搜档网
当前位置:搜档网 › 现代控制理论实验报告

现代控制理论实验报告

现代控制理论实验报告
现代控制理论实验报告

现代控制理论实验报告

实验一 系统的传递函数阵和状态空间表达式的转换

一、实验目的

1.熟悉线性系统的数学模型、模型转换。

2.了解MATLAB 中相应的函数 二、实验内容及步骤 1.给定系统的传递函数为

150

3913.4036

18)(2

3++++=

s s s s s G 要求(1)将其用Matlab 表达;(2)生成状态空间模型。 2.在Matlab 中建立如下离散系统的传递函数模型

y (k + 2) +5y (k +1) +6y (k ) = u (k + 2) + 2u (k +1) +u (k ) 3.在Matlab 中建立如下传递函数阵的Matlab 模型

??????

??????+++++++++++=7266

11632256

51

2)(2

32

2s s s s s s s s s s s s G

4.给定系统的模型为

)

4.0)(25)(15()

2(18)(++++=

s s s s s G

求(1)将其用Matlab 表达;(2)生成状态空间模型。 5.给定系统的状态方程系数矩阵如下:

[]0

,

360180,001,010001

1601384.40==????

?

?????=?????

?????---=D C B A

用Matlab 将其以状态空间模型表示出来。

6.输入零极点函数模型,零点z=1,-2;极点p=-1,2,-3 增益k=1;求相应的传递函数模型、状态空间模型。 三、实验结果及分析

1. num=[18 36];den=[1 40.3 391 150]; >> G=tf(num,den) Transfer function: 18 s + 36

----------------------------

s^3 + 40.3 s^2 + 391 s + 150

>> sys=ss(G)

a =

x1 x2 x3

x1 -40.3 -24.44 -4.688

x2 16 0 0

x3 0 2 0

b =

u1

x1 2

x2 0

x3 0

c =

x1 x2 x3

y1 0 0.5625 0.5625

d =

u1

y1 0

Continuous-time model.

2. num=[1 2 1];den=[1 5 6];tf(num,den,0.1) Transfer function:

z^2 + 2 z + 1

-------------

z^2 + 5 z + 6

Sampling time: 0.1

3. num={[1 2 1] [1 5] [2 3] [6]};

den={[1 5 6] [1 2] [1 6 11 6] [2 7]};

>> tf(num,den)

Transfer function from input 1 to output:

s^2 + 2 s + 1

-------------

s^2 + 5 s + 6

Transfer function from input 2 to output:

s + 5

-----

s + 2

Transfer function from input 3 to output:

2 s + 3

----------------------

s^3 + 6 s^2 + 11 s + 6

Transfer function from input 4 to output:

6

-------

2 s + 7

4. sys=zpk([-2],[-15 -25 -0.4],[18])

Zero/pole/gain:

18 (s+2)

---------------------

(s+15) (s+25) (s+0.4)

z=-2;p=[-15;-25;-0.4];k=18;

>> [A,B,C,D]=zp2ss(z,p,k)

A =

-0.4000 0 0

1.6000 -40.0000 -19.3649

0 19.3649 0

B =

1

1

C =

0 0 0.9295

D =

5. A=[-40.4 -138 -160;1 0 0;0 1 0];B=[1;0;0];C=[0 18 360];D=0; >> sys=ss(A,B,C,D)

a =

x1 x2 x3 x1 -40.4 -138 -160

x2 1 0 0

x3 0 1 0

b =

u1

x1 1

x2 0

x3 0

c =

x1 x2 x3

y1 0 18 360

d =

u1

y1 0

Continuous-time model.

6. z=[1;-2];p=[-1;2;-3];k=1;

>> [A,B,C,D]=zp2ss(z,p,k)

A =

2.0000 0 0

1.0000 -4.0000 -1.7321

0 1.7321 0

B =

1

C =

1.0000 -3.0000 -

2.8868

D =

>> [num,den]=ss2tf(A,B,C,D)

num =

0 1.0000 1.0000 -2.0000 den =

1 2 -5 -6 >> tf(num,den) Transfer function: s^2 + s - 2 --------------------- s^3 + 2 s^2 - 5 s - 6 四、实验总结

本次实验主要是熟悉利用matlab 建立线性系统数学模型以及模型间的相应转换(如状态空间、传递函数模型等)、并了解matlab 中相应函数的使用,如tf 、ss 、zp2ss 、ss2tf 等。通过实验指导书的指导和编写相应程序,圆满完成本次实验任务,达到了实验的目的。

实验二 状态空间标准形与控制系统的运动分析

一、实验目的

1.掌握线性系统的对角线标准形、约当标准形、能控标准形和能观测标准型的表示及相应变换阵的求解。

深入理解状态空间模型的相关理论。

2. 掌握利用Matlab 进行矩阵指数函数的数值计算和符号计算方法;对定常连续系统和定常离散系统的状态空间模型进行求解,分析其运动规律;对连续系统进行离散化。 二、实验内容及步骤

1.将实验一的第2题用对角标准型实现。 2.系统的动态方程如下:

[]X y u X X 011,0016116100010=??

??

?

?????+??????????---=

1)求对角标准型实现,并写出实现变换的非奇异阵和变换关系。

2)求可控准型实现,并写出实现变换的非奇异阵和变换关系。 3.计算如下矩阵的特征值和广义特征向量。

??

??

?

?????---=111201634

A

4..将如下状态空间模型变换为约旦规范形。

[]X

y u X X 001,100584100010=?????

?????+??????????---= 5.将下列状态方程化为约当型,并写出实现变换的非奇异阵和变换关系。

?????????

?

?????

?????-=????????????????????-----=012010121101

,110000110000112000110200001111001113B A 6.在Matlab 中计算矩阵A 在t=0.3 时的矩阵指数eAt 的值。

?

?

????--=3210

A 7.计算系统在[0,10s]内, T=3s

??

?

???=??????+?

?????--=?

21,1032100x u x X

三、实验结果及分析

1.代码:

a1 = 5; a0 = 6;

b2 = 1; b1 = 2; b0 = 1; c0 = b2;

c1 = b1 - a1*c0;

c2 = b0 - a0*c0 - a1*c1; G = [0 1;-a0 -a1]; H = [c1;c2]; C = [1 0]; D = [c0];

[Q,d] = eig(G); P = inv(Q); Gb = P*G*Q Hb = P*H Cb = C*Q Db = D

运行结果: Gb =

-2.0000 0.0000 -0.0000 -3.0000 Hb =

2.2361 12.6491

Cb =

0.4472 -0.3162

Db =

1

2.代码:

A=[0 1 0;0 0 1;-6 -11 -6];B=[1;0;0];C=[1 1 0];D=0;

[Q,D]=eig(A)

P=inv(Q)

%[con_ss,T]=canon(A,B,C,D,'modal')

%[con_ss1,T1]=canon(A,B,C,D,'companion')

A1=P*A*Q

B1=P*B

Q=

-0.5774 0.2182 -0.1048

0.5774 -0.4364 0.3145

-0.5774 0.8729 -0.9435

D =

-1.0000 0 0

0 -2.0000 0

0 0 -3.0000

P =

-5.1962 -4.3301 -0.8660

-13.7477 -18.3303 -4.5826

-9.5394 -14.3091 -4.7697

A1 =

-1.0000 -0.0000 0.0000

0.0000 -2.0000 0.0000

0.0000 -0.0000 -3.0000

B1 =

-5.1962

-13.7477

-9.5394

A=[0 1 0;0 0 1;-6 -11 -6];B=[1;0;0];C=[1 1 0];D=0;

Qc=ctrb(A,B)

M=eig(A)

Q=Qc*[M(2) M(3) 1;M(3) 1 0;1 0 0]

P=inv(Q)

Ab=P*A*Q,Bb=P*B,Cb=C*Q

Qc =

1 0 0

0 0 -6

0 -6 36

M =

-1.0000

-2.0000

-3.0000

Q =

-2.0000 -3.0000 1.0000

-6.0000 0 0

54.0000 -6.0000 0

P =

0.0000 -0.1667 -0.0000

0.0000 -1.5000 -0.1667

1.0000 -4.8333 -0.5000

Ab =

-9.0000 1.0000 0.0000

-40.0000 -0.0000 1.0000

-144.0000 2.0000 3.0000

Bb =

0.0000

0.0000

1.0000

Cb =

-8.0000 -3.0000 1.0000

3.代码:

A=[-4 -3 -6;1 0 2;1 1 1];

M=eig(A)

[V,J]=jordan(A)

M =

-1.0000 + 0.0000i

-1.0000 - 0.0000i

-1.0000

V =

-3 -1 -2

1 0 0

1 1 1

J =

-1 1 0

0 -1 0

0 0 -1

4.代码:

A = [0 1 0;0 0 1;-6 -11 -6];

B = [1;0;0];

C = [1 0 0];

[Q,J] = jordan(A);

P = inv(Q);

Ab = J

Bb = P*B

Cb = C*P

运行结果为:

Ab =

-3 0 0

0 -2 0

0 0 -1

Bb =

9.0000

-12.0000

3.0000

Cb =

9.0000 13.5000 4.5000

5.代码:

A = [3 -1 1 1 0 0;1 1 -1 -1 0 0;0 0 2 0 1 1;0 0 0 2 -1 -1;0 0 0 0 1 1;0

0 0 0 1 1];

B = [1 0;-1 1;2 1;0 -1;0 2;1 0];

[Q,J] = jordan(A)

P = inv(Q)

Ab = J

Bb = P*B

运行结果:

Q =

2.0000 2.0000 1.0000 0 0 0

2.0000 0 0 0 0 0

0 0 1.0000 0 1.0000 0

0 0 0 0 -1.0000 0

0 0 0 0.5000 0 0.5000

0 0 0 -0.5000 0 0.5000

J =

2 1 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2

P =

0 0.5000 0 0 0 0

0.5000 -0.5000 -0.5000 -0.5000 0 0

0 0 1.0000 1.0000 0 0

0 0 0 0 1.0000 -1.0000

0 0 0 -1.0000 0 0

0 0 0 0 1.0000 1.0000

Ab =

2 1 0 0 0 0

0 2 1 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 2 1

0 0 0 0 0 2

Bb =

-0.5000 0.5000

0 -0.5000

2.0000 0

-1.0000 2.0000

0 1.0000

1.0000

2.0000

6.代码:

A = [0 1;-2 -3];

syms s t;

F = s*eye(length(A))-A;

Q = inv(F);

f = ilaplace(Q);

x = subs(f,'t',0.3)

运行结果:

x =

[ 2*exp(-3/10) - exp(-3/5), exp(-3/10) - exp(-3/5)] [ 2*exp(-3/5) - 2*exp(-3/10), 2*exp(-3/5) - exp(-3/10)]

7.代码:

A = [0 1;-2 -3];

B = [0;1];

C = [];

D = [];

x0 = [1;2];

sys = ss(A,B,C,D);

[u,t] = gensig('square',3,10,0.1);

[y,t,x] = lsim(sys,u,t,x0);

plot(t,u,t,x) 运行结果:

四、实验总结

本次实验的主要目的是:掌握线性系统的对角线标准形、约当标准形、能控标准形和能观测标准型的表示及相应变换阵的求解;掌握利用Matlab 进行矩阵指数函数的数值计算和符号计算方法;对定常连续系统和定常离散系统的状态空间模型进行求解,分析其运动规律;对连续系统进行离散化。通过实验编写程序实现了预期结果,并进一步巩固了上课时所学习的理论知识及变换方法。

实验三 系统的能控性和能观性

一、实验目的

系统的能控性和能观性关系到系统的极点配置法设计,和最优控制。通过本实验,掌握判断系统能控性能观性的条件和方法。 二、实验内容及步骤

1、检验系统的能控性和能观性。

0,1001,1111,2411=?

?

????=??????--=??????-=D C B A 2、判定离散系统的状态能控性。

)(121)(011220001)1(k u k x k x ??

??

?

?????+??????????--=+

3、用格拉姆矩阵判据判断下面系统的可控性和可观测性。

[]x

y k u x X 10

0)(102,101110

321

.=?????

???????????????-----=?

4、将下面系统化为可控标准型和可观测标准型。

[]x y

k

u x

X

1

)

(

1

1

2

2 01

1 30

2

1

.

.

=

?

?

?

?

?

?

?

?

?

?

+

?

?

?

?

?

?

?

?

?

?

-

=

?

三、实验结果及分析

1.程序如下:

A=[1 1;4 -2];B=[1 -1;1 -1];C=[1 0;0 1];D=0;

Co=ctrb(A,B)

if(rank(Co)==length(A))

disp('系统完全能控');

else

disp('系统不能控');

end

N=obsv(A,C)

if(rank(N)==length(A))

disp('系统能观');

else

disp('系统不能观'); i

end

运行结果:

Co =

1 -1

2 -2

1 -1

2 -2

系统不能控

N =

1 0

0 1

1 1

4 -2

系统能观

2. 程序如下:

G=[1 0 0;0 2 -2;-1 1 0];H=[1;2 ;1];

Co=ctrb(G,H)

if(rank(Co)==length(G))

disp('系统完全能控');

else

disp('系统不能控');

end

运行结果:

Co =

1 1 1

2 2 2

1 1 1

系统不能控

3. 程序如下:

A = [-1 -2 -3;0 -1 1;1 0 -1];

B = [2;0;1];

C = [1 1 0];

D = 0;

sys = ss(A,B,C,D);

Wc = gram(sys,'c');

Wo = gram(sys,'o');

if rank(Wc) == length(A)

disp('The system is controllable')

else

disp('The system is uncotrollable')

end

if rank(Wo) == length(A)

disp('The system is observable')

else

disp('The system is not observable')

end

4. 程序如下:

能控标准型

A = [1 2 0;3 -1 1;0 2 0];

B = [2;1;1];

C = [0 0 1];

D = 0;

Qc = ctrb(A,B) syms s;

sys=det(s*eye(3)-A);

if (rank(Qc)==3)

disp('The system is controllable') else

disp('The system is uncontrollable') End

运行结果:

sys = s^3-9*s+2

The system is controllable

a0 = 2; a1 = -9; a2 = 0; a3 = 1;

Q = Qc*[-9 0 1;0 1 0;1 0 0];

P = inv(Q)

Ab = P*A*Q

Bb = P*B

Cb = C*Q

Db = D

运行结果为:

P =

-0.1250 0 0.2500

-0.1250 0.2500 -0.0000

0.6250 -0.5000 0.2500

Ab =

0 1.0000 0

0.0000 -0.0000 1.0000

-2.0000 9.0000 0.0000

Bb =

-0.0000

1.0000

Cb =

3 2 1

Db =

能观标准型

clear all

clc

A = [1 2 0;3 -1 1;0 2 0];

B = [2;1;1];

C = [0 0 1];

D = 0;

Qo = obsv(A,C)

syms s;

sys=det(s*eye(3)-A)

if (rank(Qo)==3)

disp('The system is observable')

else

disp('The system is not observable')

end

运行结果:

sys = s^3-9*s+2

The system is observable

a0 = 2; a1 = -9; a2 = 0; a3 = 1;

P = [-9 0 1;0 1 0;1 0 0]*Qo

Q = inv(P);

Ab = P*A*Q

Bb = P*B

Cb = C*Q

Db = D

运行结果:

P =

6 -2 -7

0 2 0

0 0 1

Ab =

0 0 -2.0000 1.0000 -0.0000 9.0000 0 1.0000 0 Bb = 3 2 1 Cb =

0 0 1 Db = 0 四、实验总结

本次实验的主要目的是:掌握系统的能控性和能观性关系到系统的极点配置法设计,和最优控制;掌握判断系统能控性能观性的条件和方法。通过本次实验的编程训练,我进一步熟悉了能控性和能观性的判断思路,学习了极点配置方法,并加深了对最优控制的理解。本次实验通过独立编程,完成了实验任务,巩固了已学的理论知识,强化了Matlab 编程。

实验四 李雅普诺夫(Lyapunov)判据实验

一、实验目的

现代控制系统分析和设计中,很多问题归结于李雅普诺夫 (Lyapunov)方程求解,如稳定性的研究等。通过实验掌握求解方法;判断系统的稳定性。 二、实验内容及步骤

1、在Matlab 中判定如下系统的李雅普诺夫稳定性,并通过各阶主子式来判断定号性。

????????????--=???

???????21211110x x x x 2、已知系统的方框图如下, 选择正半定对称矩阵,100000000????

??????=Q 求Lyapunov 方程的解,试在Matlab 中判定系统的稳定性。

3、系统状态空间模型如下,选取正定矩阵。?????

????

???=10

00

01000010

0001Q ,求稳定性判别矩阵P ,判断该系统的稳定性,并求该系统的传递函数矩阵。

[]0,1100,0001,0100001000014283==?????

???????=????????????----=D C B A 三、实验结果及分析 1.程序如下:

A=[0 1;-1 -1];Q=eye(2); p=lyap(A,Q) if( p(1,1)&&det(p))

disp('xe=0是一致大范围渐进稳定的'); else

disp('系统不稳定'); end 运行结果 p =

1.5000 -0.5000 -0.5000 1.0000

结论:P 11=1.5>0, |P|>0, 即P 是正定矩阵,故x e =0是一致大范围渐进稳定的。 2. 程序如下:

Q=[0 0 0;0 0 0;0 0 1]; num1=[5];den1=[1 1]; num2=[1];den2=[1 2]; num3=[1];den3=[1 0];

[num12,den12 ]=series(num1,den1,num2,den2); [num123,den123]=series(num12,den12,num3,den3); [num,den]=cloop(num123,den123); [A,B,C,D]=tf2ss(num,den); p=lyap(A,Q)

if( p(1,1)&&det(p(1:2,1:2))&&det(p(1:3,1:3))) disp('xe=0是一致大范围渐进稳定的');

else

disp('系统不稳定');

end

运行结果

p =

12.5000 0.0000 -7.5000

0.0000 7.5000 -0.5000

-7.5000 -0.5000 4.7000

结论:P11=1.5>0,

12.50

det

07.5

??

?

??

>0, |P|>0, 即P是正定矩阵,故x e=0是一致大范围渐进稳

定的。

3. 程序如下:

A=[-3 -8 -2 -4

1 0 0 0

0 1 0 0

0 0 1 0];

B=[1 0 0 0]';C=[0 0 1 1];D=0;

Q=eye(4);

P=lyap(A,Q)

det1=P(1)

det2=det(P([1:2],[1:2]))

det3=det(P([1:3],[1:3]))

det4=det(P)

syms s;

g=C*inv(s*eye(4)-A)*B;

g=simple(g);g

结果:

P =

8.0000 -0.5000 -10.7500 0.5000 -0.5000 10.7500 -0.5000 -18.8750 -10.7500 -0.5000 18.8750 -0.5000 0.5000 -18.8750 -0.5000 34.9375 det1 =

8.0000

det2 =

85.7500

det3 =

368.8594

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

现代控制理论基础考试题A卷及答案

即 112442k g k f M L M ML θθθ??=-+++ ??? && 212 44k k g M M L θθθ??=-+ ??? && (2)定义状态变量 11x θ=,21x θ=&,32 x θ=,42x θ=& 则 一.(本题满分10分) 如图所示为一个摆杆系统,两摆杆长度均为L ,摆杆的质量忽略不计,摆杆末端两个质量块(质量均为M )视为质点,两摆杆中点处连接一条弹簧,1θ与2θ分别为两摆杆与竖直方向的夹角。当12θθ=时,弹簧没有伸长和压缩。水平向右的外力()f t 作用在左杆中点处,假设摆杆与支点之间没有摩擦与阻尼,而且位移足够小,满足近似式sin θθ=,cos 1θ=。 (1)写出系统的运动微分方程; (2)写出系统的状态方程。 【解】 (1)对左边的质量块,有 ()2111211 cos sin sin cos sin 222 L L L ML f k MgL θθθθθθ=?-?-?-&& 对右边的质量块,有 ()221222 sin sin cos sin 22 L L ML k MgL θθθθθ=?-?-&& 在位移足够小的条件下,近似写成: ()1121 24f kL ML Mg θθθθ=---&& ()2122 4kL ML Mg θθθθ=--&&

2 / 7 1221 334413 44244x x k g k f x x x M L M ML x x k k g x x x M M L =?? ???=-+++ ???? ? =????=-+? ????? &&&& 或写成 11 223 34401 000014420001000044x x k g k x x M L M f ML x x x x k k g M M L ? ? ?? ?????????? ??-+???? ???????????=+???? ????? ??????????????????? ????-+?? ? ? ?????? ? &&&& 二.(本题满分10分) 设一个线性定常系统的状态方程为=x Ax &,其中22R ?∈A 。 若1(0)1?? =??-??x 时,状态响应为22()t t e t e --??=??-?? x ;2(0)1??=??-??x 时,状态响应为 2()t t e t e --?? =??-?? x 。试求当1(0)3??=????x 时的状态响应()t x 。 【解答】系统的状态转移矩阵为()t t e =A Φ,根据题意有 221()1t t t e t e e --????==????--???? A x 22()1t t t e t e e --????==????--???? A x 合并得 2212211t t t t t e e e e e ----????=????----?? ??A 求得状态转移矩阵为 1 22221212221111t t t t t t t t t e e e e e e e e e -----------?????? ?? ==????????------???? ????A 22222222t t t t t t t t e e e e e e e e --------?? -+-+=??--??

自动控制原理实验报告

第一章Matlab 基本运算 [范例1-2] 建立矩阵A={7 8 9},B={7 8 9} >> A=[7,8,9] A = 7 8 9 >> B=A' B = 7 8 9 (2) >> B=[1 1 2 ; 3 5 8 ; 10 12 15] B= 1 1 2 3 5 8 10 12 15 (3) >> a=1:1:10 a = 1 2 3 4 5 6 7 8 9 10 >> t=10:-1:1

t = 10 9 8 7 6 5 4 3 2 1 [范例1-3]求多项式D(S)=(5S^2+3)(S+1)(S-1)的展开式 >> D=conv([5 0 3],conv([1 1],[1 -2])) D = 5 -5 -7 -3 -6 [范例1-4]求多项式P(X)=2X^4-5X^3-X+9 (1) >> P=[2 -5 6 -1 9] P = 2 -5 6 -1 9 >> x=roots(P) x = 1.6024 + 1.2709i 1.6024 - 1.2709i -0.3524 + 0.9755i -0.3524 - 0.9755i 第二章控制系统的数学模型 [范例2-1]已知系统传递函数G(S)= s + 3/ s^3 + 2 s^2 + 2 s + 1 >> num=[0 1 3]; >> den=[1 2 2 1]; >> printsys(num,den) num/den = s + 3 --------------------- s^3 + 2 s^2 + 2 s + 1 [范例2-2]已知系统传递函数G(S)=【5*(S+2)^2(S^2+6S+7)】/S(S+1)^3(S^3+2S+1)],试

现代控制理论实验

华北电力大学 实验报告| | 实验名称状态空间模型分析 课程名称现代控制理论 | | 专业班级:自动化1201 学生姓名:马铭远 学号:2 成绩: 指导教师:刘鑫屏实验日期:4月25日

状态空间模型分析 一、实验目的 1.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验仪器与软件 1. MATLAB7.6 环境 三、实验内容 1 、模型转换 图 1、模型转换示意图及所用命令 传递函数一般形式: MATLAB 表示为: G=tf(num,den),,其中 num,den 分别是上式中分子,分母系数矩阵。 零极点形式: MATLAB 表示为:G=zpk(Z,P,K) ,其中 Z,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。 传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN); 状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu 表示对系统的第 iu 个输入量求传递函数;对单输入 iu 为 1。

例1:已知系统的传递函数为G(S)= 2 2 3 24 11611 s s s s s ++ +++ ,利用matlab将传递函数 和状态空间相互转换。 解:1.传递函数转换为状态空间模型: NUM=[1 2 4];DEN=[1 11 6 11]; [A,B,C,D] = tf2ss(NUM,DEN) 2.状态空间模型转换为传递函数: A=[-11 -6 -11;1 0 0;0 1 0];B=[1;0;0];C=[1 2 4];D=[0];iu=1; [NUM,DEN] = ss2tf(A,B,C,D,iu); G=tf(NUM,DEN) 2 、状态方程状态解和输出解 单位阶跃输入作用下的状态响应: G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应 [y,t,x]=initial(G,x0)其中,x0 为状态初值。

现代控制理论实验报告

现代控制理论实验报告

实验一系统能控性与能观性分析 一、实验目的 1.理解系统的能控和可观性。 二、实验设备 1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台; 三、实验容 二阶系统能控性和能观性的分析 四、实验原理 系统的能控性是指输入信号u对各状态变量x的控制能力,如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间把系统所有的状态引向状态空间的坐标原点,则称系统是能控的。 对于图21-1所示的电路系统,设iL和uc分别为系统的两个状态变量,如果电桥中 则输入电压ur能控制iL和uc状态变量的变化,此时,状态是能控的。反之,当 时,电桥中的A点和B点的电位始终相等,因而uc不受输入ur的控制,ur只能改变iL的大小,故系统不能控。 系统的能观性是指由系统的输出量确定所有初始状态的能力,如果在有限的时间根据系统的输出能唯一地确定系统的初始状态,则称系统能观。为了说明图21-1所示电路的能观性,分别列出电桥不平衡和平衡时的状态空间表达式: 平衡时:

由式(2)可知,状态变量iL和uc没有耦合关系,外施信号u只能控制iL的变化,不会改变uc的大小,所以uc不能控。基于输出是uc,而uc与iL无关连,即输出uc中不含有iL的信息,因此对uc的检测不能确定iL。反之式(1)中iL与uc有耦合关系,即ur的改变将同时控制iL和uc的大小。由于iL与uc的耦合关系,因而输出uc的检测,能得到iL 的信息,即根据uc的观测能确定iL(ω) 五、实验步骤 1.用2号导线将该单元中的一端接到阶跃信号发生器中输出2上,另一端接到地上。将阶跃信号发生器选择负输出。 2.将短路帽接到2K处,调节RP2,将Uab和Ucd的数据填在下面的表格中。然后将阶跃信号发生器选择正输出使调节RP1,记录Uab和Ucd。此时为非能控系统,Uab和Ucd没有关系(Ucd始终为0)。 3.将短路帽分别接到1K、3K处,重复上面的实验。 六、实验结果 表20-1Uab与Ucd的关系 Uab Ucd

现代控制理论基础试卷及答案.doc

现代控制理论基础考试题 西北工业大学考试题(A卷) (考试时间120分钟) 学院:专业:姓名:学号: 一.填空题(共27分,每空1.5分) 1.现代控制理论基础的系统分析包括___________和___________。 2._______是系统松弛时,输出量、输入量的拉普拉斯变换之比。 3.线性定常系统齐次状态方程是指系统___________时的状态方程。 4.推导离散化系统方程时在被控对象上串接一个开关,该开关以T 为周期进行开和关。这个开关称为_______。 5.离散系统的能______和能______是有条件的等价。 6.在所有可能的实现中,维数最小的实现称为最小实现,也称为 __________。 7.构造一个与系统状态x有关的标量函数V(x, t)来表征系统的广义 能量, V(x, t)称为___________。 8.单输入-单输出线性定常系统,其BIBO稳定的充要条件是传递函

数的所有极点具有______。 9. 控制系统的综合目的在于通过系统的综合保证系统稳定,有满意的_________、_________和较强的_________。 10. 所谓系统镇定问题就是一个李亚普诺夫意义下非渐近稳定的 系统通过引入_______,以实现系统在李亚普诺夫意义下渐近稳定的问题。 11. 实际的物理系统中,控制向量总是受到限制的,只能在r 维控 制空间中某一个控制域内取值,这个控制域称为_______。 12. _________和_________是两个相并行的求解最优控制问题的 重要方法。 二. 判断题(共20分,每空2分) 1. 一个系统,状态变量的数目和选取都是惟一的。 (×) 2. 传递函数矩阵的描述与状态变量选择无关。 (√) 3. 状态方程是矩阵代数方程,输出方程是矩阵微分方程。 (×) 4. 对于任意的初始状态)(0t x 和输入向量)(t u ,系统状态方程的解存在并且 惟 一 。 (√) 5. 传递函数矩阵也能描述系统方程中能控不能观测部分的特性。 (×)

北航自动控制原理实验报告- 一、二阶系统的电子模拟及时域响应的动态测试

成绩 北京航空航天大学 自动控制原理实验报告 学院机械工程及自动化学院 专业方向机械工程及自动化 班级 学号 学生姓名刘帆 自动控制与测试教学实验中心

实验一 一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014年11月15日 实验编号 同组同学 一、实验目的 1、 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2、 学习在电子模拟机上建立典型环节系统模型的方法。 3、 学习阶跃响应的测试方法。 二、实验内容 1、 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的跃响应曲线,并测定其过渡过程时间T s 。 2、 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间T s 。 三、实验原理 1、一阶系统阶跃响应性能指标的测试 系统的传递函数为:()s ()1 C s K R s Ts φ=+()= 模拟运算电路如下图 : 其中2 1 R K R = ,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.2,0.51,1.0。记录实验数据,测量过度过程的性能指标,其中取正负5%误差带,按照经验公式取3s t T =

2、二阶系统阶跃响应性能指标的测试 系 统 传递函数为: 令ωn=1弧度/秒,则系统结构如下图: 二阶系统的 模拟电路图如下: 在实验过程中,取22321,1R C R C ==,则 442312R R C R ζ==,即42 12R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,0.707,1;记录所测得的实验数据以及其性能指标,取正负5%误差 带,其中当ζ<1时经验公式为2 1 3.5 %100%,s n e t ζσζω- -=?= ,当ζ=1时经验公式 为n 4.75 ts ω= 四、试验设备: 1、HHMN-1型电子模拟机一台。 2、PC 机一台。 3、数字万用表一块。 4、导线若干。

现代控制理论实验报告河南工业大学

河南工业大学 现代控制理论实验报告姓名:朱建勇 班级:自动1306 学号:201323020601

现代控制理论 实验报告 专业: 自动化 班级: 自动1306 姓名: 朱建勇 学号: 201323020601 成绩评定: 一、实验题目: 线性系统状态空间表达式的建立以及线性变换 二、实验目的 1. 掌握线性定常系统的状态空间表达式。学会在MATLAB 中建立状态空间模型的方法。 2. 掌握传递函数与状态空间表达式之间相互转换的方法。学会用MATLAB 实现不同模型之 间的相互转换。 3. 熟悉系统的连接。学会用MATLAB 确定整个系统的状态空间表达式和传递函数。 4. 掌握状态空间表达式的相似变换。掌握将状态空间表达式转换为对角标准型、约当标准 型、能控标准型和能观测标准型的方法。学会用MATLAB 进行线性变换。 三、实验仪器 个人笔记本电脑 Matlab R2014a 软件 四、实验内容 1. 已知系统的传递函数 (a) ) 3()1(4)(2++=s s s s G

(b) 3486)(22++++=s s s s s G

(c) 6 1161)(232+++++=z z z z z z G (1)建立系统的TF 或ZPK 模型。 (2)将给定传递函数用函数ss( )转换为状态空间表达式。再将得到的状态空间表达式用函 数tf( )转换为传递函数,并与原传递函数进行比较。 (3)将给定传递函数用函数jordants( )转换为对角标准型或约当标准型。再将得到的对角 标准型或约当标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。 (4)将给定传递函数用函数ctrlts( )转换为能控标准型和能观测标准型。再将得到的能控标 准型和能观测标准型用函数tf( )转换为传递函数,并与原传递函数进行比较。

北航自动控制原理实验报告(完整版)

自动控制原理实验报告 一、实验名称:一、二阶系统的电子模拟及时域响应的动态测试 二、实验目的 1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系 2、学习在电子模拟机上建立典型环节系统模型的方法 3、学习阶跃响应的测试方法 三、实验内容 1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的响应曲线,测定过渡过程时间T s 2、建立二阶系统电子模型,观测并记录不同阻尼比的响应曲线,并测定超调量及过渡过程时间T s 四、实验原理及实验数据 一阶系统 系统传递函数: 由电路图可得,取则K=1,T分别取:0.25, 0.5, 1 T 0.25 0.50 1.00 R2 0.25MΩ0.5M Ω1MΩ C 1μ1μ1μ T S 实测0.7930 1.5160 3.1050 T S 理论0.7473 1.4962 2.9927 阶跃响应曲线图1.1 图1.2 图1.3 误差计算与分析 (1)当T=0.25时,误差==6.12%; (2)当T=0.5时,误差==1.32%; (3)当T=1时,误差==3.58% 误差分析:由于T决定响应参数,而,在实验中R、C的取值上可能存在一定误差,另外,导线的连接上也存在一些误差以及干扰,使实验结果与理论值之间存在一定误差。但是本实验误差在较小范围内,响应曲线也反映了预期要求,所以本实验基本得到了预期结果。 实验结果说明 由本实验结果可看出,一阶系统阶跃响应是单调上升的指数曲线,特征有T确定,T越小,过度过程进行得越快,系统的快速性越好。 二阶系统 图1.1 图1.2 图1.3

系统传递函数: 令 二阶系统模拟线路 0.25 0.50 1.00 R4 210.5 C2 111 实测45.8% 16.9% 0.6% 理论44.5% 16.3% 0% T S实测13.9860 5.4895 4.8480 T S理论14.0065 5.3066 4.8243 阶跃响应曲线图2.1 图2.2 图2.3 注:T s理论根据matlab命令[os,ts,tr]=stepspecs(time,output,output(end),5)得出,否则误差较大。 误差计算及分析 1)当ξ=0.25时,超调量的相对误差= 调节时间的相对误差= 2)当ξ=0.5时,超调量的相对误差==3.7% 调节时间的相对误差==3.4% 4)当ξ=1时,超调量的绝对误差= 调节时间的相对误差==3.46% 误差分析:由于本试验中,用的参量比较多,有R1,R2,R3,R4;C1,C2;在它们的取值的实际调节中不免出现一些误差,误差再累加,导致最终结果出现了比较大的误差,另外,此实验用的导线要多一点,干扰和导线的传到误差也给实验结果造成了一定误差。但是在观察响应曲线方面,这些误差并不影响,这些曲线仍旧体现了它们本身应具有的特点,通过比较它们完全能够了解阶跃响应及其性能指标与系统参数之间的关系,不影响预期的效果。 实验结果说明 由本实验可以看出,当ωn一定时,超调量随着ξ的增加而减小,直到ξ达到某个值时没有了超调;而调节时间随ξ的增大,先减小,直到ξ达到某个值后又增大了。 经理论计算可知,当ξ=0.707时,调节时间最短,而此时的超调量也小于5%,此时的ξ为最佳阻尼比。此实验的ξ分布在0.707两侧,体现了超调量和调节时间随ξ的变化而变化的过程,达到了预期的效果。 图2.2 图2.1 图2.3

现代控制理论课程报告

现代控制理论课程总结 学习心得 从经典控制论发展到现代控制论,是人类对控制技术认识上的一次飞跃。现代控制论是用状态空间方法表示,概念抽象,不易掌握。对于《现代控制理论》这门课程,在刚拿到课本的时候,没上张老师的课之前,咋一看,会认为开课的内容会是上学期学的控制理论基础的累赘或者简单的重复,更甚至我还以为是线性代数的复现呢!根本没有和现代控制论联系到一起。但后面随着老师讲课的风格的深入浅出,循循善诱,发现和自己想象的恰恰相反,张老师以她特有的讲课风格,精心准备的ppt 课件,向我们展示了现代控制理论发展过程,以及该掌握内容的方方面面,个人觉得,我们不仅掌握了现代控制理论的理论知识,更重要的是学会了掌握这门知识的严谨的逻辑思维和科学的学习方法,对以后学习其他知识及在工作上的需要大有裨益,总之学习了这门课让我受益匪浅。 由于我们学习这门课的课时不是很多,并结合我们学生学习的需求及所要掌握的课程深入程度,张老师根据我们教学安排需要,我们这学期学习的内容主要有:1.绪论;2.控制系统的状态表达式;3.控制系统状态表达式的解;4.线性系统的能空性和能观性;5.线性定常系统的综合。而状态变量和状态空间表达式、状态转移矩阵、系统的能控性与能观性以及线性定常系统的综合是本门课程的主要学习内容。当然学习的内容还包括老师根据多年教学经验及对该学科的研究的一些深入见解。 在现代科学技术飞速发展中,伴随着学科的高度分化和高度综合,各学科之间相互交叉、相互渗透,出现了横向科学。作为跨接于自然科学和社会科学的具有横向科学特点的现代控制理论已成为我国理工科大学高年级的必修课。 经典控制理论的特点 经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。 1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多完整,从而促使现代控制理论的发展:对经典理论的精确化、数学化及理论化。优点,但是,在推理上却是不能令人满意的,效果也

《现代控制理论基础》考试题B卷及答案

一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 22 322 312 11111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

自动控制原理实验报告

自动控制原理 实验报告

实验一一、二阶系统的电子模拟及时域响应的动态测试 实验目的 1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2.学习在电子模拟机上建立典型环节系统模型的方法。 3.学习阶跃响应的测试方法。 二、实验内容 1.立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线, 并测定其过渡过程时间TS。 2.立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线, 并测定其超调量σ%及过渡过程时间TS。 三、实验原理 1.一阶系统: 系统传递函数为:错误!未找到引用源。 模拟运算电路如图1-1所示: 图1-1 由图得: 在实验当中始终取错误!未找到引用源。, 则错误!未找到引用源。, 错误!未找到引用源。 取不同的时间常数T分别为: 0.25、 0.5、1。 记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时 ts。(取错误! 未找到引用源。误差带) 2.二阶系统: 其传递函数为: 错误!未找到引用源。 令错误!未找到引用源。,则系统结构如图1-2所示:

图1-2 根据结构图,建立的二阶系统模拟线路如图1-3所示: 图1-3 取错误!未找到引用源。,错误!未找到引用源。,则错误!未找到引用源。及错误!未找到引用源。 错误!未找到引用源。取不同的值错误!未找到引用源。 , 错误!未找到引用源。, ,观察并记录阶跃响应曲线,测量超调量σ%(取错误!未找到引用源。误差带),计算过渡过程时间Ts。 四、实验设备 1.HHMN-1型电子模拟机一台。 2.PC 机一台。 3.数字式万用表一块。 4.导线若干。 五、实验步骤 1.熟悉HHMN-1型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。 2.断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。 3.将D/A1与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。线路接好后,经教师检查后再通电。 4.在Windows XP桌面用鼠标双击MATLAB图标后进入,在命令行处键入autolab 进入实验软件系统。 5.在系统菜单中选择实验项目,选择实验一,在窗口左侧选择实验模型,其它步骤察看概述3.2节内容。 6.观测实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成实验报告。 7.研究性实验方法。实验者可自行确定典型环节传递函数,并建立系统的SIMULINK模型,验证自动控制理论相关的理论知识。实现步骤可察看概述3.3节内容。

现代控制理论实验报告3

实验三 利用MATLAB 导出连续状态空间模型的离散化模型 实验目的: 1、基于对象的一个连续时间状态空间模型,导出其相应的离散化状态空间模型; 2、通过编程、上机调试,掌握离散系统运动分析方法。 实验原理: 给定一个连续时间系统的状态空间模型: ()()()()()() x t Ax t Bu t y t Cx t Du t =+=+ (3.1) 状态空间模型(3.1)的输入信号()u t 具有以下特性: ()(),u t u kT kT t kT T =≤≤+ (3.2) 已知第k 个采样时刻的状态()x kT 和第k 个采样时刻到第1k +个采样时刻间的输入()()u t u kT =,可得第1k +个采样时刻(1)k T +处的状态 (1)((1))((1))()((1))()k T kT x k T k T kT x kT k T Bu d τττ++=Φ+-+Φ+-? (3.3) 其中: ((1))((1))A k T kT AT k T kT e e +-Φ+-== ((1))((1))A k T k T e ττ+-Φ+-= 由于输入信号在两个采样时刻之间都取常值,故对式(3.3)中的积分式进行一个时间变量替换(1)k T στ=+-后,可得 0((1))()()()AT A x k T e x kT e d Bu kT τ σσ+=+? (3.4) 另一方面,以周期T 对输出方程进行采样,得到 ()()()y kT Cx kT Du kT =+ 在周期采样的情况下,用k 来表示第k 个采样时刻kT 。因此,连续时间状态空间模型

(3.1)的离散化方程可以写成 (1)()()()()()()() x k G T x k H T u k y k Cx k Du k +=+=+ (3.5) 其中: 0()()()AT A G T e H T e d B τσσ==? (3.6) 已知系统的连续时间状态空间模型,MATLAB 提供了计算离散化状态空间模型中状态矩阵和输入矩阵的函数: [G ,H]=c2d(A,B,T) 其中的T 是离散化模型的采样周期。 实验步骤 1、导出连续状态空间模型的离散化模型,采用MA TLAB 的m-文件编程; 2、在MA TLAB 界面下调试程序,并检查是否运行正确。 例3.1 已知一个连续系统的状态方程是 010()()()2541x t x t u t ????=+????--???? 若取采样周期0.05T =秒,试求相应的离散化状态空间模型。 编写和执行以下的m-文件: A=[0 1;-25 –4]; B=[0;1]; [G ,H]=c2d(A,B,0.05) 得到 G= 0.9709 0.0448 -1.1212 0.7915 H= 0.0012 0.0448 因此,所求的离散化状态空间模型是 0.97090.04480.0012(1)()()1.12120.79150.0448x k x k u k ????+=+????-????

北航自动控制原理实验报告1-4合集

自动控制原理 实验报告 实验一二阶系统的电子模拟及时域响应的动态测试实验二频率响应测试 实验三控制系统串联校正 实验四控制系统数字仿真 姓名: 学号:单位:仪器科学与光电工程学院 日期:2013年12月27日

实验一二阶系统的电子模拟及时域响应的动态测试 一、实验目的 1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2. 学习在电子模拟机上建立典型环节系统模型的方法。 3. 学习阶跃响应的测试方法。 二、实验内容 1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。 三、实验原理 1.一阶系统:系统传递函数为: 模拟运算电路如图1- 1所示: 图 1- 1 由图 1-1得 在实验当中始终取R2= R1,则K=1,T= R2C取不同的时间常数T分别为:、、1 2.二阶系统: 其传递函数为: 令=1弧度/秒,则系统结构如图1-2所示: 图1-2 根据结构图,建立的二阶系统模拟线路如图1-3所示:

图1-3 取R2C1=1 ,R3C2 =1,则及 ζ取不同的值ζ= , ζ= , ζ=1 四、实验步骤 1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路; 2. 将系统输入端与D/A1相连,将系统输出端与A/D1相; 3. 检查线路正确后,模拟机可通电; 4. 双击桌面的“自控原理实验”图标后进入实验软件系统。 5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。 6. 单击“确定”,进行实验。完成后检查实验结果,填表记录实验数据,抓图记录实验曲线。 五、实验设备 HHMN-1电子模拟机一台、PC机一台、数字式万用表一块 六、实验数据 T1 R2250K500K1M C1μF1μF1μF Ts理论 Ts实测 Ts误差%%% 响应图形图1图2图3

现代控制理论实验报告

现代控制理论实验报告 组员: 院系:信息工程学院 专业: 指导老师: 年月日

实验1 系统的传递函数阵和状态空间表达式的转换 [实验要求] 应用MATLAB 对系统仿照[例]编程,求系统的A 、B 、C 、阵;然后再仿照[例]进行验证。并写出实验报告。 [实验目的] 1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。 [实验内容] 1 设系统的模型如式示。 p m n R y R u R x D Cx y Bu Ax x ∈∈∈?? ?+=+=& 其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。系统的传递函数阵和状态空间表达式之间的关系如式示。 D B A SI C s den s num s G +-== -1)() () (()( 式中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。 2 实验步骤 ① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式,采用MATLA 的编程。注意:ss2tf 和tf2ss 是互为逆转换的指令; ② 在MATLA 界面下调试程序,并检查是否运行正确。 ③ [] 已知SISO 系统的状态空间表达式为,求系统的传递函数。

, 2010050010000100001 0432143 21u x x x x x x x x ? ? ??? ? ??????-+????????????????????????-=????????????&&&&[]??? ? ? ???????=43210001x x x x y 程序: A=[0 1 0 0;0 0 -1 0;0 0 0 1;0 0 5 0]; B=[0;1;0;-2]; C=[1 0 0 0]; D=0; [num,den]=ss2tf(A,B,C,D,1) 程序运行结果: num = 0 den = 0 0 0 从程序运行结果得到:系统的传递函数为: 2 4253 )(s s s S G --= ④ [] 从系统的传递函数式求状态空间表达式。 程序: num =[0 0 1 0 -3]; den =[1 0 -5 0 0]; [A,B,C,D]=tf2ss(num,den) 程序运行结果: A = 0 5 0 0 1 0 0 0 0 1 0 0

利用MATLAB设计状态观测器—现代控制理论实验报告

实验六利用MATLAB设计状态观测器 ******* 学号 1121*****

实验目的: 1、学习观测器设计算法; 2、通过编程、上机调试,掌握基于观测器的输出反馈控制系统设计方法。 实验原理: 1、全阶观测器模型: () ()x Ax Bu L y Cx A LC x Bu Ly =++-=-++ 由极点配置和观测器设计问题的对偶关系,也可以应用MATLAB 中极点配置的函数来确定所需要的观测器增益矩阵。例如,对于单输入单输出系统,观测器的增益矩阵可以由函数 L=(acker(A ’,C ’,V))’ 得到。其中的V 是由期望的观测器极点所构成的向量。类似的,也可以用 L=(place(A ’,C ’,V))’ 来确定一般系统的观测器矩阵,但这里要求V 不包含相同的极点。 2、降阶观测器模型: ???w Aw By Fu =++ b x w Ly =+ 基于降阶观测器的输出反馈控制器是: ????()[()]()b a b b a b w A FK w B F K K L y u K w K K L y =-+-+=--+ 对于降阶观测器的设计,使用MATLAB 软件中的函数 L=(acker(Abb’,Aab’,V))’ 或 L=(place(Abb’,Aab’,V))’ 可以得到观测器的增益矩阵L 。其中的V 是由降阶观测器的期望极点所组成的向量。 实验要求 1.在运行以上例程序的基础上,考虑图6.3所示的调节器系统,试针对被控对象设计基于全阶观测器和降 阶观测器的输出反馈控制器。设极点配置部分希望的闭环极点是1,22j λ=-± (a ) 对于全阶观测器,1 8μ=-和 28μ=-; (b ) 对于降阶观测器,8μ=-。 比较系统对下列指定初始条件的响应: (a ) 对于全阶观测器: 1212(0)1,(0)0,(0)1,(0)0x x e e ==== (b ) 对于降阶观测器: 121(0)1,(0)0,(0)1x x e === 进一步比较两个系统的带宽。

《现代控制理论》.

《现代控制理论》实验指导书 俞立徐建明编 浙江工业大学信息工程学院 2007年4月

实验1 利用MATLAB 进行传递函数和状态空间模型间的转换 1.1 实验设备 PC 计算机1台(要求P4-1.8G 以上),MATLAB6.X 或MATLAB7.X 软件1套。 1.2 实验目的 1、学习系统状态空间模型的建立方法、了解状态空间模型与传递函数相互转换的方法; 2、通过编程、上机调试,掌握系统状态空间模型与传递函数相互转换的方法。 1.3 实验原理说明 设系统的状态空间模型是 x Ax Bu y Cx Du =+?? =+?& (1.1) p y R ∈其中:n x R ∈是系统的状态向量,是控制输入,m u R ∈是测量输出,A 是维状态矩阵、是维输入矩阵、是n n ×m n ×n p ×B D C 维输出矩阵、是直接转移矩阵。系统传递函数和状态空间模型之间的关系如式(1.2)所示。 1()()G s C sI A B D ?=?+ (1.2) 表示状态空间模型和传递函数的MATLAB 函数。 函数ss (state space 的首字母)给出了状态空间模型,其一般形式是 SYS = ss(A,B,C,D) 函数tf (transfer function 的首字母)给出了传递函数,其一般形式是 G=tf(num,den) 其中的num 表示传递函数中分子多项式的系数向量(单输入单输出系统),den 表示传递函数中分母多项式的系数向量。 函数tf2ss 给出了传递函数的一个状态空间实现,其一般形式是 [A,B,C,D]=tf2ss(num,den) 函数ss2tf 给出了状态空间模型所描述系统的传递函数,其一般形式是 [num,den]=ss2tf(A,B,C,D,iu) 其中对多输入系统,必须确定iu 的值。例如,若系统有三个输入和,则iu 必须是1、2或3,其中1表示,2表示,3表示。该函数的结果是第iu 个输入到所有输出的传递函数。 21,u u 3u 1u 2u 3u 1.4 实验步骤 1、根据所给系统的传递函数或(A 、B 、C 、D ),依据系统的传递函数阵和状态空间模型之间的关系(1.2),采用MATLAB 的相关函数编写m-文件。 2、在MATLAB 界面下调试程序。 例1.1 求由以下状态空间模型所表示系统的传递函数, ?? ? ? ? ?????=?????? ?????+???????????????????????=??????????321321321]001[1202505255100010x x x y u x x x x x x &&&

《现代控制理论》实验报告

. 现代控制理论实验报告 组员: 院系:信息工程学院 专业: 指导老师: 年月日

实验1 系统的传递函数阵和状态空间表达式的转换 [实验要求] 应用MATLAB 对系统仿照[例1.2]编程,求系统的A 、B 、C 、阵;然后再仿照[例1.3]进行验证。并写出实验报告。 [实验目的] 1、学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法; 2、通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。 [实验内容] 1 设系统的模型如式(1.1)示。 p m n R y R u R x D Cx y Bu Ax x ∈∈∈?? ?+=+= (1.1) 其中A 为n ×n 维系数矩阵、B 为n ×m 维输入矩阵 C 为p ×n 维输出矩阵,D 为传递阵,一般情况下为0,只有n 和m 维数相同时,D=1。系统的传递函数阵和状态空间表达式之间的关系如式(1.2)示。 D B A SI C s den s num s G +-== -1)() () (()( (1.2) 式(1.2)中,)(s num 表示传递函数阵的分子阵,其维数是p ×m ;)(s den 表示传递函数阵的按s 降幂排列的分母。 2 实验步骤 ① 根据所给系统的传递函数或(A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的关系如式(1.2),采用MATLA 的file.m 编程。注意:ss2tf 和tf2ss 是互为逆转换的指令; ② 在MATLA 界面下调试程序,并检查是否运行正确。 ③ [1.1] 已知SISO 系统的状态空间表达式为(1.3),求系统的传递函数。

相关主题