搜档网
当前位置:搜档网 › 石墨烯与聚苯胺3

石墨烯与聚苯胺3

石墨烯与聚苯胺3
石墨烯与聚苯胺3

Macromolecular Synthesis

composing the conducting polymers and carbon materials,such as carbon gel,graphite,mesoporous carbon,carbon nanotubes,and carbon nano?bers [15–21].However,the relative poor conductivity of the carbon based mesoporous materials and the high cost of the carbon nanotubes and carbon nano?bers restrict their practical applications.Graphene,a two-dimensional carbon nanomaterial,has received signi?cant research attention in energy storage devices,mainly due to its high conductivity,high mechan-ical strength,high surface area,and very good electrochem-ical stability comparable with or even better than that of carbon nanotubes [22,23].In addition,graphene-based materials can be easily obtained by simple chemical pro-cessing of graphite.Therefore,it has actual feasibility to produce a kind of electrode materials with high power den-sity,energy density,and good stability by combining the advantages of both graphene and the conducting polymers.Recently,graphene based composites with conducting polymers,such as graphene/PANI [24–34],graphene/PPY [35,36],and graphene/PT [37–39],have been received considerable interests due to their novel electrochemical properties and applications in supercapacitors.Cheng and co-workers [30]have synthesized a freestanding and ?exi-ble graphene/PANI composite paper by an in situ anodic electropolymerization of PANI ?lm on graphene paper.This graphene-based composite paper electrode combines ?exibility,conductivity,and electrochemical activity and exhibits a favorable tensile strength of 12.6MPa and a stable large electrochemical capacitance.Manthiram and co-workers [31]have demonstrated chemical oxidation polymerization of aniline on microwave-assisted solvo-thermal reduced graphene oxide for the synthesis of PAIN/graphene nanocomposites,which exhibit good en-ergy storage properties in lithium ion batteries.Wang et al.[32]have developed a ?exible graphene/PANI hybrid material as a supercapacitor electrode by an in situ poly-merization of aniline on graphene oxide,and a postreduc-tion/dedoping–redoping process is needed.However,it still remains challenging to seek out a facile and low-cost approach for the fabrication of high quality PANI/graphene nanocomposites for enhanced electrochemical properties.Herein,we have successfully synthesized sandwich-like PANI/graphene composite nanosheets by chemical oxida-tion polymerization of aniline monomer on the surfaces of reduced graphene oxide,which exhibit good electro-chemical performances due to the synergistic effect between graphene and PANI.The heterogeneous nucleation modes of PANI are proposed to elucidate the formation mechanism of PANI/graphene composite nanosheets.

2.Experimental

2.1.Preparation of graphene oxide (GO)

GO was synthesized from natural graphite (crystalline,300mesh,Alfa Aesar)by a modi?ed Hummers method [40].Graphite (5g)and NaNO 3(5g)were mixed with 230mL of H 2SO 4(98%)in a 1000mL beaker.The mixture was stirred within an ice bath.Under vigorous stirring,potassium permanganate (15g)was added slowly to the

suspension in 1h.The reaction system was stirred at room temperature for 5days forming a thick paste.As the reac-tion progressed,the mixture gradually became pasty,and the color turned into light brownish.At the end,1000mL of 1%H 2O 2was slowly added to the pasty with vigorous agitation turning the color of the solution from brown to yellow.Then the GO was suction ?ltered,washed with copious amounts of 5%HCl aqueous solution and deionized water and ?nally redispersed in water for next use.Exfoli-ation was carried out by sonicating the GO dispersion un-der ambient condition for 30min.2.2.Reduction of GO

In a typical experiment,3.5mL of ammonia solution (25%)and 0.5mL of hydrazine monohydrate (99%)were added into 500mL of diluted GO dispersion (1.5mg/mL),and then the mixture was heated at 95°C for 2h under vig-orous stirring.Once the reaction is completed,the reduced graphene oxide nanosheets (GN)were collected by ?ltra-tion as a black powder,washed with copious amounts of deionized water.

2.3.Preparation of PANI/graphene composite nanosheets In a typical synthesis of PANI/graphene composite nanosheets,aniline (1.05mmol)and GN (100mg)were dispersed in 40mL of 0.2M HCl aqueous solution under ultrasonication.A fresh solution of ammonium peroxydi-sulfate (APS,0.54mmol)in 20mL of 0.2M HCl solution was rapidly transferred to the above solution containing aniline and GN.The polymerization reaction was carried out for 12h at room temperature without any disturbance.The dark green precipitate was ?ltered off,washed with deionized water and ethanol several times,and dried at 80°C for 24h.The PANI/graphene composite nanosheets synthesized from different mass ratios are signed as PG ratio nanosheets.Like PG 1:1,indicating that the mass ratio of aniline and GN is 1:1.Herein,the pure PANI was synthe-sized chemically in the absence of GN via the similar pro-cedure above.

2.4.Preparation of electrodes

The test electrodes were prepared by mixing the sam-ple,acetylene black and polytetra?uoroethylene in the mass ratio 75:20:5,the mixture was dissolved in ethanol and grinded adequately to form a slurry.The slurry ($1mg)was coated onto a stainless steel (0.5?0.5cm 2),pressed at 10MPa,and dried under vacuum at 70°C for 24h.

2.5.Characterization

The morphologies and sizes of the synthesized samples were determined by ?eld-emission scanning electron microscopy (FE-SEM,JSM 6700F).The molecular structures of the synthesized samples were measured by Fourier trans-form infrared (FTIR,Nicolet Magna IR–750spectrophotom-eter)spectroscopy using KBr pressed disk and UV–vis spectroscopy (Cary 500UV–vis–NIR spectrophotometer)

Y.Li et al./European Polymer Journal 48(2012)1406–14121407

M A C R O M O L E C U L A R N A N O T E C H N O L O G Y

using dispersions in ethanol.

ments were carried out in 1M room temperature with a station.Cyclic voltammogram window between à0.2and 0.8system,in which platinum foils trode (SCE)were used as counter Chronopotentiometry (CP)and spectroscopy (EIS)were carried ?gurations.The assembled trode con?guration were symmetry test electrodes by a rator.The CPs were measured in a 0and 0.8V under the current performed in the frequency at open circuit voltage by 2.6.Calculations

Speci?c capacitance of the cyclic voltammogramms in tion and chronopotentiometry con?guration according to Eqs.C ?

Z

IdV =m mV

where I is the response current potential (V),t is the potential mass of the active materials on C ?4?I D t =Um Where I /m is the current charge time,U is the potential mass of the active materials on both electrodes.3.Results and discussion

Fig.1shows typical SEM images of the as-synthesized PG 1:1nanosheets.Low-magni?cation SEM image in Fig.1A reveals that the resulting product is composed of a large quantity of curved nanosheets and no other purity is found.The thickness and lateral dimensions of the PG 1:1nanosheets are in the range of 10–20nm and several micrometers,respectively.In a high-magni?cation SEM image (Fig.1B),it is clear that GN is homogeneously coated by PANI nanoparticles,indicating that aniline is polymer-ized on both the surfaces of GN to form sandwich-like structures.

The in?uences of the mass ratios of aniline and GN on the morphologies of PG nanosheets have been investi-gated.Fig.2A–D show typical SEM images of the pure PANI,pure GN,PG 4:1nanosheets,and PG 12:1nanosheets,respectively.As the polymerization reaction is carried out in the absence of GN,the product is composed of a large amount of interconnected PANI nano?bers with diameters of 40–60nm (Fig.2A),which is intrinsic to PANI [3,6,7].SEM image of pure GN in Fig.2B reveals that the GN has the sheet-like morphology,smooth surfaces,and are very thin (<10nm).As the mass ratio of aniline and GN is increased to 4:1,the thickness of PG nanosheets is increased to 20–30nm (Fig.2C).In comparison with

Fig.2A,it is clear that the sizes of PANI nanoparticles are slightly increased,which exist on both the surfaces of GN,indicating that the modes of nucleation and growth of the PANI on the surface of the GN are different from that of the PANI nano?bers.However,as the mass ratio of ani-line and GN is too high (e.g.12:1),besides PG nanosheets,PANI short nano?bers with diameters of 20–30nm appear in the products (Fig.2D),indicating the modes of nucle-ation and growth of the PANI are changed.

On the basis of the above experimental results,the for-mation mechanism of PG nanosheets can be explained by the nucleation modes of PANI during the polymerization process of aniline.GN has large speci?c surface area and high surface energy,which can provide the sites for the adsorption of anilinium cations.The polymerization of ani-line can be preferentially initiated on both the surfaces of GN by heterogeneous nucleation to form PG nanosheets due to the strong p –p stacking interaction between the 2D monolayer of sp 2-bonded carbon atoms and the elec-tronic structures of the conjugated backbones of PANI.According to classical nucleation theory,homogeneous nucleation is achieved by creating suf?ciently high levels of supersaturation.As the mass ratio of aniline and GN in-creases,the level of supersaturation increases,and PANI nano?bers can be obtained by homogeneous nucleation (Fig.2D).The diameters of PANI nano?bers is less than that

1408M A C R O M O L E C U L A R N A N O T E C H N O L O G Y

in Fig.2A,which may be related to dilution polymerization of aniline[7].It is clear that the control of heterogeneous/ homogeneous nucleation is critical for the formation of high-quality sandwich-like PG nanosheets.

Fig.3A and B present the FTIR spectra of PANI nano?-bers and PG1:1nanosheets,respectively.For PANI nano?-bers(Fig.3A),the characteristic bands at1563and 1481cm–1are assigned to the C@C stretching of quinoid rings and benzenoid rings,respectively.The characteristic bands at1295and1110cm–1are attributed to the C–N

of the secondary aromatic amine and

in-plane bending,respectively[3–5].These

observed in the spectrum of PG1:1nano-

revealing that PANI is existent in the com-

The characteristic band at1563cm–1is

skeletal vibration of the GN,which is overlapped with the C@C stretching of quinoid rings of PANI.

Typical UV–vis spectra of PANI nano?bers and PG1:1 nanosheets are shown in Fig.4.For PANI nano?bers (Fig.4A),the absorption bands at around353,429,and 845nm can be attributed to p?p?electronic transition, polaron band?p?electronic transition,and the p to the localized polaron band,respectively,which is typical band characteristics of conventional doped PANI.The absorption bands also appear in PG1:1nanosheet(Fig.4B),indicating that the PANI is also protonated in the

posite[6–8].Moreover,the absorption

279nm corresponds to graphene in the

(Fig.4B).

The comparative CV plots of the samples

materials for supercapacitors are investigated

Fig.2.SEM images of the pure PANI nano?bers(A),GN(B),PG4:1nanosheets(C),and PG12:1composites

4.UV–vis spectra of PANI nano?bers(A)and PG1:1nanosheets M A C R O M O L E C U L A R N A N O T E C H N O L O G Y

Fig.6.Cycling stability of all electrodes at100mV/s for1000cycles.

capacitances of PANI nano?bers,PG12:1,PG4:1,PG1:1and GN electrode at100mV/s are250,377,549,551,and191F/g, respectively.Fig.5C presents CV curves for PG1:1nano-sheets at different scan rates.It is found that the current density increases with the scan rate and the curve shape is steady,indicating the good electrochemical stability of the electrode material.It is also observed that there is a slight positive shift of the oxidation peaks with the incre-ment of scan rates,which is mainly due to a slight increase in the resistance of the electrodes at high scan rates[16]. Plots of speci?c capacitance vs.scan rate are illustrated in Fig.5D.As the scan rate increases,the speci?c capaci-tance of electrode decreases.This behavior is due to the increasing diffusion limitation and the decreasing pseu-do-capacitance at higher scan rate.It is evident that the speci?c capacitance of pure PANI decreases more signi?-cantly with the increase of scan rate than that of PG nano-sheets,indicating the PG nanosheets exhibit enhanced rate capability than pure PANI.The good rate capability for PG nanosheets can be ascribed to the introduction of GN with high mechanical property and high conductivity into the composites[22,23].

The cycle-life test of the electrodes performed at a scan rate of100mV/s for1000cycles is shown in Fig.6.For PG nanosheets,the decrease slope of the electrode is found to increase with the amount of coated PANI.After1000cy-cles,the discharge capacitance retention of the GN,PG1:1, PG4:1,PG12:1nanosheets and PANI nano?bers is98.9%, 92.8%,79.4%,50.9%and49.28%,respectively.It is clear that PG nanosheets possess a signi?cantly improved chemical stability as compared to pure PANI nano?bers,because GN provides high speci?c area,good electrochemical sta-bility,and high conductivity,which could effectively re-duce the kinetic dif?culties for both charge transfer and ion transport throughout the electrode[30–32].

The capacitance performances of the PG nanosheets have been further examined by chronopotentiometry (CP)measurement in two-electrode system.The typical CP curves of all samples are presented in Fig.7A.According to the capacitance Eq.(2),the speci?c capacitances of PANI nano?bers,PG12:1,PG4:1,PG1:1and GN electrodes at the current density of1A/g are665,775,662,607,and200 F/g,respectively,in agreement with the trend revealed by the CV measurements.

Electrochemical impedance technique has also been employed in order to understand the electrochemical behavior of PG1:1compared with pure PANI.Typical com-plex plane plots for these electrodes are presented in Fig.7B.At low frequency,the PG1:1exhibits a more vertical line than pure PANI,showing a better capacitor behavior. At higher frequency,the radius of semicircle is smaller, which shows lower resistance.The internal resistance of PG1:1is lower than that of PANI,which can be observed from the x intercept of the Nyquist plot.The decreased internal resistance of PG1:1electrode may be due to the doping process and p–p stacking between GN and PANI.

4.Conclusions

In summary,we have demonstrated a facile chemical oxidation polymerization method to synthesize sand-wich-like PG nanosheets in the absence of any surfactants. The mass ratios of aniline and GN have a profound effect on the morphologies and electrochemical properties of PG nanosheets.The heterogeneous nucleation modes of PANI are proposed to elucidate the formation mechanism of PG nanosheets.The PG nanosheets combine both the advantages of the high energy density of PANI and the good stability of graphene.The speci?c capacitances and capacitance retention of the PG nanosheets are remarkably enhanced compared with individual PANI and GN,which are due to the synergistic effect between graphene and PANI,which can be applied as electrode materials for elec-trochemical supercapacitors.

Acknowledgments

This work was supported by the Science and Technol-ogy Planning Project of Qingdao(10-3-4-4-8-jch),a Project of Shandong Province Higher Educational Science and Technology Program(J10LD02),and the Natural Science Foundation of Shandong Province

(2009ZRB01034).M A C R O M O L E C U L A R N A N O T E C H N O L O G Y

References

[1]MacDiarmid AG.‘‘Synthetic Metals’’:a novel role for organic polymers

(Nobel lecture).Angew Chem Int Ed 2001;40:2581–90.

[2]Huang WS,Humphrey BD,MacDiarmid AG.Polyaniline,a novel

conducting polymer.Morphology and chemistry of its oxidation and reduction in aqueous electrolytes.J Chem Soc Faraday Trans 1986;82:2385–400.

[3]Li G,Jiang L,Peng H.One-dimensional polyaniline nanostructures

with controllable surfaces and diameters using vanadic acid as the oxidant.Macromolecules 2007;40:7890–4.

[4]Wei Z,Zhang L,Yu M,Yang Y,Wan M.Self-assembling sub-micrometer-sized tube junctions and dendrites of conducting polymers.Adv Mater 2003;15:1382–5.

[5]Yan Y,Deng K,Yu Z,Wei Z.Tuning the supramolecular chirality of

polyaniline by methyl substitution.Angew Chem Int Ed 2009;48:2003–6.

[6]Huang J,Virji S,Weiller BH,Kaner RB.Polyaniline nano?bers:facile

synthesis and chemical sensors.J Am Chem Soc 2003;125:314–5.[7]Chiou NR,Epstein AJ.Polyaniline nano?bers prepared by dilute

polymerization.Adv Mater 2005;17:1679–83.

[8]Li G,Zhang C,Li Y,Peng H,Chen K.Rapid polymerization initiated by

redox initiator for the synthesis of polyaniline nano?bers.Polymer 2010;51:1934–9.

[9]Liu Z,Zhang X,Poyraz S,Surwade SP,Manohar SK.Oxidative template

for conducting polymer nanoclips.J Am Chem Soc 2010;132:13158–9.[10]Janata J,Josowicz M.Conducting polymers in electronic chemical

sensors.Nat Mater 2003;2:19–24.

[11]Chiou NR,Lu C,Guan J,Lee LJ,Epstein AJ.Growth and alignment of

polyaniline nano?bres with superhydrophobic,superhydrophilic and other properties.Nat Nanotechnol 2007;2:354–7.

[12]Wang K,Huang J,Wei Z.Conducting polyaniline nanowire arrays for

high performance supercapacitors.J Phys Chem C 2010;114:8062–7.[13]Peng C,Hu D,Chen GZ.Theoretical speci?c capacitance based on

charge storage mechanisms of conducting polymers:comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’.Chem Commun 2011;47:4105–7.

[14]Snook GA,Kao P,Best AS.Conducting-polymer-based supercapacitor

devices and electrodes.J Power Sources 2011;196:1–12.

[15]Khomenko V,Frackowiak E,Béguin F.Determination of the speci?c

capacitance of conducting polymer/nanotubes composite electrodes using different cell con?gurations.Electrochim Acta 2005;50:2499–506.[16]Ghanbari K,Mousavi MF,Shamsipur M,Karami H.Synthesis of

polyaniline/graphite composite as a cathode of Zn–polyaniline rechargeable battery.J Power Sources 2007;170:513–9.

[17]Wang YG,Li HQ,Xia YY.Ordered whiskerlike polyaniline grown on

the surface of mesoporous carbon and its electrochemical capacitance performance.Adv Mater 2006;18:2619–23.

[18]Cote LJ,Cruz-Silva R,Huang JX.Flash reduction and patterning of

graphite oxide and its polymer composite.J Am Chem Soc 2009;131:11027–32.

[19]Ghanbari K,Mousavi MF,Shamsipur M,Rahmanifar MS,Heli H.

Change in morphology of polyaniline/graphite composite:a fractal dimension approach.Synthetic Met 2006;56:911–6.

[20]Jin C,Nagaiah TC,Xia W,Spliethoff B,Wang S,Bron M,et al.Metal-free

and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline.Nanoscale 2010;2:981–7.[21]Yan X,Tai Z,Chen J,Xue Q.Fabrication of carbon nano?ber–

polyaniline composite ?exible paper for supercapacitor.Nanoscale 2011;3:212–6.

[22]Dikin DA,Stankovich S,Zimney EJ,Piner RD,Dommett GHB,

Evmenenko G,et al.Preparation and characterization of graphene oxide paper.Nature 2007;448:457–60.

[23]Stankovich S,Dikin DA,Dommett GHB,Kohlhaas KM,Zimney EJ,

Stach EA,et al.Graphene-based composite materials.Nature 2006;442:282–6.

[24]Yan J,Wei T,Shao B,Fan Z,Qian W,Zhang M,et al.Preparation of a

graphene nanosheet/polyaniline composite with high speci?c capacitance.Carbon 2010;48:487–93.

[25]Zhou X,Wu T,Hu B,Yang G,Han B.Synthesis of graphene/

polyaniline composite nanosheets mediated by polymerized ionic liquid.Chem Commun 2010;46:3663–5.

[26]Yan X,Chen J,Yang J,Xue Q,Miele P.Fabrication of free-standing,

electrochemically active,and biocompatible graphene oxide-polyaniline and graphene-polyaniline hybrid papers.Acs Appl Mater Inter 2010;2:2521–9.

[27]Zhao Y,Bai H,Hu Y,Li Y,Qu L,Zhang S,et al.Electrochemical

deposition of polyaniline nanosheets mediated by sulfonated polyaniline functionalized graphenes.J Mater Chem 2011;21:13978–83.

[28]Yan J,Wei T,Fan Z,Qian W,Zhang M,Shen X,et al.Preparation of

graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors.J Power Sources 2010;195:3041–5.

[29]Li J,Xie H,Li Y,Liu J,Li Z.Electrochemical properties of graphene

nanosheets/polyaniline nano?bers composites as electrode for supercapacitors.J Power Sources 2011;196:10775–81.

[30]Wang DW,Li F,Zhao J,Ren W,Chen ZG,Tan J,et al.Fabrication of

graphene/polyaniline composite paper via in situ anodic electropolymerization for high performance ?exible electrode.ACS Nano 2009;3:1745–52.

[31]Vadivel Murugan A,Muraliganth T,Manthiram A.Rapid,facile

microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage.Chem Mater 2009;21:5004–6.

[32]Wang H,Hao Q,Yang X,Lu L,Wang X.A nanostructured graphene/

polyaniline hybrid material for supercapacitors.Nanoscale 2010;2:2164–70.

[33]Zhang J,Jiang J,Li H,Zhao XS.A high-performance asymmetric

supercapacitor fabricated with graphene-based electrodes.Energy Environ Sci 2011;4:4009–15.

[34]Zhang K,Zhang LL,Zhao XS,Wu JS.Graphene/polyaniline nano?ber

composites as supercapacitor electrodes.Chem Mater 2010;22:1392–401.

[35]Xu C,Sun J,Gao L.Synthesis of novel hierarchical graphene/

polypyrrole nanosheet composites and their superior electrochemical performance.J Mater Chem 2011;21:11253–8.

[36]Chandra V,Kim KS.Highly selective adsorption of Hg 2+by

polypyrrole-reduced graphene oxide composite.Chem Commun 2011;47:3942–4.

[37]Alvi F,Ram MK,Basnayaka PA,Stefanakos E,Stefanakos Y,Kumar A.

Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor.Electrochim Acta 2011;56:9406–12.

[38]Choi KS,Liu F,Choi JS,Seo TS.Fabrication of frees-tanding

multilayered graphene and poly(3,4-ethylenedioxythiophene)composite ?lms with enhanced conductive and mechanical https://www.sodocs.net/doc/461983205.html,ngmuir 2010;26:12902–8.

[39]Xu Y,Wang Y,Liang J,Huang Y,Ma Y,Wan X,et al.A hybrid material

of graphene and poly(3,4-ethyldioxythiophene)with high conductivity,?exibility,and transparency.Nano Res 2009;2:343–8.[40]Hummers WS,Offeman RE.Preparation of graphitic oxide.J Am

Chem Soc 1958;80:1339.

1412Y.Li et al./European Polymer Journal 48(2012)1406–1412

M A C R O M O L E C U L A R N A N O T E C H N O L O G Y

聚苯胺防腐涂料的研究进展

万方数据

万方数据

万方数据

聚苯胺防腐涂料的研究进展 作者:陈超, 马利, 李强军, 姜其斌, CHEN Chao, MA Li, LI Qiang-jun, JIANG Qi-bin 作者单位:陈超,CHEN Chao(株洲时代新材料科技股份有限公司,湖南,株洲,412007;重庆大学化学化工学院,重庆,400044), 马利,MA Li(重庆大学化学化工学院,重庆,400044), 李强军,姜其斌,LI Qiang-jun,JIANG Qi-bin(株洲时代新材料科技股份有限公司,湖南,株洲,412007) 刊名: 广州化工 英文刊名:GUANGZHOU CHEMICAL INDUSTRY 年,卷(期):2010,38(5) 参考文献(29条) 1.马利;严俊;甘孟瑜磁场及反应条件对十二烷基苯磺酸掺杂聚苯胺聚合成膜速率的影响[期刊论文]-化学学报 2008(16) 2.陆珉;吴益华;姜海夏导电聚苯胺(PAn)的特性及应用 1988(04) 3.景遐斌;王利祥;王献红导电聚苯胺的合成、结构、性能和应用[期刊论文]-高分子学报 2005(05) 4.段玉平;刘顺华强磁场作用对聚苯胺颗粒形貌及电性能的影响[期刊论文]-化学学报 2005(17) 5.马利;汤琪导电高分子材料聚苯胺的研究进展[期刊论文]-重庆大学学报 2002(02) 6.王建雄;郭清萍;郭有军聚苯胺防腐蚀涂料的研究现状[期刊论文]-腐蚀与防护 2008(04) 7.DeBerry D W Modification of the electrochemical and corrosion behavior of stainless steel with electroactive coating 1985(05) 8.MacDiarmid A G Polyaniline and polypyrrole:where are we headed 1997 9.孙毅;钟发春;舒远杰聚苯胺的腐蚀防护机理及其在金属防腐中的应用[期刊论文]-材料导报 2009(07) 10.Schauer T;Joos A;Dulog L Protection of iron against corrosion with polyaniline primers[外文期刊] 1998(01) 11.高焕方;刘通;王连杰聚苯胺防腐涂料的研究现状[期刊论文]-表面技术 2006(04) 12.Jain F C;Rosato J J;Kalonia K S;el al Formation of an active electronic barrier at Al/semiconductor interfaces:A Novel approach in corrosion prevention 1986(12) 13.卢华军;曾波聚苯胺防腐涂料的研究状况及发展[期刊论文]-涂料工业 2007(01) 14.蒋永锋;郭兴伍;翟春泉导电高分子在金属防腐领域的研究进展[期刊论文]-高分子学报 2002(04) 15.张金勇;李季;王献红聚苯胺在腐蚀防护领域的应用 1999 16.谭焰;谢乃贤聚邻甲苯胺防腐涂层对碳钢的防护保护作用[期刊论文]-电镀与涂层 2000(05) 17.龙晋明;王少龙;王静不锈钢表面电化学合成导电聚苯胺膜的研究[期刊论文]-材料保护 2003(12) 18.任乃媛;王保成本征态聚苯胺对45钢的防护性能[期刊论文]-材料保护 2006(02) 19.谭焰;肖静知;谢乃贤聚苯胺在金属腐蚀防护中的应用 1998 20.倪余伟聚苯胺在腐蚀防护中的应用[期刊论文]-腐蚀与防护 2000(1) 21.Wessling B Corrosion prevention with on organic metal (polyaniline):surface ennobling,passjvation,corrosion teat results 1996 22.Santos J R;Atoso L H C;Motheo A J Investiga6on of corrosion protection of steel by polyanilne films 1998 23.Gasparac R;Martin C R Investigations of the mechanism of corrosion inhibition by polyaniline,polyaniline-coated stainless steel in sulfuric acid solution[外文期刊] 2001(04) 24.Kinlen P J;Monon V;Ding Y W A mechanistic invosgation of polyaniline corrosion protection using the scanning reference electrode technique[外文期刊] 1999(10)

导电聚苯胺的掺杂及掺杂机理

一.掺杂机理 亚胺中的氮原子是质子酸掺杂聚苯胺的主要位置,确保必要的条件下进行有效的质子酸掺杂是苯二胺结构和醌二亚胺结构两个在同一时间存在[47、35]。由聚苯胺的结构式可知,不同的y 值,对应的氧化还原状态不同。当质子酸掺杂聚苯胺,质子到聚合物分子的主链,使聚苯胺主链带正电,为保持整个聚苯胺分子的电中性,阴离子也掺杂到聚苯胺主链。研究表明,质子酸的质子将在主链的碳原子上进攻,质子的掺入可以使本征态的聚苯胺转变为的亚胺盐[48-49],使得电导率大大提高。经过掺杂的聚苯胺,单极化子和双极化子同时存在于分子链上[50]。如图5.1,单极化子和双极化子在分子链上互相转化传递,在这过程中传播电荷。并且在掺杂态的导电聚苯胺中,载流子是由单双极化子共享的。在本实验中,对于无机酸分子而言,PO4 3-对阴离子体积较小,扩散速度比较快,但是无机酸掺杂的聚苯胺耐蚀性和导电性普遍较差,这是因为无机酸掺杂过程比较简单,容易控制。当使用分子相对较大的有机酸掺杂时,其对阴离子SO32-离子体积较大,得到的聚苯胺的耐蚀性和导电性就能得到较大改善。 图5.1 掺杂聚苯胺载流子的生成过程 二.聚苯胺的掺杂改性 导电聚合物结构最突出的特点是共轭聚合物链结构及其掺杂特性。共轭聚 合物的本征态处于半导态或绝缘态,p(空穴)型或n(电子)型掺杂后转变为导电 态。导电聚合物的p型掺杂是指其共轭主链失去电子同时伴随对阴离子的嵌入, n型掺杂则是指其共轭主链得到电子同时伴随对阳离子的嵌入,对离子的嵌入使 导电聚合物整体上呈现电中性。导电聚合物共轭主链上每单体单元对应的对离 子数称为掺杂浓度,对于几种常见的导电聚合物,聚乙炔的掺杂浓度为0.1~0.2, 聚吡咯和聚噻吩为0.25~0.35,聚苯胺为0.4~0.5。导电聚合物的掺杂结构涉及对

水性异氰酸酯改性石墨烯-聚氨酯复合乳液防腐性能研究-

文章编号:1001-9731(2016)06-06016-06 水性异氰酸酯改性石墨烯/聚氨酯复合乳液防腐性能研究? 朱科1,李小瑞1,李菁熠1,2,费贵强1,王佼1 (1.陕西科技大学化学化工学院,教育部轻化工助剂化学与技术重点实验室,西安710021; 2.渭南师范学院,陕西渭南714099) 摘要:通过逐步聚合反应将异氰酸酯功能化石墨烯(IGN)接枝到水性聚氨酯(WPU)链段中,制备得到水性异氰酸酯改性石墨烯/聚氨酯纳米复合乳液(IGN/WPU).通过傅里叶变换红外的光谱(红外光谱)二原子力显微镜(AFM)二扫描电镜(SEM)对氧化石墨烯(GO)二IGN二WPU及IGN/WPU复合材料的结构进行表征,并研究了IGN含量对复合乳液作为金属防腐涂层性能的影响.结果表明,随IGN含量增加,涂层硬度提高,水蒸气透过率下降,防腐效率增大.当m(IGN)=1%(质量分数)时,涂层硬度达到了2H,水蒸气透过率降低到51.98g/m2. h,与空白样相比防腐效率提高了94.70%. 关键词:水性聚氨酯;石墨烯;复合材料;金属防腐 中图分类号: TQ323.8文献标识码:A DOI:10.3969/j.issn.1001-9731.2016.06.004 0 引言 金属防腐在现代工业占有非常重要的地位,金属防腐主要方法包括阴极保护法,使用防锈剂和防腐涂料[1-4],在倡导环境保护的21世纪,水性防腐涂料将在未来几年逐步替代油性涂料.水性聚氨酯作为4大水 性涂料之一,具有环境友好二机械性能优良等特点[5],提高水性聚氨酯的防腐性能将作为评价其工业化推广的重要指标.石墨烯具有优良的导电性能二热稳定性及化学稳定性[6-7]二超大比表面积及气体阻隔性能[8]等特点,使其应用于防腐涂料成为了可能.Wen等[9]制备了石墨烯-聚苯胺复合材料并与PVB复合,制备得到了石墨烯-聚苯胺-PVB复合涂层,降低了铜片在盐雾条件下的腐蚀速度.Liu等[10]将石墨烯涂敷于铝片表面,提高了铝片防腐性能.Li Min g等[11]采用阴极电泳沉积法将氧化石墨烯-羟基磷灰石复合涂层涂布于钛板表面,研究了氧化石墨烯用量对防腐性能的影响.目前,石墨烯与聚合物复合材料作为防腐涂层的研究主要以共混掺杂为主,其中溶剂型复合材料占绝大部分,而对石墨烯进行功能化修饰,并制备水性防腐复合涂料的研究较少.本文采用改进Hummers 法[12-13]制备得到氧化石墨烯(GO),通过异佛尔酮二异氰酸酯对氧化石墨烯进行修饰改性,然后通过苯肼对其还原,制备得到异氰酸酯化石墨烯(IGN),通过逐步聚合法将IGN接枝到聚氨酯分子链上,分散得到石墨烯-水性聚氨酯复合乳液(IGN/WPU).通过红外二AFM二SEM对IGN和IGN/WPU的结构和微观形貌进行分析,并研究了IGN用量对涂层及其防腐性能的影响. 1实验 1.1主要原料 异佛尔酮二异氰酸酯(IPDI),异佛尔酮二胺(IP-DA),工业级,日本三井化学有限公司;聚己内酯二元醇(PCL,M n=1000),工业级,日本大赛路有限公司;二羟甲基丁酸(DMBA)CP,江西南城红都化工科技开发有限公司;高碳天然鳞片石墨,粒度45~500μm (325~32目),碳含量为85%~99.9%,工业级,青岛海达石墨有限公司;苯肼,试剂级,阿拉丁试剂;浓硫酸(H2SO4,98%)二硝酸钠(NaNO3)二高锰酸钾(KMnO4)二双氧水(H2O2,30%)二盐酸二丙酮二三乙胺(TEA),均为试剂级,国药控股有限公司;二月桂酸二丁基锡(DBTDL),CP,天津市福晨化学试剂厂;2,2,4-三甲基-1,3-戊二醇单异丁酸酯(成膜助剂),工业级,美国伊士曼化工集团;有机硅消泡剂,自制.丙酮及三乙胺使用充分干燥的4A分子筛除水;将DBTDL溶于丙酮中,制备成2%(质量分数)的溶液备用.1.2氧化石墨烯(GO)的合成 把500mL的三口烧瓶放入0?冰水浴中,加入2g 天然鳞片石墨,然后加入1g硝酸钠,再加入80mL浓硫酸,混合均匀,搅拌反应30min之后逐步加入6g高锰酸钾(约90min),添加完毕后,在冰水浴中继续搅拌反应2h后,将烧瓶缓慢移入到35?的恒温水浴中搅拌反应3h,保持搅拌缓慢滴加90mL去离子水反应 6106 02016年第6期(47)卷 ?基金项目:国家自然科学基金资助项目(21204046,51373091);陕西省教育厅重点实验室资助项目(13JS018,14JS014) 收到初稿日期:2015-06-02收到修改稿日期:2015-12-18通讯作者:朱科,E-mail:zhuke521521@163.com 作者简介:朱科(1986-),男,西安人,在读博士,师从李小瑞教授,主要从事精细高分子二有机高分子功能材料合成等研究.

有机质子酸掺杂聚苯胺的结构与导电性能

有机质子酸掺杂聚苯胺的结构与导电性能 摘要:聚苯胺是导电高分子化合物中的一种极有应用前途的高分子材料。本文概述了聚苯胺的掺杂机制,以及列举了几种有机质子酸掺杂聚苯胺的结构与导电性能的关系,并对聚苯胺研究的前景进行了展望。 聚苯胺最早合成与1862年,在20世纪80年代,由于其导电性能,被人们广泛研究。1,2, 3聚苯胺是由还原单元和氧化单元构 成,其结构单元可表示为:,其中y 表示氧化-还原程度。氧化度不同的聚苯胺表现出不同的组分、结构、颜色及电导特性,其结构如图1。从完全还原态(Leuco-emeraldiline,LB y =1,能带隙宽= 4 eV ) 向完全氧化态(pernigraniline,PB y = 0,能带隙宽= 2 eV )转化的过程中,随氧化度的提高聚苯胺依次表现为黄色、绿色、深蓝、深紫色和黑色。不同氧化态中,完全还原态(LB) 和完全氧化态( PB) 都是绝缘体,只有氧化单元数和还原单元数相等的中间氧化态( Emeraldiline,EB y = 0.5) 经质子酸掺杂后才可以成为导体。聚苯胺的电活性源于分子链中的π电子共轭结构:随分子链中π电子体系的扩大,π成键态和π﹡反键态分别形成价带和导带,这种非定域的π电子共轭结构经掺杂可形成P型和N型导电态。不同于其他导电高分子在氧化剂作用下产生阳离子空位的掺杂机制,聚苯胺的掺杂过程中电子数目不发生改变,而是由掺杂的质子酸分解产生H+和对阴离子(如Cl-、SO42-、PO43-等) 进入主链,与胺和亚胺基团中N 原子结合形成极子和双极子离域到整个分子链的π键中,从而使聚苯胺呈现较高的导电性4,5,6。这种独特的掺杂机制使得聚苯胺的掺杂和脱掺杂完全可逆,掺杂度受pH 值和电位等因素的影响,并表现为外观颜色的相应变化,聚苯胺也因此具有电化学活性和电致变色特性7,8。9 1.聚苯胺的掺杂机制 通过化学氧化或电化学氧化所合成的固体聚苯胺,同酸反应后导电率提高大约10个数

电化学方法合成聚苯胺

电化学方法合成聚苯胺的研究 摘要 膜科学技术自50年代以来发展迅速,现已在工业、农业、医学等领域获得广泛应用。就膜材料而言,有机膜发展最早,因其柔韧性好、成膜性能好、品种多等优点而获得大规模应用。聚苯胺电致变色膜作为一种导b电聚合物材料,具有易合成、均相、性质均一、能牢固附着在支持物上等优点具有广阔的市场应用前景。本文利用循环伏安法,采用三电极体系,研究在碳布电极表面合成聚苯胺膜。 本实验考查了苯胺单体浓度、溶液酸度、质子酸类型、线性扫描速率、扫描圈数等对合成聚苯胺膜的影响规律。实验发现聚苯胺的电化学氧化过程是一个自催化过程。镀液中苯胺单体浓度越大对成膜越有利,但是受苯胺的溶解度影响,镀液中的硫酸与苯胺的浓度比应大于1 : 1。另外降低扫描速率,适当增加扫描圈数有利于聚苯胺膜的形成,最佳扫描速率为25mv/s。聚苯胺的电化学活性明显依赖于质子化的程度,在苯胺与硫酸组成的镀液中,H2SO4浓度越大,膜的氧化还原可逆性越大,聚苯胺的自催化效应越强,质子酸中硫酸对聚苯胺的电化学生成的促进作用最大。 关键词:聚苯胺,循环伏安,影响规律

Abstract The technology of film science has developed rapidly since the 1950s. It is widely used in industry, agriculture, medicine and other fields. The organic film was developed first. It is well applied in many filds because of its flexibility, film-forming properties, and has many kinds of product. The electrochromic display film of polyaniline is one of electronically conducting polymers, it has a broad market prospect because it is easily synthesized, character uniform and can be firmly attached to the substrates. The work studied synthesis of polyaniline film on carbon cloth with three elctrodes by means of cyclic voltammograms. Synthesis of polyaniline films on carbon cloth are related to aniline concentration, solution acidity, bronsted acid type, linear scan rate and scanning numbers etc. It was found that the polyaniline electrochemical oxidation process is a self-catalytic process. It was found the higher the aniline concentration is, the esaier polyaniline synthesize is, because of the solubility of aniline in the water, sulfuric acid and aniline should be more than 1: 1 in concentration. Furthermore it was favorable to synthesize polyaniline films when reduce scan rate and increase the numbers of scanning appropriately, and the best scan rate is 25 mv/s. The activity of polyaniline films was significantly depended on the extent of the proton, in the solution of aniline and sulfuric acid bath, the greater the H2SO4concentration is, the greater the film’s redox reversible is, the stronger the self-catalytic effect is ,and sulfuric acid can promote the speed of synthesis of

改性氧化石墨烯聚苯胺防腐材料制备和性能

改性氧化石墨烯/ 冯见艳1,2,王学川1,2*,陈秀婷1,2( 1.陕西科技大学 轻工科学与工程学院,陕西 西安 710021; 2.710021) 摘要: 用双子表面活性剂(GS)对氧化石墨烯(GO)进行插层改性制备了改性氧化石墨烯(GSGO),再以苯胺(An) 为单体,过硫酸铵(APS)为引发剂,通过原位聚合法制备了GSGO/PANI 复合材料。利用GSGO/PANI 与水性醇 酸树脂(WAR)共混得到GSGO/PANI/WAR 防腐涂层。采用FTIR 、Raman 、XRD 和SEM 对GSGO 和复合材料 的形貌、结构进行了表征。结果表明,GS 插入到GO 的片层中,使得GSGO 的层间距增大,且棒状聚苯胺分 散在GO 的片层中,形成片状插层结构。动电位极化和电化学阻抗谱测试表明,GSGO/PANI/WAR 复合涂层比 纯WAR 涂层具有更高的耐腐蚀性能。当复合涂层中w (GSGO)=10%时,GSGO/PANI/WAR-2涂层的耐腐蚀性能 最好,极化电阻为7.98×107 Ω·cm 2;腐蚀速率为1.26×10-4 mm/a ,阻抗值|Z |可达到5.25×106 Ω·cm 2 。与纯WAR 相比,其腐蚀电流密度从9.82×10-6A/cm 2减小至1.08×10-8A/cm 2 ,腐蚀电位从-0.56V 增加到-0.28V 。(摘要必须开门见山地摘入该文的研究目的、研究方法和结论性数据,多用数据说话,不要泛讲空谈,不出现 300字) (关键词一般列5~8个关键词,词间加分号) A 文章编号:1003-5214 (2018) 00-0000-00 FENG Jian-yan 1,2, WANG Xue-chuan 1,2*, CHEN Xiu-ting 1,2, WANG Yan-song 1,2 (1.College of Bioresources Chemical and Materials Engineering,Shaanxi University of Science and Technology,Xi'an 710021, Shaanxi,China;2.National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, China )英文作者姓名之间用逗号隔开。姓大写,名首字母大 写。单位名称用全称,不用缩写,如Lab.。 Abstract:Gemini msurfactants(GS) modified graphene oxide(GO),GSGO, was prepared by intercalation method. Then,the as-prepared GSGO was used to produce GSGO/polyaniline(PANI) composites via an in situ chemical polymerization using aniline(An) as monomer,ammonium persulfate(APS) as initia- tor.Finally,blending of GSGO/PANI with waterborne alkyd resin(WAR) afforded GSGO/PANI/WAR an- ti-corrosion coatings.The structure and morphology of GSGO and GSGO/(PANI) composite were charac- terized by FTIR,Raman,XRD and SEM. The results showed that GS was intercalated into the layers of GO, and the interlayer spacing of GSGO were increased.Moreover,rod-like polyaniline was dispersed in GO sheet layers,forming flaky intercalation structure. Tafel polarization and electrochemical impedance spec- troscopy(EIS) tests demonstrated that the GSGO/PANI/WAR composite coatings had higher corrosion re-

一 聚苯胺的合成方法

一聚苯胺的合成方法 聚苯胺的合成方法很多,但常用的合成方法有两大类:化学合成和电化学合成。 (1) 化学合成法化学合成法是利用氧化剂作为引发剂在酸性介质中使苯胺单体发生氧化聚合,具体实施方法有如下几种。 ①化学氧化聚合法聚苯胺的化学氧化聚合法,是在酸性条件下用氧化剂使苯胺单体氧化聚合。质子酸是影响苯胺氧化聚合的重要因素,它主要起两方面的作用:提供反应介质所需要的pH值和以掺杂剂的形式进入聚苯胺骨架赋予其一定的导电性。聚合同时进行现场掺杂,聚合和掺杂同时完成。常用的氧化剂有:过氧化氢、重铬酸盐、过硫酸盐等。其合成反应主要受质子酸的种类及浓度,氧化剂的种类及浓度,单体浓度和反应温度、反应时间等因素的影响。化学氧化聚合法优点在于能大量生产聚苯胺,设备投资少,工艺简单,适合于实现工业化生产,是目前最常用的合成方法。 ②乳液聚合法乳液聚合法是将引发剂加入含有苯胺及其衍生物的酸性乳液体系内的方法。乳液聚合法具有以下优点:采用环境友好且成本低廉的水作为热载体,产物无需沉淀分离以除去溶剂;合成的聚苯胺分子量和溶解性都较高;如采用大分子磺酸为表面活性剂,则可一步完成掺杂提高导电聚苯胺电导率;可将聚苯胺制成直接使用的乳状液,后续加工过程不必再使用昂贵或有毒的有机溶剂,简化了工艺,降低了成本,还可以克服传统方法合成聚苯胺不溶不熔的缺点。 ③微乳液聚合法微乳液聚合法是在乳液法基础上发展起来的。聚合体系由水、苯胺、表面活性剂、助表面活性剂组成。微乳液分散相液滴尺寸(10~100nm)小于普通乳液(10~200nm),非常有利于合成纳米级聚苯胺。纳米聚苯胺微粒不仅可能解决其难于加工成型的缺陷,且能集聚合物导电性和纳米微粒独特理化性质于一体,因此自1997年首次报道利用此法合成了最小粒径为5nm的聚苯胺微粒以来,微乳液法己经成为该领域的研究热点。目前常规O/W型微乳液用于合成聚苯胺纳米微粒常用表面活性剂有DBSA、十二烷基磺酸钠等,粒径约为10~40nm。反相微乳液法(W/O)用于制备聚苯胺纳米微粒可获得更小的粒径(<10nm),且粒径分布更均匀。这是由于在反相微乳液水核内溶解的苯胺单体较之常规微乳液油核内的较少造成的。 ④分散聚合法苯胺分散聚合体系一般是由苯胺单体、水、分散剂、稳定剂和引发剂组成。反应前介质为均相体系,但所生成聚苯胺不溶于介质,当其达到临界链长后从介质中沉析出来,借助于稳定剂悬浮于介质中,形成类似于聚合物乳液的稳定分散体系。该法目前用于聚苯胺合成研究远不及上述三种实施方法

聚苯胺的制备实验报告

聚苯胺的制备实验报告 姓名:吉武良院系:化院20系学号:PB13206270 摘要:本实验利用化学氧化聚合法制备聚苯胺,旨在了解一种新型的功能聚合物---导电聚合物,探讨电子导电聚合物的结构与机理,并掌握聚苯胺的合成方法。关键词:导电聚合物聚苯胺 Abstract:In this experiment, the chemical oxidative polymerization preparing polyaniline, aimed at understanding a novel functional polymer --- conductive polymer , to investigate the structure and mechanism of the electronically conductive polymer and grasp the polyaniline synthesis method . Keywords:Polyaniline Conducting polymer 一、引言 导电聚合物(conducting polymer):又称导电高分子,是指通过掺杂等手段,能使得电导率在半导体和导体范围内的聚合物。通常指本征导电聚合物(intrinsic conducting polymer),这一类聚合物主链上含有交替的单键和双键,从而形成了大的共轭π体系。π电子的流动产生了导电的可能性。 1977年A. J. Heeger、A. G. MacDiarmid 和白川英树(H. Shirakawa) 发现,聚乙炔薄膜经电子受体(I,AsF5等) 掺杂后电导率增加了9个数量级,(他们为此共同获得2000年度诺贝尔化学奖) 。这一发现打破了有机聚合物都是绝缘体的传统观念,开创了导电聚合物的研究领域,诱发了世界范围内导电聚合物的研究热潮。大量的研究表明,各种共轭聚合物经掺杂后都能变为具有不同导电性能的导电聚合物,具有代表性的共轭聚合物有聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚对苯撑乙烯、聚对苯等。 导电聚合物的早期研究兴趣主要集中在掺杂导电态上。到了1990年随着聚合物发光二极管的发现,导电聚合物本征半导态的电致发光特性、激光特性和光伏打效应又引起了广泛关注,掀起了研究共轭聚合物的新一轮高潮。 导电聚合物的突出优点是既具有金属和无机半导体的电学和光学特性,又具有有机聚合物柔韧的机械性能和可加工性,还具有电化学氧化还原活性。这些特点决定了导电聚合物材料将在未来的有机光电子器件和电化学器件的开发和发展中发挥重要作用[1]。 聚苯胺(PANI):聚苯胺是导电高分子领域最具应用价值的品种,既具有金属的导电性和塑造的可加工性,同时还具有金属和塑料所欠缺的化学和电化学特性。可广泛应用于电子

柔性石墨烯聚苯胺纳米纤维复合薄膜超级电容器的研究

柔性石墨烯/聚苯胺纳米纤维复合薄膜超级电容器的研究 摘要:化学改性的石墨烯(CCG)与聚苯胺纳米纤维(PANI-NFs)薄膜通过真空过滤这两种混合分散的组成成分来制备。复合薄膜是一个层状结构,PANI-NF 处在CCG层之间。此外,它有机械稳定性和良好的柔性,因此,它能够弯曲较大的角度或者形成多种想要得到的结构。含44%的CCG的复合薄膜的电导率(5.5×102Sm-1)大约为PANI-NFs薄膜的10倍。这种导电柔性复合薄膜的超级电容器在放电率为0.3A/g时,显示出了较大的电化学电容(210F/g)。它们也显示出了极大改进的电化学稳定性和速率性能。 关键词:石墨聚苯胺纳米纤维超级电容器复合柔性 石墨烯,sp2杂化的二维单层碳原子,在最近几年吸引了人们大量的注意力,主要是因为它的非常高的电学和热学传导性、高的机械强度、高比表面积和潜在的低制造成本。石墨烯在组装储电和储能装置、传感器、透明电极、超分子组装和纳米复合材料方面已经被研究用于应用。特别是石墨烯与高分子复合材料是科学上与工业上的兴趣,因为由高电导率和石墨烯的强化性能引起的它们的强大的性能。 另一方面,导电高分子材料(CPs)也被广泛的研究和在多种有机装置中应用。为了改进装置的性能或者提高其功能,CPs通常为纳米结构。聚苯胺(PANI)是典型的高分子材料,它拥有良好的环境稳定性、引人关注的电导率和不同寻常的掺杂/去掺杂化学过程。纳米结构的PANI可以通过多种化学方法合成。例如,聚苯胺纳米纤维(PANI-NFs)可以通过界面或快速混合聚合很容易制备,它们被用于组装化学传感器、制动器、存储设备、电池和超级电容器。然而,化学制备的纳米导电高分子材料(包括PANI-NFs)通常为粉末状和在去掺杂状态时为绝缘态。因此,各种多孔碳材料(如活性炭、中孔碳和碳纳米管)和高分子粘合剂(如全氟磺酸)通常用作制备高分子电极的添加剂。作为碳纳米材料的新种类,也被应用于制备高分子复合材料。PAN和石墨烯、石墨氧化物和石墨烯纳米薄片或者石墨烯纸的复合材料通过原位化学或者电化学的方法聚合、共价或非共价功能化和自组装都能成功制备。然而以前的大多数工作中,石墨氧化物或者石墨烯聚合物而不是稳定分散的石墨烯片层被作为原料使用。可是,石墨氧化物是绝缘体,聚合的石墨没有了高的比表面积和石墨烯显著的单层电学特性。

酸掺杂聚苯胺及其防腐涂料的研究

酸掺杂聚苯胺及其防腐涂料的研究 2010/4/19/8:57来源:涂料与涂装资讯网 邵亮1,冯辉霞1,邱建辉2,张国宏1,赵阳1,王毅1,张建强1 (1.兰州理工大学石油化工学院,兰州730050;2.日本秋田县立大学系统 科学技术学部,日本秋田015-0055) 慧聪涂料网讯:摘要:介绍了聚苯胺的结构、导电机理和酸掺杂过程,综述了近年来国内外在酸掺杂聚苯胺研究方面的进展。着重讨论了聚苯胺防腐涂料的制备方法、检测方法以及聚苯胺防腐涂料的应用和前景展望。 关键词:聚苯胺;酸掺杂;防腐涂料 0.引言 导电高分子材料具有的室温电导率可在绝缘体-半导体-金属态范围内 (10-9~10-5S/cm)变化,这使其可用于电磁屏蔽、防静电、分子导线等领域。聚苯胺(PANI)的电导率较高,电化学及光学性质良好,环境稳定性好,是一个综合性能优良的导电高分子材料。虽然本征态聚苯胺的电导率很低,但通过质子酸掺杂后,其电导率可大大提高。本文将从聚苯胺的结构、导电机理和酸掺杂过程,综述酸掺杂聚苯胺的研究,并着重讨论聚苯胺在防腐涂料领域的应用。 1.聚苯胺的结构 1910年Green,等[1]基于对苯胺基本氧化产物的元素分析和定量的氧化还原反应,提出了直接合成的苯胺八偶体的碱式结构为Emeraldine形式和苯胺的5种结构形式,分别命名为Leucoeerald-inebase(LEB)、Eme-raldinebase(EB)、Pen-igranilinebase(PNB)、Protoemeraldine和Nigraniline。现已公认的聚苯胺(PANI)的结构式如式1所示(y为摩尔分数,n为聚合度),是1987年由MacDiarmid[2]提出的:即结构式中含有“苯-苯”连续的还原形式和含有“苯-醌”交替的氧化形式,其中y值表征PANI的氧化还原程度、不同的结构、组分和颜色及导电率。当y=1是完全还原的全苯式结构,对应着 “Leumemera-ldine”;y=0是“苯-醌”交替结构,对应着“Prenigraniline”,以上两者均为绝缘体。而y=0.5为苯醌比为3∶1的半氧化半还原结构,对应着“Emeraldine”,即本征态。

关于聚苯胺

研究历史编辑 导电高分子用途[5] 从1977年日本Shirakawa,美国MacDiarmid、Heeger发现掺杂聚乙炔(PA)呈现金属特性并由此荣获诺贝尔化学奖至今,相继发现的较常用的导电高分子有聚对苯(PPP)、聚吡咯(PPY)、聚噻吩(PTH)、聚苯基乙炔(PPV)和聚苯胺(PANI)。由于导电高分子特殊的结构和物化性能,使其在电子工业、信息工程、国防工程及其新技术的开发和发展方面都具有重大的意义。其中因聚苯胺具有原料易得、合成工艺简单、化学及环境稳定性好等特点而得到了广泛的研究和应用。[5-8] 1826年,德国化学家Otto Unverdorben通过热解蒸馏靛蓝首次制得苯胺(aniline),产物当时被称为“Krystallin”,意即结晶,因其可与硫酸、磷酸形成盐的结晶。1840年,Fdtzsche从靛蓝中得到无色的油状 不同氧化态聚苯胺之间的可逆反应(3张) 物苯胺,将其命名为aniline,该词源于西班牙语的anti(靛蓝)并在1856年用于染料工业。而且他可能制得了少量苯胺的低聚物,1862年HLhetbey也证实苯胺可以在氧化下形成某些固体颗粒。但由于对高分子本质缺乏足够的认知,聚苯胺的实际研究拖延了几乎一个世纪,直到1984年,MacDiarmid提出了被广泛接受的苯式(还原单元)-醌式(氧化单元)结构共存的模型。随着两种结构单元的含量不同,聚苯胺处于不同程度的氧化还原状态,并可以相互转化。不同氧化还原状态的聚苯胺可通过适当的掺杂方式获得导电聚苯胺。[9-13] 不同氧化态聚苯胺之间的可逆反应图册参考资料。[ 结构 聚苯胺的实际合成与结构研究始于20世纪初,英国的Green和德国的Willstatter两个研究

聚苯胺涂层防腐蚀机理

聚苯胺涂层防腐蚀机理 聚苯胺早在100多年以前就已经被人们发现,但是这种黑绿色的固体在很长一段时间里仅被用作颜料,称为“苯胺黑”。聚苯胺防腐蚀性能的发现为涂层防腐性能带来了新的提高,尤其是导电聚苯胺,具有独特的电化学性质,可以应用到防腐、防污、防静电涂料等领域。聚苯胺在涂层中各种状态都有可能发挥防腐蚀作用,哪一种状态效果更好以及防腐蚀机理都尚待进一步研究。随着研究的深入,聚苯胺新的防腐蚀机理也不断被提出,综合起来主要有以下几种观点。 一、钝化作用聚苯胺的存在导致在金属和不本案膜界面处形成一层致密的金属氧化膜,使得该金属的电极电位处于钝化区,得到保护。 二、空间隔离阴阳极反应聚苯胺具有一定的电荷传递功能,能在铁表面拦截电子,并输送至底漆外部,使大量的阴极反应在该处发生,从而避免了阴极反应在金属涂层界面发生,提高了涂层的防腐蚀能力。 三、离子交换膜作用选择性的透过和阻止具有侵蚀性的阴阳离子,在多层协同作用下达到消除腐蚀反应的目的。 四、缓蚀作用胺类有机化合物的中心原子N上具有未共用的电子对,当金属表面存在空的d轨道时,极性基团中心原子的孤对电子就与空的d轨道形成配位键,这样其分子就吸附在金属表面形成一层起到缓蚀作用的疏水吸附层。然而聚苯胺的共轭主链结构使它在大多数溶剂中溶解性极差,从而妨碍了它作为缓蚀剂的作用。 五、屏蔽作用涂料通常都具有屏蔽保护的作用,将金属表面与周围腐蚀环境隔开,聚苯胺可在金属表面形成一层致密的薄膜,改善了涂膜的致密性,从而具有良好的防腐蚀保护作用。 六、形成络合物聚苯胺在铁的界面发生氧化还原反应,生成一种络合物,该络合物的氧化电位高于单独聚苯胺的氧化电位,以催化作用推动氧的还原,从而补偿了因铁的溶解而消耗的电荷,将铁的电位稳定在钝化区。 七、电场作用聚苯胺在金属表面形成电场,该电场的方向与电子传递方向相反,因此阻碍了电子从金属向氧化物质(氧气)的传递,相当于一个电子传递屏蔽作用。 中国新型涂料网

聚苯胺纳米粒子的合成

收稿日期:2003-11-25 基金项目:国家自然科学基金资助项目(20274030);上海市科技纳米专项基金资助项目(0259nm022)作者简介:黄美荣(1963-),女,江西南昌人,教授,工学硕士.E 2mail :Huangmeirong @https://www.sodocs.net/doc/461983205.html, 聚苯胺纳米粒子的合成 黄美荣,李新贵 (同济大学材料科学与工程学院,上海 200092) 摘要:系统归纳总结了聚苯胺纳米粒子的合成方法,论述了各种方法所得纳米聚苯胺的粒径、形状、稳定性等,分析了各种方法的利与弊,并同时给出了本课题组的最新研究结果.指出微乳液聚合和分散聚合是获得纳米聚苯胺的常用方法,尤其是微乳液聚合法,可以获得粒径较小的聚苯胺纳米粒子,最小粒径为8~10nm.与普通的微米级聚苯胺颗粒相比,纳米聚苯胺因具有良好的加工性,在透明导电膜、防腐涂料、电极修饰材料、电流变材料等领域展现出了广阔的应用前景. 关键词:纳米粒子;聚苯胺;微乳液聚合;分散聚合 中图分类号:TQ 316;O 631 文献标识码:A 文章编号:0253-374X (2005)01-0083-05 Synthesis of Polyanline Nanoparticles HUA N G Mei 2rong ,L I Xi n 2gui (School of Materials Science and Engineering ,Tongji University ,Shanghai 200092,China ) Abstract :The synthesis of polyaniline nanoparticles is systematically summarized.The size and shape ,as well as stabilities of the polyaniline nanoparticles are elaborated.The merits and the disadvantages of these techniques are also discussed.The latest results of our research group are presented.It is pointed out that both microemulsion polymerization and dispersion polymerization are frequently employed for preparing the electroconducting polyaniline nanoparticles ,with which nano size polyaniline particles with the smallest diameter of 8~10nm could be easily obtained ,especially in case of microemulsion https://www.sodocs.net/doc/461983205.html,paring with the conventional polyaniline particles with micrometer size ,polyaniline nanoparticles have shown numerous potential applications in fields such as transparent electrocon 2ducting films ,anticorrosion coatings ,electrode modified materials and electrorheological materials owing to their excellent processibilities. Key words :nanoparticles ;polyaniline ;microemulsion polymerization ;dispersion polymerization 聚苯胺具有优异电活性、原料便宜、易于合成、 操作简单等优点,已成为最具有广泛商业应用前景的导电聚合物之一[1,2].然而,聚苯胺结构的高度芳香性使其具有较高的化学稳定性和热稳定性,导致 了溶液加工或熔融加工障碍.将纳米技术引入聚苯胺材料中,不仅有望解决加工成型问题,而且还能使其集导电性和纳米效应于一体,从而推进导电聚合物的工业化进程.因此自1997年报道了由微乳液聚 第33卷第1期2005年1月 同济大学学报(自然科学版) JOURNAL OF TON G J I UN IVERSITY (NATURAL SCIENCE )Vol.33No.1  Jan.2005

聚苯胺的合成工艺

聚苯胺的合成工艺 摘要:重点介绍了近年来聚苯胺材料的合成工艺及性质和应用现状,指出了聚苯胺如今在工艺中仍然存在的一些问题,简单描述了聚苯胺的结构和最新的研究工艺,并展望了聚苯胺材料今后的发展方向和应用前景。 关键词:聚苯胺合成工艺应用前景展望 Synthesis of Polyaniline Abstract:Introduced the polyaniline material in recent years the synthetic process and properties and application present situation, pointed out the polyaniline are now in the process there are still some problems, simply describes the structure of polyaniline and latest research technology, and prospects the polyaniline material the future direction of development and application prospect. Key words:Polyaniline synthesis process application prospect 在众多导电聚合物中, 聚苯胺是一种具有共轭电子结构的本征型导电高分子,具有良好的导电性、价廉易得和环境稳定性等优点, 因此被认为是最有可能实用化的导电高分子材料, 在能源、光电子器件、电容器、传感器、电磁屏蔽、催化、二次电池、电致变色和金属防腐等领域有着广阔的应用前景, 是导电高分子聚合物研究的热点。 1 聚苯胺的结构和合成工艺 1.1聚苯胺的结构 聚苯胺有多种结构,这是由反应条件决定的,它们之间的转化关系如下[12,13]:

相关主题