搜档网
当前位置:搜档网 › linux 中select函数分析

linux 中select函数分析

linux 中select函数分析
linux 中select函数分析

linux 中select函数分析

select()的机制中提供一fd_set的数据结构,实际上是一long类型的数组,

每一个数组元素都能与一打开的文件句柄(不管是Socket句柄,还是其他

文件或命名管道或设备句柄)建立联系,建立联系的工作由程序员完成,

当调用select()时,由内核根据IO状态修改fd_set的内容,由此来通知执

行了select()的进程哪一Socket或文件可读,下面具体解释:

#include

#include

#include

int select(nfds, readfds, writefds, exceptfds, timeout)

int nfds;

fd_set *readfds, *writefds, *exceptfds;

struct timeval *timeout;

ndfs:select监视的文件句柄数,视进程中打开的文件数而定,一般设为呢要监视各文件中的最大文件号加一。

readfds:select监视的可读文件句柄集合。

writefds: select监视的可写文件句柄集合。

exceptfds:select监视的异常文件句柄集合。

timeout:本次select()的超时结束时间。(见/usr/sys/select.h,

可精确至百万分之一秒!)

当readfds或writefds中映象的文件可读或可写或超时,本次select()

就结束返回。程序员利用一组系统提供的宏在select()结束时便可判

断哪一文件可读或可写。对Socket编程特别有用的就是readfds。

几只相关的宏解释如下:

FD_ZERO(fd_set *fdset):清空fdset与所有文件句柄的联系。

FD_SET(int fd, fd_set *fdset):建立文件句柄fd与fdset的联系。

FD_CLR(int fd, fd_set *fdset):清除文件句柄fd与fdset的联系。

FD_ISSET(int fd, fdset *fdset):检查fdset联系的文件句柄fd是否

可读写,>0表示可读写。

(关于fd_set及相关宏的定义见/usr/include/sys/types.h)

这样,你的socket只需在有东东读的时候才读入,大致如下:

...

int sockfd;

fd_set fdR;

struct timeval timeout = ..;

...

for(;;) {

FD_ZERO(&fdR);

FD_SET(sockfd, &fdR);

switch (select(sockfd + 1, &fdR, NULL, &timeout)) {

case -1:

error handled by u;

case 0:

timeout hanled by u;

default:

if (FD_ISSET(sockfd)) {

now u read or recv something;

/* if sockfd is father and

server socket, u can now

accept() */

}

}

}

所以一个FD_ISSET(sockfd)就相当通知了sockfd可读。

至于struct timeval在此的功能,请man select。不同的timeval设置

使使select()表现出超时结束、无超时阻塞和轮询三种特性。由于

timeval可精确至百万分之一秒,所以Windows的SetTimer()根本不算

什么。你可以用select()做一个超级时钟。

FD_ACCEPT的实现?依然如上,因为客户方socket请求连接时,会发送

连接请求报文,此时select()当然会结束,FD_ISSET(sockfd)当然大

于零,因为有报文可读嘛!至于这方面的应用,主要在于服务方的父Socket,你若不喜欢主动accept(),可改为如上机制来accept()。

至于FD_CLOSE的实现及处理,颇费了一堆cpu处理时间,未完待续。

--

讨论关于利用select()检测对方Socket关闭的问题:

仍然是本地Socket有东东可读,因为对方Socket关闭时,会发一个关闭连接通知报文,会马上被select()检测到的。关于TCP的连接(三次握手)和关

闭(二次握手)机制,敬请参考有关TCP/IP的书籍。

不知是什么原因,UNIX好象没有提供通知进程关于Socket或Pipe对方关闭的信号,也可能是cpu所知有限。总之,当对方关闭,一执行recv()或read(),马上回返回-1,此时全局变量errno的值是115,相应的sys_errlist[errno] 为"Connect refused"(请参考/usr/include/sys/errno.h)。所以,在上

篇的for(;;)...select()程序块中,当有东西可读时,一定要检查recv()或

read()的返回值,返回-1时要作出关断本地Socket的处理,否则select()会

一直认为有东西读,其结果曾几令cpu伤心欲断针脚。不信你可以试试:不检

查recv()返回结果,且将收到的东东(实际没收到)写至标准输出...

在有名管道的编程中也有类似问题出现。具体处理详见拙作:发布一个有用

的Socket客户方原码。

至于主动写Socket时对方突然关闭的处理则可以简单地捕捉信号SIGPIPE并作出相应关断本地Socket等等的处理。SIGPIPE的解释是:写入无读者方的管道。在此不作赘述,请详man signal。

以上是cpu在作tcp/ip数据传输实验积累的经验,若有错漏,请狂炮击之。

唉,昨天在hacker区被一帮孙子轰得差点儿没短路。ren cpu(奔腾的心) z80

补充关于select在异步(非阻塞)connect中的应用,刚开始搞socket编程的时候

我一直都用阻塞式的connect,非阻塞connect的问题是由于当时搞proxy scan

而提出的呵呵

通过在网上与网友们的交流及查找相关FAQ,总算知道了怎么解决这一问题.同样用select可以很好地解决这一问题.大致过程是这样的:

1.将打开的socket设为非阻塞的,可以用fcntl(socket, F_SETFL, O_NDELAY)完

成(有的系统用FNEDLAY也可).

2.发connect调用,这时返回-1,但是errno被设为EINPROGRESS,意即connect仍旧在进行还没有完成.

3.将打开的socket设进被监视的可写(注意不是可读)文件集合用select进行监视, 如果可写,用

getsockopt(socket, SOL_SOCKET, SO_ERROR, &error, sizeof(int));

来得到error的值,如果为零,则connect成功.

linux定时器详解

Linux内核定时器详解 80X86体系结构上,常用的定时器电路 实时时钟(RTC) RTC内核通过IRQ8上发出周期性的中断,频率在2-8192HZ之间,掉电后依然工作,内核通过访问0x70和0x71 I/O端口访问RTC。 时间戳计时器(TSC) 利用CLK输入引线,接收外部振荡器的时钟信号,该计算器是利用64位的时间戳计时器寄存器来实现额,与可编程间隔定时器传递来的时间测量相比,更为精确。 可编程间隔定时器(PIT) PIT的作用类似于微波炉的闹钟,PIT永远以内核确定的固定频率发出中断,但频率不算高。 CPU本地定时器 利用PIC或者APIC总线的时钟计算。 高精度时间定时器(HPET) 功能比较强大,家机很少用,也不去记了。 ACPI电源管理定时器 它的时钟信号拥有大约为3.58MHZ的固定频率,该设备实际上是一个简单的计数器,为了读取计算器的值,内核需要访问某个I/O端口,需要初始化 定时器的数据结构 利用timer_opts描述定时器 Timer_opts的数据结构 Name :标志定时器员的一个字符串 Mark_offset :记录上一个节拍开始所经过的时间,由时钟中断处理程序调用 Get_offset 返回自上一个节拍开始所经过的时间

Monotonic_clock :返回自内核初始化开始所经过的纳秒数 Delay:等待制定数目的“循环” 定时插补 就好像我们要为1小时35分34秒进行定时,我们不可能用秒表去统计,肯定先使用计算时的表,再用计算分的,最后才用秒表,在80x86架构的定时器也会使用各种定时器去进行定时插补,我们可以通过cur_timer指针来实现。 单处理器系统上的计时体系结构 所有与定时有关的活动都是由IRQ线0上的可编程间隔定时器的中断触发。 初始化阶段 1. 初始化间,time_init()函数被调用来建立计时体系结构 2. 初始化xtime变量(xtime变量存放当前时间和日期,它是一个timespec 类型的数据结构) 3. 初始化wall_to_monotonic变量,它跟xtime是同一类型的,但它存放将加在xtime上的描述和纳秒数,这样即使突发改变xtime也不会受到影响。 4. 看是否支持高精度计时器HPET 5. 调用select_timer()挑选系统中可利用的最好的定时资源,并让 cur_timer变量指向该定时器 6. 调用setup_irq(0,&irq0)来创建与IRQ相应的中断门。 时钟中断处理程序 1. 在xtime_lock顺序锁产生一个write_seqlock()来保护与定时相关的内核变量,这样防止中断让该进程被阻止。 2. 执行cur_timer定时器对象的mark_offset方法(记录上一个节拍开始所经过的时间,由时钟中断处理程序调用) 3. 调用do_timer_interrupt函数,步骤为 a) 使jiffies_64值增1 b) 调用updata_times()函数来更新系统日期和时间。

fork函数和子进程

Fork函数 函数pid_t fork(void) 正确返回:在父进程中返回子进程的进程号,在子进程中返回0 错误返回:-1 子进程是父进程的一个拷贝。即,子进程从父进程得到了数据段和堆栈段的拷贝,这些需要分配新的内存;而对于只读的代码段,通常使用共享内存的方式访问。fork返回后,子进程和父进程都从调用fork函数的下一条语句开始执行。父进程与子进程的不同之处在于:fork的返回值不同——父进程中的返回值为子进程的进程号,而子进程为0。 以下是fork的两个示例程序: //fork.c #include #include void main () { int pid; //printf("Process [%d] begin",getpid()); //print twice printf("Process [%d] begin\n",getpid()); //print once //由于fork时pc等值的拷贝,子进程只会从fork处开始执行 pid = fork(); if (pid < 0) printf("error in fork!"); else if (pid == 0) printf("I'm child process, my pid is %d\n", getpid()); else printf("I'm parent process, my pid is %d\n", getpid()); printf("Process [%d] end\n",getpid()); return; } 输出结果: 使用printf("Process [%d] begin\n",getpid())时 Process [11155] begin I'm parent process, my pid is 11155

linux Select函数用法详解

Socket-Select Select在Socket编程中还是比较重要的,可是对于初学Socket的人来说都不太爱用Select写程序,他们只是习惯写诸如 connect、accept、recv或recvfrom 这样的阻塞程序(所谓阻塞方式block,顾名思义,就是进程或是线程执行到这些函数时必须等待某个事件的发生,如果事件没有发生,进程或线程就被阻塞,函数不能立即返回)。 可是使用Select就可以完成非阻塞(所谓非阻塞方式non-block,就是进程或线程执行此函数时不必非要等待事件的发生,一旦执行肯定返回,以返回值的不同来反映函数的执行情况,如果事件发生则与阻塞方式相同,若事件没有发生则返回一个代码来告知事件未发生,而进程或线程继续执行,所以效率较高)方式工作的程序,它能够监视我们需要监视的文件描述符的变化情况——读写或是异常。下面详细介绍一下。 Select的函数格式: int select(int maxfdp,fd_set *readfds,fd_set *writefds,fd_set *errorfds,struct timeval *timeout); 先说明两个结构体: 第一,struct fd_set可以理解为一个集合,这个集合中存放的是文件描述符(file descriptor),即文件句柄,这可以是我们所说的普通意义的文件,当然Unix下任何设备、管道、FIFO等都是文件形式,全部包括在内,所以毫无疑问一个socket就是一个文件,socket句柄就是一个文件描述符。fd_set集合可以通过一些宏由人为来操作,比如清空集合 FD_ZERO(fd_set *),将一个给定的文件描述符加入集合之中FD_SET(int ,fd_set *),将一个给定的文件描述符从集合中删除FD_CLR(int ,fd_set*),检查集合中指定的文件描述符是否可以读写FD_ISSET(int ,fd_set* )。一会儿举例说明。 第二,struct timeval是一个大家常用的结构,用来代表时间值,有两个成员,一个是秒数,另一个是毫秒数。 具体解释select的参数: int maxfdp是一个整数值,是指集合中所有文件描述符的范围,即所有文件描述符的最大值加1,不能错!在Windows中这个参数的值无所谓,可以设置不正确。 fd_set *readfds是指向fd_set结构的指针,这个集合中应该包括文件描述符,我们是要监视这些文件描述符的读变化的,即我们关心是否可以从这些文件中读取数据了,如果这个集合中有一个文件可读,select就会返回一个大于0的值,表示有文件可读,如果没有可读的文件,则根据timeout参数再判断是否

linux下的时间转换函数

linux下的时间函数 我们在编程中可能会经常用到时间,比如取得系统的时间(获取系统的年、月、日、时、分、秒,星期等),或者是隔一段时间去做某事,那么我们就用到一些时间函数。 linux下存储时间常见的有两种存储方式,一个是从1970年到现在经过了多少秒,一个是用一个结构来分别存储年月日时分秒的。 time_t 这种类型就是用来存储从1970年到现在经过了多少秒,要想更精确一点,可以用结构struct timeval,它精确到微妙。 struct timeval { long tv_sec; /*秒*/ long tv_usec; /*微秒*/ }; 而直接存储年月日的是一个结构: struct tm { int tm_sec; /*秒,正常范围0-59,但允许至61*/ int tm_min; /*分钟,0-59*/ int tm_hour; /*小时,0-23*/ int tm_mday; /*日,即一个月中的第几天,1-31*/ int tm_mon; /*月,从一月算起,0-11*/ int tm_year; /*年,从1900至今已经多少年*/ int tm_wday; /*星期,一周中的第几天,从星期日算起,0-6*/ int tm_yday; /*从今年1月1日到目前的天数,范围0-365*/ int tm_isdst; /*日光节约时间的旗标*/ };

需要特别注意的是,年份是从1900年起至今多少年,而不是直接存储如2008年,月份从0开始的,0表示一月,星期也是从0开始的,0表示星期日,1表示星期一。 下面介绍一下我们常用的时间函数: #include char *asctime(const struct tm* timeptr); 将结构中的信息转换为真实世界的时间,以字符串的形式显示 char *ctime(const time_t *timep); 将timep转换为真是世界的时间,以字符串显示,它和asctime不同就在于传入的参数形式不一样 double difftime(time_t time1, time_t time2); 返回两个时间相差的秒数 int gettimeofday(struct timeval *tv, struct timezone *tz); 返回当前距离1970年的秒数和微妙数,后面的tz是时区,一般不用 struct tm* gmtime(const time_t *timep); 将time_t表示的时间转换为没有经过时区转换的UTC时间,是一个struct tm结构指针 stuct tm* localtime(const time_t *timep); 和gmtime类似,但是它是经过时区转换的时间。 time_t mktime(struct tm* timeptr); 将struct tm结构的时间转换为从1970年至今的秒数 time_t time(time_t *t); 取得从1970年1月1日至今的秒数。 上面是简单的介绍,下面通过实战来看看这些函数的用法: 下载: gettime1.c 1. /*gettime1.c*/ 2. #include 3. int main()

select用法

SELECT命令在全国计算机等级考试二级VFP考试中所占的比重可以说非常大,在笔试考试中可以占8-12分,上机考试中占20-50分,所以我将SELECT命令做如下说明,请大家认真学习. SELECT各短语功能: SELECT 说明查询结果,可以用*来表示所有字段,也可以直接写所要查询的字段名,多个字段名也要用英文的逗号隔开,在分组或计算查询中还可以使用如SUM(),COUNT(),A VG(),MAX(),MIN()这些函数进行运算,还可以在排序后用TOP短语来取查询结果的前几条记录,用AS短语对结果字段重新命名; FROM 说明查询的数据源,一般写表名,多个表名用英文的逗号隔开,也可以对所用到的表进行重新命名(如学生st 将学生表重新命名成st表); WHERE 说明查询条件,一般写条件表达式也就是逻辑表达式; GROUP BY说明分组字段此短语后可跟写HA VING短语用来说明分组后的条件; ORDER BY说明排序字段,可以用ASC(升序)和DESC(降序)来说明排序方式; INTO 说明查询去各,可以用TABLE或DBF(表)、CURSOR(临时表)、ARRAY(数组)三短语中一个来说明查询去向的类型。 考点1 简单查询 1简单查询 简单查询是由SELECT和FROM短语构成的无条件查询,或由SELECT,FROM和WHERE短语构成的条件查询。 2简单的连接查询 连接是关系的基本操作之一,连接查询是一种基于多个关系的查询。 3嵌套查询 嵌套查询所要求的结果出自一个关系,但关系的条件却涉及多个关系。其内层基本上也是一个SELECT-FROM-WHERE查询语句。这种简单嵌套查询,可使用谓词IN或NOT IN 来判断在外层的查询条件中是否包含内层查询的结果。 考点2 特殊运算符号 1 BETWEEN…AND… 含义:该查询的条件是在……范围之内,相当于用AND连接的一个逻辑表达式。 2 LIKE 含义:它是一个字符串匹配运算符,与之搭配使用的通配符包括“*”和“?”。 考点3 排序 使用SQL SELECT可以将查询结果进行排序,排序的短语是ORDER BY。 格式:ORDER BY Order_Item[ASCIDESC][,Order_Item[ASC|DESC]…] 说明:可以按升序(ASC)或降序(DESC)排序,允许按一列或多列排序。 考点4 计算查询 1简单的计算查询 SQL不仅具有一般的检索能力,而且还有计算方式的检索,用于计算检索的函数有:COUNT(计数)、SUM(求和)、A VG(计算平均值)、MAX(求最大值)及MIN(求最小值)。 2分组与计算查询 在SQL SELECT中可以利用GROUP BY子句进行分组计算查询。 格式:GROUP BY GroupColumn[,GroupColumn…][HA VING FilterCondition] 说明:可以按一列或多列分组,还可以用HA VING子句进一步限定分组的条件。它必须跟在GROUP BY子句之后,不可单独使用,与WHERE子句并不矛盾。 考点5 别名和自连接查询

fork函数实验总结

针对fork函数难以理解,根据网上的解释,参考他人代码,做了如下实验,并附以实验分析 2 #include 3 #include 4 #include 5 #include 6 #include 7 8 int main () 9 { 10 pid_t pc,pr; 11 pc=fork(); (gdb) 12 13 if (pc<0) 14 { 15 printf("error fork.\n"); 16 17 } 18 else if (pc==0) 19 { 20 printf("this is pc=%d\n",getpid()); 21 sleep(5); (gdb) 22 printf("5 s over\n"); 23 //exit(0); 24 } 25 pr=fork(); 26 if (pr==0) 27 { 28 printf("this is pr =%d\n",getpid()); 29 } 30 31 else if (pr>0&&pc>0) (gdb) 32 printf("this is main =%d",getpid()); 33 34 35 36 37 38 } (gdb) b 12

Breakpoint 1 at 0x804849d: file /home/lsp/fork3.c, line 12. (gdb) b 19 Breakpoint 2 at 0x80484b7: file /home/lsp/fork3.c, line 19. (gdb) b 24 Breakpoint 3 at 0x80484e4: file /home/lsp/fork3.c, line 24. (gdb) b 26 Breakpoint 4 at 0x80484ec: file /home/lsp/fork3.c, line 26. (gdb) run Starting program: /home/lsp/fork3 Detaching after fork from child process 13200. ---说明pc=fork()函数已经建立子进程 this is pc=13200 Breakpoint 1, main () at /home/lsp/fork3.c:13 13 if (pc<0) (gdb) 5 s over this is pr =13201 --说明pc=fork()进程13200启动了新的子进程pr 其pid=13201 next Breakpoint 3, main () at /home/lsp/fork3.c:25 25 pr=fork(); --父进程停在pr=fork()处, (gdb) next Detaching after fork from child process 13254. this is pr =13254 --此处pr的pid=13254 与上一个pr=13201不同,这说明此处的pr是由main创建的 Breakpoint 4, main () at /home/lsp/fork3.c:26 26 if (pr==0) (gdb) next 31 else if (pr>0&&pc>0) (gdb) next 32 printf("this is main =%d",getpid()); (gdb) next 38 } (gdb) next 0x00a6d5d6 in __libc_start_main () from /lib/libc.so.6 (gdb) next Single stepping until exit from function __libc_start_main, which has no line number information. this is main =13199 ---main函数退出,器pid=13199 Program exited with code 023. (gdb)

Linux的fork、exec、wait函数的分析

Linux 的fork 、exec 、wait 函数分析 I 数学与计算机学院 课程设计说明书 课 程 名 称: 操作系统原理-课程设计 课 程 代 码: 8404061 题 目: Linux 的fork 、exec 、wait 函数的分析 年级/专业/班: 学 生 姓 名: 学 号: 3 开 始 时 间: 2010 年 12 月 12 日 完 成 时 间: 2011 年 01 月 09 日 课程设计成绩: 指导教师签名: 年 月 日

Linux 的fork 、exec 、wait 函数分析 II 目 录 1 引 言 ................................................................. 1 1.1 问题的提出 ...................................................................................................................... 1 1.2国内外研究的现状 ........................................................................................................... 1 1.3任务与分析 ....................................................................................................................... 1 2代码分析结果 ............................................................ 2 2.1 数据结构 ......................................................................................................................... 2 2.1.1 struct task_struct ............................................................................................. 2 2.1.2 task ......................................................................................................................... 3 2.1.3 tarray_freelist ................................................................................................... 3 2.1.4 struct--linux_binprm ......................................................................................... 3 2.1.5进程状态 .................................................................................................................. 4 2.2常量和出错信息的意义 .................................................................................................. 4 2.3调用关系图 ...................................................................................................................... 4 2.4各模块/函数的功能及详细框图 .................................................................................... 5 2.4.1 do_fork 模块 .......................................................................................................... 5 2.4.2 get_pid 模块 .......................................................................................................... 8 2.4.3 do_execve 模块 ........................................................................................................ 10 3.4.4 do_exit 模块 ........................................................................................................ 14 3.4.5 sys_wait4模块 .................................................................................................. 18 3 总结与体会 ............................................................ 20 4 参考文献 .. (20)

整理的SQL常用函数

create table test (id int, value varchar(10)) insertinto test values('1','aa') insertinto test values('1','bb') insertinto test values('2','aaa') insertinto test values('2','bbb') insertinto test values('2','ccc') insertinto test values('3','aa') insertinto test values('4','bb') select*from test select id, [values] =stuff((select','+ [values] from test t where id = test.id forxmlpath('')), 1 , 1 ,'') from test groupby id stuff(param1,startIndex,length, param2) 说明:将param1中自startIndex(SQL中都是从1开始,而非0)起,删除length个字符,然后用param2替换删掉的字符。*/

COUNT()函数用于返回一个列内所有非空值的个数,这是一个整型值。 由于COUNT(*)函数会忽略NULL值,所以这个查询的结果是2。 三、SUM()函数 SUM()函数是最常用的聚合函数之一,它的功能很容易理解:和AVG()函数一样,它用于数值数据类型,返回一个列范围内所有非空值的总和。 四、CAST()函数 CAST()函数的参数是一个表达式,它包括用AS关键字分隔的源值和目标数据类型。 以下例子用于将文本字符串'123'转换为整型: SELECT CAST('123' AS int) 返回值是整型值123。 如果试图将一个代表小数的字符串转换为整型值,又会出现什么情况呢? SELECT CAST('123.4' AS int) CAST()函数和CONVERT()函数都不能执行四舍五入或截断操作。由于123.4不能用int数据类型来表示,所以对这个函数调用将产生一个错误。 Server: Msg 245, Level 16, State 1, Line 1 Syntax error converting the varchar value '123.4' to a column of data type int. 在将varchar值'123.4' 转换成数据类型int时失败。 要返回一个合法的数值,就必须使用能处理这个值的数据类型。对于这个例子,存在多个可用的数据类型。如果通过CAST()函数将这个值转换为decimal类型,需要首先定义decimal 值的精度与小数位数。在本例中,精度与小数位数分别为9与2。精度是总的数字位数,包括小数点左边和右边位数的总和。而小数位数是小数点右边的位数。这表示本例能够支持的最大的整数值是9999999,而最小的小数是0.01。 SELECT CAST('123.4' AS decimal(9,2)) decimal数据类型在结果网格中将显示有效小数位:123.40 精度和小数位数的默认值分别是18与0。如果在decimal类型中不提供这两个值,SQL Server 将截断数字的小数部分,而不会产生错误。 SELECT CAST('123.4' AS decimal) 结果是一个整数值:123 五、CONVERT()函数 对于简单类型转换,CONVERT()函数和CAST()函数的功能相同,只是语法不同。 CAST()函数一般更容易使用,其功能也更简单。 CONVERT()函数的优点是可以格式化日期和数值,它需要两个参数:第1个是目标数据类型,第2个是源数据。 CONVERT()函数还具有一些改进的功能,它可以返回经过格式化的字符串值,且可以把日期值格式化成很多形式。有28种预定义的符合各种国际和特殊要求的日期与时间输出格式。 六、STR()函数 这是一个将数字转换为字符串的快捷函数。这个函数有3个参数:数值、总长度和小数位数。如果数字的整数位数和小数位数(要加上小数点占用的一个字符)的总和小于总长度,对结果中左边的字符将用空格填充。在下面第1个例子中,包括小数点在内一共是5个字符。结果

Linux下select函数的使用

select系统调用是用来让我们的程序监视多个文件句柄的状态变化的。程序会停在select这里等待,直到被监视的文件句柄有一个或多个发生了状态改变。关于文件句柄,其实就是一个整数,我们最熟悉的句柄是0、1、2三个,0是 标准输入,1是标准输出,2是标准错误输出。0、1、2是整数表示的,对应的FILE *结构的表示就是stdin、stdout、stderr。 int select(int n,fd_set * readfds,fd_set * writefds,fd_set * exceptfds,struct timeval * timeout); 参数n代表文件描述词加1; 参数readfds、writefds 和exceptfds 称为描述词组,是用来回传该描述词的读,写或例外的状况。 下面的宏提供了处理这三种描述词组的方式: FD_CLR(inr fd,fd_set* set);用来清除描述词组set中相关fd 的位 FD_ISSET(int fd,fd_set *set);用来测试描述词组set中相关fd 的位是否 为真 FD_SET(int fd,fd_set*set);用来设置描述词组set中相关fd的位 FD_ZERO(fd_set *set);用来清除描述词组set的全部位 参数timeout为结构timeval,用来设置select()的等待时间,其结构定义如下: struct timeval { time_t tv_sec; time_t tv_usec; }; (1)如果参数timeout设为NULL,则表示select()一直阻塞,直到有句柄状态变化 (2)如果timeout值为0,则select不阻塞直接返回 (3)如果timeout为某个特定值,则在特定时间内阻塞直到有句柄状态变化,如果这个世间内所有句柄状态都无变化,则超时返回0 select函数执行结果:执行成功则返回文件描述词状态已改变的个数,如果返回0代表在描述词状态改变前已超过timeout时间,没有返回;当有错误发生时则返回-1,错误原因存于errno,此时参数readfds,writefds,exceptfds

进程创建之fork系统调用

4 进程创建 (1) 4.1 实验内容及要求 (1) 4.2 实验目的 (1) 4.3 实验环境 (1) 4.4 实验思路 (1) 4.5 实验代码 (2) 4.6 运行结果 (3) 4.7 实验心得 (3) 4 进程创建 4.1 实验内容及要求 利用fork()系统调用创建进程。要求如下: 编制一段程序,使用系统调用fork( )创建两个子进程,这样在此程序运行时,在系统中就有一个父进程和两个子进程在活动。每一个进程在屏幕上显示一个字符,其中父进程显示字符A,子进程分别显示字符 B和字符C。试观察、记录并分析屏幕上进程调度的情况。 4.2 实验目的 了解进程的创建过程,进一步理解进程的概念,明确进程和程序的区别。 4.3 实验环境 Ubuntu 18.04.1 LTS 64位,编译器gcc 7.3.0 (Ubuntu 7.3.0-16ubuntu3) 4.4 实验思路 (1)可用fork()系统调用来创建一个新进程。 系统调用格式:pid=fork() fork()返回值意义如下: =0:若返回值为0,表示当前进程是子进程。 >0:若返回值大于0,表示当前进程是父进程,返回值为子进程的pid值。

<0:若返回值小于0,表示进程创建失败。 如果fork()调用成功,它向父进程返回子进程的pid,并向子进程返回0,即fork()被调用了一次,但返回了两次。此时OS在内存中建立一个新进程,所建的新进程是调用fork()父进程的副本,称为子进程。子进程继承了父进程的许多特性,并具有与父进程完全相同的用户级上下文。父进程与子进程并发执行。 (2)编译和执行的方法: 编译:在shell提示符下输入gcc 源文件名 -o 可执行文件名 运行:在shell提示符下输入 ./可执行文件名 4.5 实验代码 #include #include #include int main(void) { pid_t p1=fork();pid_t p2=fork(); //迭代调用fork(),创建三个新进程printf("this is parent, pid = %d\n", getpid()); //父进程 if(p1<0||p2<0){ //fork()失败 printf("fork failed with p1=%d, p2=%d\n", p1, p2); exit(1); }if(p1==0&&p2==0){ //子进程B创建的子进程D,即孙进程 printf("D in grandson Damson, pid = %d\n", getpid()); }if(p1==0&&p2>0){ //父进程创建的子进程B printf("B in child Blueberry, pid = %d\n", getpid()); }if(p1>0&&p2==0){ //父进程创建的子进程C printf("C in child Carambola, pid = %d\n", getpid()); }if(p1>0&&p2>0){ //父进程 printf("A in parent Apple, pid = %d\n", getpid()); }return 0; }

linux下获取系统时间的方法

linux下获取系统时间的方法 时间:2009-11-11 13:45:04 来源:Linux联盟作者:可以用localtime 函数分别获取年月日时分秒的数值。 Linux下获得系统时间的C语言的实现方法: 1. 可以用localtime 函数分别获取年月日时分秒的数值。 #include //C语言的头文件 #include //C语言的I/O void main() { time_t now; //实例化time_t结构 struct tm *timenow; //实例化tm结构指针 time(&now); //time函数读取现在的时间(国际标准时间非北京时间),然后传值给now timenow = localtime(&now); //localtime函数把从time取得的时间now换算成你电脑中的时间(就是你设置的地区) printf("Local time is %sn",asctime(timenow)); //上句中asctime函数把时间转换成字符,通过printf()函数输出 } 注释:time_t是一个在time.h中定义好的结构体。而tm结构体的原形如下: struct tm { int tm_sec;//seconds 0-61 int tm_min;//minutes 1-59 int tm_hour;//hours 0-23 int tm_mday;//day of the month 1-31 int tm_mon;//months since jan 0-11 int tm_year;//years from 1900 int tm_wday;//days since Sunday, 0-6 int tm_yday;//days since Jan 1, 0-365 int tm_isdst;//Daylight Saving time indicator }; 2. 对某些需要较高精准度的需求,Linux提供了gettimeofday()。

fock()函数问题

#include #include #include int main() { pid_t pid1; pid_t pid2; pid1 = fork(); pid2 = fork(); printf("pid1:%d, pid2:%d\n", pid1, pid2); } 输出: pid1:3411, pid2:3412 pid1:0, pid2:3413 pid1:3411, pid2:0 pid1:0, pid2:0 1. 基础知识: 1)fork函数总是“调用一次,返回两次”,在父进程中调用一次,在父进程和子进程中各返回一次。fork在子进程中的返回值是0,而在父进程中的返回值则是子进程的id。 2)子进程在创建的时候会复制父进程的当前状态(PCB信息相同,用户态代码和数据也相同)。 3)程序运行的结果基本上是父子进程交替打印,但这也不是一定的,取决于系统中其它进程的运行情况和内核的调度算法。 2. 第一个fork: 子进程A被创建,之后从fork函数往下执行与父进程相同的代码,即后一个fork和printf 会被父进程和子进程A分别执行一次: 父进程打印的pid1和pid2是两个子进程的pid,即结果的第一行:pid1:3411, pid2:3412 子进程A打印的pid1和pid2是这个fork在子进程A中的返回(0)和子进程A中调用fork返回的pid,即结果的第二行:pid1:0, pid2:3413 3. 第二个fork: 这个fork会被父进程和子进程A都执行一遍。假设子进程B被主进程创建,子进程C被子进程A创建。子进程A也可以说是子进程C的父进程,为了避免混淆,我这里改叫主进程而不再使用父进程的概念。 子进程B的打印即结果的第三行:pid1:3411, pid2:0。其中,其中,pid1为复制的主进程的数据,pid2为该fork在子进程B中的返回。 子进程C的打印,即结果的最后一行:pid1:0, pid2:0。其中,pid1为复制的进程A的数据,pid2为该fork在子进程C内部的返回。

[MSSQL] - SELECT语句使用大全

SELECT语句使用大全 虽然 SELECT 语句的完整语法比较复杂,但是大多数 SELECT 语句都描述结果集的四个主要属性 1、结果集中的列的数量和属性。 2、从中检索结果集数据的表,以及这些表之间的所有逻辑关系。 3、为了符合 SELECT 语句的要求,源表中的行所必须达到的条件。不符合条件的行会被忽略。 4、结果集的行的排列顺序。 它的主要子句可归纳如下: SELECT select_list --描述结果集的列 INTO new_table_name --指定使用结果集来创建新表 FROM table_list --包含从中检索到结果集数据的表的列表[返回结果集的对象]。 [ WHERE search_conditions ] --WHERE 子句是一个筛选,它定义了源表中的行要满足 SELECT 语句的要求所必须达到的条件 [ GROUP BY group_by_list ] --根据 group_by_list 列中的值将结果集分成组[ HAVING search_conditions ] --结果集的附加筛选 [ ORDER BY order_list [ ASC | DESC ] ] --结果集的附加筛选 一、使用选择列表 1、使用 *号来选择所有列;使用“[表名|别名]。[字段]”选取特定的列。 2、AS 子句可用来更改结果集列的名称或为派生列分配名称,也可以使用空格代替 如: SELECT Name AS Name1,Name Name2 FROM Product ORDER BY Name ASC 3、使用 DISTINCT 消除重复项 如:select distinct [Year] from A 4、使用 TOP 和 PERCENT 限制结果集数量 TOP ( expression ) [ PERCENT ] [ WITH TIES ] --expression 数量、PERCENT按百分比返回数据、WITH TIES返回排序与最后一行并列的行。 如:获取成绩前三名的同学 select top 3 * from Score order by Num desc --不考虑成绩并列 select top 3 WITH TIES * from Score order by Num desc --可解决成绩并列的问题 5、选择列表中的计算值 选择的列不但可以包括数据表列,还可以包括计算值,这些结果集列被称为派生列。 计算并且包括以下运算: 对数值列或常量使用算术运算符或函数进行的计算和运算。如SUM(),

linux定时器和Jiffies

1.linux HZ Linux核心几个重要跟时间有关的名词或变数,以下将介绍HZ、tick与jiffies。 HZ Linux核心每隔固定周期会发出timer interrupt (IRQ 0),HZ是用来定义每一秒有几次timer interrupts。举例来说,HZ为1000,代表每秒有1000次timer interrupts。 HZ可在编译核心时设定,如下所示(以核心版本 adrian@adrian-desktop:~$ cd /usr/src/linux adrian@adrian-desktop:/usr/src/linux$ make menuconfig Processor type and features ---> Timer frequency (250 HZ) ---> 其中HZ可设定100、250、300或1000。 小实验 观察/proc/interrupt的timer中断次数,并于一秒后再次观察其值。理论上,两者应该相差250左右。 adrian@adrian-desktop:~$ cat /proc/interrupts | grep timer && sleep 1 && cat /proc/interrupts | grep timer 0: 9309306 IO-APIC-edge timer 0: 9309562 IO-APIC-edge timer 上面四个栏位分别为中断号码、CPU中断次数、PIC与装置名称。

要检查系统上HZ的值是什么,就执行命令 cat kernel/.config | grep '^CONFIG_HZ=' 2.Tick Tick是HZ的倒数,意即timer interrupt每发生一次中断的时间。如HZ为250时,tick为4毫秒(millisecond)。 3.Jiffies Jiffies为Linux核心变数(unsigned long),它被用来记录系统自开机以来,已经过了多少tick。每发生一次timer interrupt,Jiffies变数会被加一。值得注意的是,Jiffies于系统开机时,并非初始化成零,而是被设为-300*HZ (arch/i386/kernel/time.c),即代表系统于开机五分钟后,jiffies 便会溢位。那溢位怎么办?事实上,Linux核心定义几个macro(timer_after、time_after_eq、time_before与time_before_eq),即便是溢位,也能借由这几个macro正确地取得jiffies的内容。 另外,80x86架构定义一个与jiffies相关的变数jiffies_64 ,此变数64位元,要等到此变数溢位可能要好几百万年。因此要等到溢位这刻发生应该很难吧。

相关主题