件的速度范围值,与设 计值比较分析即可确定发生速度异常的机构。 3、动作异常。切换每个换向阀,观察每个执行元件的动作状态是否正常,即可找出异常换向阀,再检 查动作顺序和行程控制,找出异常处。

液压系统的故障分析及判断方法 随着液压技术的广泛应用和发展, 液压系统中设备的可靠性运行显得尤为突出和重要, 它有效地改变运动方向, 易于载荷控制, 液压系统在使用过程中, 由于机械磨损以及使用保养不当或意外损坏等原因, 会发生各种故障。如何准确及时地判断故障发生的位置和分析故障产生的原因, 直接关系到设备使用。因此对液压系统故障分析和判断就更加重要,为了尽快找到故障原因, 采取措施, 及时排除故障,必须掌握诊断故障的基本要点和方法。 1 液压系统常见故障分析 1) 液压冲击。在液压系统中, 液体流动方向的迅速改变或停止运动, 在系统中形成一个很大的压力峰值, 这种现象叫做液压冲击。液压冲击不仅影响系统的稳定性和可靠性, 还会产生噪音和振动, 使液压系统产生温升, 联接件松动; 甚至破坏管路, 液压原件老化等问题。造成液压冲击的主要原因有: 节流缓冲装置失灵, 压力阀调整不当或发生故障, 系统中进入大量空气等。 2) 空穴和气蚀。在流动的液体中, 因流速变化引起压降而产生气泡的现象叫空穴。空穴和气蚀的出现会使液压系统工作性能恶化, 容积效率降低, 损坏机件, 降低液压原件的寿命, 引起液压冲击, 振动和噪声等。油液温度升高, 压力降低, 通道狭窄或急剧拐弯等都利于空穴和气蚀的产生。 3) 液压卡紧。液压系统中产生液压卡紧, 将加剧液压原件的磨损, 并降低元件的使用寿命, 在液压系统使用中产生卡紧现象主要原因是油液中有杂质, 当杂质进入配合间隙, 导致卡紧现象发生, 另外阀芯在高压下发生变形也是产生卡紧现象的原因。因此, 做好油液的日常管理和防护是避免卡紧现象的主要措施。 4) 温度升高。温度升高将油液迅速氧化, 并释放出难溶的酸、树脂及污泥等, 加速零件磨损和腐蚀, 同时油液因过热而使动作变得迟缓, 并增加泄漏的机会。造成系统过热的主要原因有: 工作时负荷过大, 超过额定功率, 容器内油面过高, 油液质量不符合标准等。 5) 执行器爬行。液压系统中出现爬行现象改变了执行原件的预定期望值, 直接影响运动动作输出,如液压支架影响支架的升降速度, 导致支架的支护质量和支护速度降低。造成执行原件产生爬行的主要原因有: 液压系统中进入空气导致油液刚度降低,液压元件磨损, 间隙增大, 配合工作面各处磨擦阻力不均等。 6) 液压系统振动和噪声。振动和噪声直接危害到人的情绪、健康和工作环境, 容易使人产生疲倦,造成安全事故, 产生振动和噪声的主要原因有空气的侵入, 零件的磨损造成间隙过大, 泵的工作频率与设备固有频率一致产生共振, 溢流阀不稳定, 换向阀调整不当, 零件松动。 7) 液压系统泄漏。相对于其他类型故障, 液压系统泄漏现象比较直观, 可以通过外观检查看到, 泄漏的产生造成油液损失, 环境污染, 引起设备磨损,产生泄漏的主要原因: 密封件损坏老化, 油液加注过多导致液面过高, 油液温度过高, 元件坏损, 配合间隙过大等。 2 基本要点 1) 熟悉液压系统的原理、结构及其内在联系。在进行液压系统的故障分析之前, 必须弄清楚整个液压系统的传动原理、结构特点, 然后根据故障现象进行判断, 液压系统主要由能源装置、执行装置、控制调节装置和辅助装置构成。 a) 能源装置主要是将机械能转换成油液的液压能的装置。给液压系统提供压力油。 b) 执行装置是根据工作的需要, 把油液液压能转换成机械能的装置。 c) 控制调节装置是控制液压系统中的油液压力, 流量和流动方向的装置。

工程建设机械液压卡紧的危害、原因及消除措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.工程建设机械液压卡紧的危害、原因及消除措施正 式版

工程建设机械液压卡紧的危害、原因 及消除措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 1 液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟

缓,甚至动作错乱的现象; 2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动而不能实现吸油和压油等)的现象,使手柄的操作力增大。 2 产生液压卡紧现象的原因 1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后

JBT 5920.1-1991 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列20~25MPa的轴转马达

J 20 JB/T 5920.1-1991 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列 第一部分 20~25MPa的轴转马达 1991-12-11 发布1992-07-01 实施中华人民共和国机械电子工业部发布

1 本标准参照采用国际标准ISO 3019–3—1988《液压传动——容积式泵和马达——安装法兰和轴伸的尺寸系列和标注代号——第三部分:多边形法兰(包括圆形法兰)》。1 主题内容与适用范围 本标准规定了内曲线(向外作用)式低速大扭矩液压马达的安装法兰和轴伸尺寸。 本标准适用于额定压力为20~25MPa 、排量范围为0.25~12L/r 的内曲线(向外作用)式液压马达。2 引用标准 GB 2353.2液压泵和马达安装法兰和轴伸的尺寸系列和标记 (二) 多边形法兰 (包括圆形法兰)GB 3478.1圆柱直齿渐开线花键(齿侧配合)的术语与尺寸计算GB 3478.2圆柱直齿渐开线花键(齿侧配合)尺寸表GB 1801公差与配合 3 安装法兰 多边形安装法兰(包括圆形安装法兰)的型式和尺寸见下图和下表的规定。4 轴伸 渐开线花键轴伸的尺寸系列见下图和下表的规定。公差与配合按GB 3478.1、GB 3478.2规定。5 标记 按GB 2353.2规定。 中华人民共和国机械电子工业部 1991-12-11 批准中华人民共和国机械行业标准 内曲线(向外作用)式低速大扭矩液压马达安装法兰和轴伸的尺寸系列第一部分 20~25MPa 的轴转马达 JB/T 5920.1-1991 1992-07-01 实施

JB/T5920.1-1991 图 2

8液压马达的工作原理

河北机电职业技术学院备课记录No9-1 序号9 日期200811.10 班级数控0402 课题§3.1第一节液压马达 §3.2第二节液压缸 重点与难点重点: 1.液压马达的工作原理 难点: 2.液压缸的类型和特点 教师魏志强2008 年11月1日 一引入 复习:(5分钟) 1.单作用叶片泵工作原理 2.限压式变量叶片泵工作原理 二正课 第三章液压执行元件 第一节液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出

低速大扭矩液压马达

低速大扭矩液压马达 工作原理 液压马达由定子(Cam Ring)1、也称凸轮环、转子(Rotor)2、配流轴(Pintle)4与柱塞组(Leadscrew)3等主要部件组成,定子1的内壁有若干段均布的、形状完全相同的曲面组成,每一相同形状的曲面又可分为对称的两边,其中允许柱塞副向外伸的一边称为进油工作段,与它对称的另一边称为排油工作段,每个柱塞在液压马达每转中往复的次数就等于定子曲面数,我们将称为该液压马达的作用次数;在转子的径向有个均匀分布的柱塞缸孔,每个缸孔的底部都有一配流窗口,并与它的中心配流轴4相配合的配流孔相通。配流轴4中间有进油和回油的孔道,它的配流窗口的位置与导轨曲面的进油工作段和回油工作段的位置相对应,所以在配流轴圆周上有2个均布配流窗口。柱塞组3,以很小的间隙置于转子2的柱塞缸孔中。作用在柱塞上的液压力经滚轮传递到定子的曲面上。 来自液压泵的高压油首先进入配流轴,经配流轴窗口进入处于工作段的各柱塞缸孔中,使相应的柱塞组的滚轮顶在定子曲面上,在接触处,定子曲面给柱塞组一反力N,这反力N作用在定子曲面与滚轮接触处的公法面上,此法向反力N 可分解为径向力和圆周力,与柱塞底面的液压力以及柱塞组的离心力等相平衡,而所产生的驱动力矩则克服负载力矩使转子2旋转。柱塞所作的运动为复合运动,即随转子2旋转的同时并在转子的柱塞缸孔内作往复运动,定子和配流轴是不转的。而对应于定子曲面回油区段的柱塞作相反方向运动,通过配流轴回油,当柱塞组3经定子曲面工作段过渡到回油段的瞬间,供油和回油通道被闭死。 若将液压马达的进出油方向对调,液压马达将反转;若将驱动轴固定,则定子、配流轴和壳体将旋转,通常称为壳转工况,变为车轮马达。 分类 低速大扭矩液压马达分为一般低速大扭矩液压马达,曲柄连杆低速大扭矩液压马达,静力平衡式低速大扭矩液压马达,多作用内曲线液压马达 相关型号 NHM系列马达产品特点:1、采用曲轴及较低激振频率的五缸五活塞机构,保持原有的低噪音特点;2、启动扭矩大,具有良好的低速稳定性,能在很低的速度下平稳运转;3、采用平面可补偿式配油结构,可靠性好,泄漏少,维修方便,活塞和柱塞套采用密封环密封,具有很高的容积效率;4、曲轴和连杆间由滚柱支撑具有很高机械效率;旋转方向可逆,输出轴允许承受一定的径向和轴向外力;5、具有较高的功率质量比,体积重量 MCR系列马达特点: 1、马达规格覆盖各应用领域,排量范围从0.2 L/r至15L/r。 2、模块化概念,适应多种应用场合。 3、配置结构不重复,各马达模块自由组合。 4、性能高,包括起动扭矩大,机械、容积效率高,噪音低,转动惯量小。

工程建设机械液压卡紧的危害、原因及消除措施(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 工程建设机械液压卡紧的危害、原因及消除措施(最新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

工程建设机械液压卡紧的危害、原因及消 除措施(最新版) 1液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟缓,甚至动作错乱的现象; 2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动

而不能实现吸油和压油等)的现象,使手柄的操作力增大。 2产生液压卡紧现象的原因 1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后将阀芯顶死阀体孔上。 2.阀芯与阀孔因加工和装配误差,阀芯在阀孔内倾斜成一定角度,压力油经上下缝隙后,上缝隙不断增大,下缝隙不断减小,其压力降曲线也不同,压力差值产生偏心力和一个使阀芯阀体孔的轴线互不平衡的力矩,使阀芯在孔内更倾斜,最后阀芯卡死在阀孔内。 3.阀芯上面因碰伤有局部凸起或毛刺,产生一个使凸起部分压向阀套的力矩,将阀芯卡死在阀孔内。 4.为减少径向不平衡力,往往在阀芯上加工若干条环形均压槽。加工时环形槽与阀芯外圆若不同心,经热处理后再磨加工,可导致

相关主题