搜档网
当前位置:搜档网 › 200Smart存储卡怎么用

200Smart存储卡怎么用

200Smart存储卡怎么用
200Smart存储卡怎么用

S7-200Smart存储卡的使用

一、存储卡

S7-200 SMART CPU 支持商用MicroSD卡(支持容量为4G、8G、16G),可用于程序传输、CPU固件更新、恢复 CPU 出厂设置。

打开CPU本体数字量输出点上方的端子盖,可以看到右侧有一卡槽,将MicroSD卡缺口向里插入,如图 1所示:

图1:插入Micro SD 卡

二、使用 MicroSD 卡传送程序

制作程序传输卡:

步骤一:

用户在 CPU 上电且停止状态下插入存储卡。

注意:用户也可以在CPU断电状态下插入一张空的存储卡然后再将 CPU 上电,但是需要注意的是存储卡必须确实是空的而不是旧的

固件更新卡或者是程序传输卡。否则可能会更改 CPU 固件或者是内部存储的项目。

步骤二:

下载源程序到CPU(如果CPU中已经存在源程序则不需此步)。

步骤三:

在 Micro/WIN SMART 中,点击“PLC”->“编程存储卡”,打开“编程存储卡”对话框,选择需要被拷贝到存储卡上的块,点击“编程”按钮,如图2所示。

图2.:编程存储卡

步骤四:

当 Micro/WIN SMART 显示编程操作成功执行时(“编程存储卡”对话框显示编程成功,点击“关闭”)如图3所示,从CPU上取下存储

卡。

图3.:编程存储卡成功

注意:在 Micro/WIN SMART 中进行“编程存储卡”操作时,是将CPU中存储的程序拷贝至存储卡,而非软件中打开的程序。所以必须先将程序下载到CPU中,才能执行“编程存储卡”操作。

三、使用已制作好的程序传输卡拷贝项目到另一个 CPU

步骤一:

在 CPU 断电状态下插入存储卡。

步骤二:

给 CPU 上电,CPU 会自动识别存储卡为程序传输卡并且自动将其中的内容复制到 CPU 内

部存储器,传输过程中RUN 指示灯和 STOP指示灯以 2 HZ 的频率交替点亮。

步骤三:

当 CPU 只有 STOP 灯开始闪烁,表示“程序传送”操作成功,则从 CPU 上取下存储卡。

四、使用 MicroSD 卡更新固件

步骤一:

用普通读卡器将固件文件拷贝到一个空的MicroSD 卡中。固件文件包括:工作文件

“S7_JOB.S7S”和文件夹“FWUPDATE.S7S”(内含固件,命名方式:CPU订货号+固件版本号,扩展名为.upd)。使用记事本打开文件“S7_JOB.S7S”,应只包含字符串“FWUPDATE”。

图4:固件文件夹

步骤二:

在 CPU 断电状态下将包含固件文件的存储卡插入 CPU 。

步骤三:

给 CPU 上电,CPU 会自动识别存储卡为固件更新卡并且自动更新 CPU 固件。更新过程中RUN 指示灯和 STOP 指示灯以 2 HZ 的频率交替点亮。

步骤四:

当 CPU 只有 STOP 灯开始闪烁,表示“固件更新”操作成功,从 CPU 上取下存储卡。

步骤五:

给 CPU 重新上电,在 Micro/WIN SMART 中查看CPU固件版本,如图5所示。

图5:查看CPU固件版本

五、使用 MicroSD 卡恢复 CPU 出厂设置

步骤一:

用普通读卡器将恢复出厂设置文件拷贝到一个空的 MicroSD 卡中。恢复出厂设置文件为文本文件“S7_JOB.S7S”。使用记事本打开文本文件“S7_JOB.S7S”,应包含字符串“RESET_TO_FACTORY”。(重置为出厂默认设置的文件S7_JOB.S7S 可以自己用记事本来编写,文件名命名为S7_JOB.S7S ,内容写上RESET_TO_FACTORY 就可以)

步骤二:

在 CPU 断电状态下插入 MicroSD 卡,给 CPU 上电,CPU 会自动识别存储卡为恢复出厂设置卡并且自动恢复 CPU 出厂设置。恢复出厂设置过程中,RUN 指示灯和 STOP 指示灯以 2 HZ 的频率交替点亮。

步骤三:

当 CPU 只有 STOP 灯开始闪烁,表示“恢复出厂设置”操作成功,从 CPU 上取下存储卡。步骤四:

“恢复出厂设置”操作包括以下几项操作:将 CPU IP 地址恢复为出厂默认设置,清空 CPU 程序块、数据块和系统块。

图6:恢复出厂设置操作后CPU 的IP 地址

注意:恢复出厂设置不会更改CPU的固件版本,CPU 固件版本将保持为恢复出厂设置操作之前的固件版本。

六、常问问题

1.如何将固件更新卡转换为程序传输卡?

在CPU上电且停止状态下插入固件更新卡,按照制作程序传输卡的步骤进行操作,即可得到一张程序传输卡,但需注意的是原卡中的固件更新文件会被删除。

2.如何将程序传输卡转换为固件更新卡?

使用读卡器将固件更新文件拷贝至程序传输卡,删除原卡中的程序传输文件夹“SIMATIC.S7S”,并将工作文件“S7_JOB.S7S”中的字符串更换为“FWUPDATE”。

注意:建议用户不要在同一张存储卡上同时存储程序传输文件和固件更新文件。

3.在固件更新期间 CPU 本体上的 LED 指示灯如何显示?如果用户在固件更新期间取出存储卡,LED 指示灯如何显示?

CPU 本体上的 LED 灯在使用存储卡时的显示状态及原因:

状态一:如果用户在 CPU 运行状态下插入存储卡,CPU 会转入停止状态。无论存储卡中存储了什么这种行为都会发生。

状态二:STOP 灯以 2 HZ 的频率闪烁

a. CPU 上电后,通过存储卡的“固件更新”操作被成功执行,并且 CPU 此刻需要重新上电或者重启;

b. CPU 上电后,通过存储卡的“程序传输”操作被成功执行;

c. CPU 上电后,通过存储卡的“恢复出厂设置”操作被成功执行;

d. CPU 上电后,检测到空存储卡或者是未知卡件,无任何操作被执行;

e. 在上电状态下插入一张存储卡。

状态三:STOP 灯和 ERROR 灯同时以 2 HZ 频率闪烁

a. CPU 上电后,试图通过存储卡进行“固件更新”操作并且没有成功;

b. CPU 上电后,试图通过存储卡进行“程序传输”操作并且没有成功;

c. CPU 上电后,试图通过存储卡进行“恢复出厂设置”操作并且没有成功;

d. 当“固件更新”操作和“程序传输”操作正在进行中,用户取出存储卡。

注意:对于产生“状态二”的情况 b, c, d,e 以及产生“状态三”的情况 b, c ,当取出存储卡时 LED 灯的闪烁状况会停止;对于产生“状态二”的情况 a 和产生“状态三”的情况 a,只有当 CPU 重新上电或者重启时 LED 灯才会停止闪烁。

状态四:繁忙 LED 模式(RUN 指示灯和 STOP 指示灯以 2 HZ 的频率交替点亮)

“固件更新”操作和“程序传输”操作正在进行中,当该操作停止时, LED 灯显示状态转为“状态二”或者“状态三”。

4.如果存储卡中同时包含程序文件和固件更新文件,哪种更新操作会被优先执行?是否有预定义的优先级?是否可以在一张固件更新存储卡上进行程序传输卡的制作?

存储卡上的固件更新文件位于一个名为“FWUPDATE.S7S”的文件夹中,程序传输文件位于一个名为“SIMATIC.S7S”的文件夹中。所以理论上这两个文件夹可以同时存储在存储卡上。

然而,存储卡内只有一个命名为“S7_JOB.S7S”工作文件,这个文件决定了CPU 将存储卡视为固件更新卡还是程序传输卡。如果工作文件包含字符串“FWUPDATE”,那么这张存储卡便是固件更新卡。若工作文件包含字符串“TO_ILM”,那么这张存储卡便是程序传输卡。

此外,如果 CPU 被指示创建程序传输卡,固件实际上会在复制项目文件到存储卡上之前先删除存储卡上的以下内容:

——工作文件;

——“FWUPDATE.S7S”文件夹和其中的所有内容;

——“S7_JOB.S7S”文件夹和其中所有的内容。

如果一张程序传输卡中留有固件更新文件是存在潜在风险的。用户可能会在一张程序传输卡上拷贝固件更新文件,如果工作文件包含字符串“FWUPDATE”,则CPU会将存储卡视为固件更新卡。

s7-200存储卡使用说明

S7-200 存储卡使用说明 简介:CPU支持可选的存储卡,为用户提供一个便携式EEPROM 存储卡。你可以象磁盘那样使用存储卡。CPU在存储卡上可以存储下列元素: ●用户程序 ●存于EEPROM的V存储器永久区的数据 ●CPU组态 复制到存储卡:只有当CPU在停机方式下通电,之后安装存储卡,才可以从CPU中复制程序到存储卡。 一、以下是从PLC→到存储卡程序复制过程:(仅供程序设计人员使用) 首先要在PLC通电停机状态下。 接通电源使PLC通电如上图状态LED指示灯中间指示灯RUN亮,此时PLC为通电运行状态。之后打开PLC前盖拨动盖内纵向棒装开关从RUN→STOP此时,状态LED指示灯中间指示灯STOP亮,此时

PLC为通电停机状态。 之后安装存储卡。为了安装存储卡应当去掉存储卡接口的保护盖(如上图圆圈标注的地方为保护盖)。之后正确安装存储卡,存储卡直接就可以安装在去掉保护盖的接口上,安装时存储卡上面型号字母朝上。(如果错误安装,存储卡不会插到去掉保护盖的接口上) 其次如果程序没有装入PLC,那么应下装程序。如果程序已经才PLC 中使用菜单命令PLC>Program Memory Cartridge来向存储卡中复制程序。 最后卸下存储卡。 二、用存储卡恢复程序和存储器(户外维护人员操作使用) 为了从存储卡向PLC传送程序,首先使PLC断电,之后拿下PLC 上面的保护盖(如上图圆圈标注的地方为保护盖),把存储卡字母朝上插入去掉保护盖的插口上(如果错误安装,存储卡不会插到去掉保护盖的接口上)。PLC通电,大约15秒钟后PLC断电,拿下存储卡,再把保护盖重新盖在上面的插口上。PLC再次通电,程序恢复完毕。

S7-200通讯的编程步骤---自由口通讯

PLC 和变频器 频器博客原创(https://www.sodocs.net/doc/4212650920.html,)
S7通讯的编程步骤-----自由口通讯 S7-200 通讯的编程步骤---自由口通讯
S7-200 自由口通讯是基于 RS485 通讯基础的半双工通讯, 因此, 发送和接收指令不能同时执行。 自由口通讯使用 SMB30(口 0)和 SMB130(口 1)来定义通讯口 的工作模式。SMB30/SMB130 各位的定义如下:
图 1:通讯口工作模式寄存器
使用自有口通讯,SM30.0 和 SM30.1(SM130.0 和 SM130.1=0) 必须分别为 1 和 0。 发送指令(XMT) 一、 发送指令(XMT) 使用 XMT 发送指令可以把存于缓冲区中的数据, 一次发送一个或
1

PLC 和变频器 频器博客原创(https://www.sodocs.net/doc/4212650920.html,)
多个字节的数据,最多为 255 个。发送完最后一个字符后还可以连接 到一个发送完中断(端口 0 为 9,端口 1 位 26,见下表) 。
图 2:中断事件表
2

PLC 和变频器 频器博客原创(https://www.sodocs.net/doc/4212650920.html,)
发送缓冲区的格式如下表所示:
图 3:发送缓冲区的格式 说明: T+0:发送信息的字节个数需要提前定义。 T+1~T+255:要发送的数据字节
和 XMT 有关的寄存器:SMB4 的 SM4.5 和 SM4.6。SM4.5=1 时,口 0 发送完毕;SM4.6=1 时,口 1 发送完毕。 由以上可以看出,有两种方法可以检测端口 0 或 1 的数据发送 状态:一种是利用中断,一种是利用寄存器 SMB4 的第 5 位(口 0) 和第 6 位(口 1) 。 接收指令(RCV) 二、 接收指令(RCV) 使用接收指令(RCV)可以从端口 0 或 1 接收一个或多个字节的 数据(最多 255 个) ,并存于数据缓冲区。接收完最后一个字节后可 以连接到一个接收完中断(口 0 是 23,口 1 是 24,见图 2 所示) 。 接收缓冲区的格式如下表所示:
3

实验五 IEEE 802.3协议分析和以太网

郑州轻工业学院本科 实验报告 题目:IEEE 802.3协议分析和以太网学生姓名:王冲 系别:计算机与通信工程学院 专业:网络运维 班级:网络运维11-01 学号:541107110123 指导教师:熊坤 2014 年10 月28 日

实验五IEEE 802.3协议分析和以太网 一、实验目的 1、分析802.3协议 2、熟悉以太网帧的格式 二、实验环境 与因特网连接的计算机网络系统;主机操作系统为windows;Ethereal、IE等软件。 三、实验步骤 1.俘获并分析以太网帧 (1)清空浏览器缓存(在IE窗口中,选择“工具/Internet选项/删除文件”命令)。

(2)启动Ethereal,开始分组俘获。 (3)在浏览器的地址栏中输入: https://www.sodocs.net/doc/4212650920.html,/ethereal-labs/HTTP-ethereal-lab-file3.html,浏览器将显示冗长的美国权力法案。

(4)停止分组俘获。首先,找到你的主机向服务器https://www.sodocs.net/doc/4212650920.html,发送的HTTP GET报文的分组序号,以及服务器发送到你主机上的HTTP 响应报文的序号。其中,窗口大体如下。 选择“Analyze->Enabled Protocols”,取消对IP复选框的选择,单击OK。窗口如下

(5)选择包含HTTP GET 报文的以太网帧,在分组详细信息窗口中,展开EthernetII 信息部分。根据操作,回答1-5 题 (6)选择包含HTTP 响应报文第一个字节的以太网帧,根据操作,回答6-10 题2.ARP (1)利用MS-DOS命令:arp 或c:\windows\system32\arp查看主机上ARP缓存的内容。根据操作,回答11题。 (2)利用MS-DOS命令:arp -d * 清除主机上ARP缓存的内容。 (3)清除浏览器缓存。 (4)启动Ethereal,开始分组俘获。 (5)在浏览器的地址栏中输入: https://www.sodocs.net/doc/4212650920.html,/ethereal-labs/HTTP-ethereal-lab-file3.html,浏览器将显示冗长的美国权力法案。 (6)停止分组俘获。选择“Analyze->Enabled Protocols”,取消对IP复选框的选择,单击OK。窗口如下。根据操作,回答12-15题。 四、实验报告内容

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

s7-200内存卡用于数据记录的使用方法

在一些大型企业需要数据的记录长达两三个月甚至更久的场合,西门子S7-200需要加内存卡进行数据的记录并且生成报表的形式以便用于打印查看,下面就来介绍一下200的内存卡的使用方法; 首先打开需要进行数据记录的程序,打开工具→数据记录向导如图: 这是一个对于数据记录的一个简介,点击下一步:

我这里购买的是256kb的内存卡,记录17个数据,其中8个int类型,9个byte类型,记录时间3个月,每隔30分钟记录一次(这些需要在程序里,编程,此处不叙述)。点击下一步: 域名的定义最好是英文单词加下划线进行,虽然汉字也不报错,但是读取内存卡的数据记录的时候会是一些乱码,数据的类型根据你需要记录的数据相关。点击下一步: 建议地址:最好不要和程序本身的地址进行重合,尽量的选一个不用的区域,点击下一步:

这事生成的组建,包含子程序“DATO_WIRTE”、全局符号表、数据记录数据配置页、记录数据可能使用的内存卡的字节数。点击完成:选择是。 选择符号表→向导→DATO_SYM双击查看:

此处就是定义了写入内存卡的数据地址,现在只需要将程序里的数据写入对应的地址即可,时间的间隔,自己可以做程序定义。 触发存卡,只需要调用子程序“DATO_WIRTE”,就可以进行数据记录。 数据记录完毕之后,读取内存卡需要通过这个软件,与200的plc进行连接通讯,但是像一些大公司尤其是国企,他们不愿意去第一线,就需要在办公司看到数据以及现场的情况,那就需要加一个EM277模块或者CP243-1模块等,做一下远程的通信,进行现场的监控。连接好之后,打开explorer这个软件,会找到一个内存卡打开双击里面的数据

200的自由口通讯说明

自由口通讯概述 S7-200PLC的通讯口支持RS485接口标准。采用正负两根信号线作为传输线路。 工作模式采用串行半双工形式,在任意时刻只允许由一方发送数据,另一方接收数据。 数据传输采用异步方式,传输的单位是字符,收发双方以预先约定的传输速率,在时钟的作用下,传送这个字符中的每一位。 传输速率可以设置为1200、2400、4800、9600、19200、38400、57600、115200。 字符帧格式为一个起始位、7或8个数据位、一个奇/偶校验位或者无校验位、一个停止位。 字符传输从最低位开始,空闲线高电平、起始位低电平、停止位高电平。字符传输时间取决于波特率。 数据发送可以是连续的也可以是断续的。所谓连续的数据发送,是指在一个字符格式的停止位之后,立即发送下一个字符的起始位,之间没有空闲线时间。而断续的数据发送,是指当一个字符帧发送后,总线维持空闲的状态,新字符起始位可以在任意时刻开始发送,即上一个字符的停止位和下一个字符的起始位之间有空闲线状态。 示例:用PLC连续的发送两个字符(16#55和16#EE)(程序如图3和图4),通过示波器测量CPU通讯端口管脚3/8之间的电压,波形如下图1.: 示例说明: 16进制的16#55换算成2进制等于2#01010101,16进制的16#EE换算成2进制等于2#11101110。如图所示,当数据线上没有字符发送时总线处于空闲状态(高电平),当PLC发送第一个字符16#55时,先发送该字符帧的起始位(低电平),

再发送它的8个数据位,依次从数据位的最低位开始发送(分别为1、0、1、0、1、0、1、0),接着发送校验位(高电平或低电平或无)和停止位(高电平)。因为本例中PLC连续的发送两个字符,所以第一个字符帧的停止位结束后便立即发送下一个字符帧的起始位,之间数据线没有空闲状态。假如PLC断续的发送这两个字符,那么当PLC发送完第一个字符帧的停止位后,数据线将维持一段时间空闲状态,再发送下一个字符帧。 字符传输的时间取决于波特率,如果设置波特率为9.6k,那么传输一个字符帧中的一位用时等于1/9600*1000000=104us,如果这个字符帧有11位,那么这个字符帧的传输时间等于11/9600*1000=1.145ms. 通讯口初始化 SMB30(对于端口0)和SMB130(对于端口1)被用于选择波特率和校验类型。SMB30和SMB130可读可写。见下图2. 图2.特殊存储器字节SMB30/SMB130 示例:定义端口0为自由口模式,9600波特率,8位数据位,偶校验,程序如下图3.:

步进电机的控制程序

mega16的,16和32管脚兼容,只不过flash大小不一样,不过中断向量号也不一样,你看下自己改改。时钟频率:内部RC 1M 芯片:ULN2003 键值:0 小角度快正转。1 小角度快倒。2 大角度快转。3 大角度快倒。4 小角度正慢转。5 小角度倒慢转。6 大角度正慢转。7 大角度倒慢转。********************************************************************/ #include #include #define uchar unsigned char #define uint unsigned int uchar a=0,b=0; uchar KEY_num=0xe1; unsigned int m=9000; const uchar f1[]={0x02,0x06,0x04,0x0c,0x08,0x09,0x01,0x03}; //正转时序3.75度 const uchar f2[]={0x04,0x06,0x02,0x03,0x01,0x09,0x08,0x0c}; //倒转时序3.75度 const uchar f3[]={0x01,0x02,0x04,0x08}; //正转时序7.5度 const uchar f4[]={0x01,0x08,0x04,0x02}; //倒转时序7.5度 void delay(int k) //延时 { int i; for(i=0;i

如何实现S7-200SMART自由口通讯

如何实现S7-200SMART自由口通讯 自由口通讯协议的关键条件 定义开始接收消息和停止接收消息的条件。 1、空闲线检测:设置il=1,sc=0,bk=0,smw90/smw190>0 空闲线条件定义为传输线路上的安静或者空闲的时间。SMW90/SMW190中是以ms为单位的空闲时间。在该方式下,从执行接收指令开始起动空闲时间检测。在传输线空闲的时间大于等于SMW90/SMW190中设定的时间之后接收的第一个字符作为新信息的起始字符。接收消息功能将会忽略在空闲时间到达之前接收到的任何字符,并会在每个字符后面重新启动空闲线定时器。 空闲线时间应大于以指定波特率传送一个字符所需要的时间。空闲线时间的典型为以指定的波特率传送3个字符所需要的时间。传输速率为19200bit/s时候,可设置空闲时间为2ms。 对于二进制协议,没有特定起始字符的协议或指定了消息之间最小时间间隔的协议,可以将空闲线检测用作开始条件。 2、起始字符检测:设置il=0,sc=1,bk=0,忽略smw90/smw190 起始字符是消息的第一个字符,以SMB88/SMB188中的起始字符作为接收到的消息开始的标志。接收消息功能忽略起始字符之前收到的字符,起始字符和起始字符之后收到的所有字符都存储在消息缓冲区中。起始字符检测一般用于ASCII协议。 3、空闲线和起始字符:设置il=1,sc=1,bk=0,SMW90/SMW190大于0 满足空闲线条件之后,接收消息功能查找指定的起始字符。如果接收到的字符不是smB88/smb188指定的起始字符,将开始重新检测空闲线条件。在满足空闲线条件之前接收到的以及起始字符之前接收到的字符都将会被忽略。这种方式尤其适合用于通讯链路上有多台设备的情况。 4 、break检测:设置il=0,sc=0,bk=1,检测smw90/smw190和smb88/smb188 以接收到的break(断开)作为接收消息的开始。当接收到的数据保持为0的时间大于完整字符(包含起始位,数据位,奇偶校验位和停止位)传输的时间,表示检测到break。断开条件之前接收到的字符将忽略,断开条件之后接收到的任意字符都会存储在消息缓冲区中。 5、break和起始字符:il=0,sc=1,bk=1,忽略smw90/smw190 断开条件满足后,接收消息功能将查找指定的起始字符。如果接收到的字符不是起始字符,将重新搜索断开条件。所有在断开条件满足之前在接收到起始字符之前接收的字符都会忽略。起始字符和所有后续字符一起存入消息缓冲区 6、任何字符开始接受:设置il=1,sc=0,bk=0,smw90/smw190=0

以太网协议

以太网协议 历史上以太网帧格式有五种: 1 E thernet V1:这是最原始的一种格式,是由Xerox P ARC提出的3Mbps CSMA/CD以太网标准的封装格式,后来在 1980年由DEC,Intel和Xerox标准化形成E thernet V1标准; 2 E thernet II即DIX 2.0:Xerox与DEC、Intel在1982年制定的以太网标准帧格式。Cisco名称为:ARP A。 这是最常见的一种以太网帧格式,也是今天以太网的事实标准,由DE C,Intel和Xerox在1982年公布其标准,主要更改了E thernet V1的电气特性和物理接口,在帧格式上并无变化;E thernet V2出现后迅速取代E thernet V1成为以太网事实标准;E thernet V2帧头结构为6bytes的源地址+6bytes的目标地址+2Bytes的协议类型字段+数据。 常见协议类型如下: 0800 IP 0806 ARP 0835 RARP 8137 Novell IPX 809b Apple Talk 如果协议类型字段取值为0000-05dc(十进制的0-1500),则该帧就不是E thernet V2(ARP A)类型了,而是下面讲到的三种802.3帧类型之一;E thernet可以支持TCP/IP,Novell IP X/SP X,Apple Talk P hase I等协议;RFC 894定义了IP 报文在E thernet V2上的封装格式; 在每种格式的以太网帧的开始处都有64比特(8字节)的前导字符,如图所示。其中,前7个字节称为前同步码(P reamble),内容是16进制数0xAA,最后1字节为帧起始标志符0xAB,它标识着以太网帧的开始。前导字符的 作用是使接收节点进行同步并做好接收数据帧的准备。 ——P R:同步位,用于收发双方的时钟同步,同时也指明了传输的速率(10M和100M的时钟频率不一样,所以100M网卡可以兼容10M网卡),是56位的二进制数101010101010..... ——SD: 分隔位,表示下面跟着的是真正的数据,而不是同步时钟,为8位的10101011,跟同步位不同的是最后2位 是11而不是10. ——DA:目的地址,以太网的地址为48位(6个字节)二进制地址,表明该帧传输给哪个网卡.如果为FFFFFFFFFFFF, 则是广播地址,广播地址的数据可以被任何网卡接收到. ——SA:源地址,48位,表明该帧的数据是哪个网卡发的,即发送端的网卡地址,同样是6个字节. ----TYP E:类型字段,表明该帧的数据是什么类型的数据,不同的协议的类型字段不同。如:0800H 表示数据为IP包,0806H 表示数据为ARP包,814CH是SNMP包,8137H为IP X/SP X包,(小于0600H的值是用于IEEE802 的,表示数据包的长度。) ----DATA:数据段,该段数据不能超过1500字节。因为以太网规定整个传输包的最大长度不能超过1514字节。 (14字节为DA,SA,TYP E)

别走进误区手机存储卡正确使用方法

手机存储卡,在使用过程中,比较容易出现错误地地方. 作者:华夏小贝1、没有关机直接插入新买地手机卡,(此种情况只针对一部分机型,)在这种情况下,由于手机没有初始化存储卡,(一般是在卡上自动建立目录生成相关地引导文件)可能手机不会识别到存储卡,正确地操作应该是,在关机状态下插入 制芯片将存储卡,置成只有数码设备能够识别地数据格式,而读卡器在格式化地时候,将存储卡置成只有读卡器能够识别地格式,好比,两个语言不同地人,一个人美国人,一个中国人,他们看待事情,理解事情地,思维方式不同,而不能很好地沟 通.

3、针对一部分手机,数码设备,有些在将卡格式化,会自 动生成相应地目录,(一般有以下几个目录(system audio picture video image 等) 而有些手机数码设备在将卡格式化后,不会生成目录,有两种方法,一种是打开相应地功能,比 再将他备份地数据全部原封不动地,拷到卡,里边地程序文件 都不能被识别.

·手机存储卡正确使用过程二 正确地操作应该是,将卡在QD上格式化后,(格式化时间可能有点儿长,)他自动生成相应地目录,再将原来备份地数据,比如,系统生成SYSTEM这个文件夹在卡上,那么我们应该在 4 5、容易被忽略地地方 一`引机型在插入卡后,要盖上相应地卡盖,比较多地是NOKIA地机器,上次一个NOKIA 7710地手机,装上卡后,

没有盖上后盖,怎么也不能认到卡,(注卡是好) 后来,试过多 次,盖上后盖就好啦. 一些手机只支持相应容量地卡,有引起手机只支持容易512M以下地卡,你就不要再买一个1G地卡,希望朋友们在买卡地时候多咨询一下相关地技术和服务部门,免得大家麻烦, 大家注意以上几点,在正确使用手机存储卡地时候,能避免很多误会,也避免了很多麻烦.

S7-200自由口通讯程序

S7-200自由口通讯程序 MAIN:S7200自由口通讯程序 LD SM0.1 CALL SBR_0:SBR0 //初始化子程序 LD SM0.7 = SM30.0 SBR_0:初始化子程序 LD SM0.0 MOVW +2, VW8 //PLC自由口地址,此处每台机器需设不同的地址 LD SM0.0 MOVB 9, SMB30 //通讯参数,波特率9600,自由口通讯 MOVD &VB100, VD40 MOVW +10, VW54 MOVB 12, VB150 MOVB VB9, VB151 MOVD &VB151, VD60 MOVB 6, SMB34 中断间隔6毫秒 ATCH INT_0:INT0, 10 连接定时中断 ATCH INT_1:INT1, 8 连接字符接收中断 ENI INT_0:中断程序入口定时中断 LD SM0.0 DTCH 10 解除定时中断 MOVD VD40, VD46 VB100的地址送VD46 MOVW +10, VW44 MOVW +10, VW54 ATCH INT_2:INT2, 8 //接收中断起用服务程序INT2 INT_1: 延时转向INT0 LD SM0.0 MOVB 5, SMB34 ATCH INT_0:INT0, 10 INT_2: 接受地址,并判断 LDB= SMB2, VB9 //地址和本机相符 MOVW VW8, AC0 累加器 MOVB 255, SMB34 ATCH INT_3:INT3, 8 //起用中断服务INT3,接受包 ATCH INT_5:INT5, 10 //起用延时监控服务INT5 CRETI LDB= SMB2, VB9 //地址和本机不符 NOT ATCH INT_0:INT0, 10 //返回中断入口

以太网MAC协议

以太网MAC协议 1位/字节顺序的表示方法 1.1位序 严格地讲,以太网对于字节中位的解释是完全不敏感的。也就是说,以太网并不需要将一个字节看成是一个具有8个比特的数字值。但是为了使位序更容易描述以及防止不兼容,以太网和多数数据通信系统一样,传输一个字节的顺序是从最低有效位(对应于20的数字位)到最高有效位(对应于27的数字位)。另外习惯上在书写二进制数字时,最低值位写在最左面,而最高值位写在最右面。这种写法被称为“小端”形式或正规形式。一个字节可以写成两个十六进制数字,第一个数字(最左边)是最高位数字,第二个(最右边)是最低位数字。 1.2字节顺序 如果所有有定义的数据值都是1字节长,则在介绍完位序后就可以停止了。但是很不幸事实并非如此,所以我们必须面对长于单个字节的域,这些域是以从左到右排列的,以连接符“-”分隔的字节串表示。每个字节包含两个十六进制数字。 多字节域的各个字节按第一个到最后一个(即从左到右)的顺序发送,而每个字节采用小端位序传送。例如,6字节域: 08-00-60-01-2C-4A 将按以下顺序(从左向右读)串行地发送: 0001 0000-0000 0000-0000 0110-1000 0000-0011 0100-0101 0010 2以太网地址 地址是一个指明特定站或一组站的标识。以太网地址是6字节(48比特)长。图1说明了以太网地址格式。 图1 以太网地址格式 在目的地址中,地址的第1位表明该帧将要发送给单个站点还是一组站点。在源地址中,第1位必须为0。 站地址要唯一确定是至关重要的,一个帧的目的地不能是模糊的。地址的唯

一性可以是: ●局限于本网络内。保证地址在某个特定LAN中是唯一的,但不能保证 在相互连接的LAN中是唯一的。当使用局部唯一地址时,要求网络管 理员对地址进行分配。 ●全局的。保证地址在所有的LAN中,在任何时间,以及对于所有的技 术都是唯一的,这是一个强大的机制,因为: (1)使网络管理员不必为地址分配而烦恼; (2)使得站点可以在LAN之间移动,而不必重新分配地址; (3)可以实现数据链路网桥/交换机。 全局唯一地址以块为单位进行分配,地址块由IEEE管理。一个组织从IEEE 获得唯一的地址块(称为OUI),并可用该地址块创建224个设备。那么保证该地址块中地址(最后3个字节)的唯一性就是制造商的责任。 地址中的第2位指示该地址是全局唯一还是局部唯一。除了个别情况,历史上以太网一直使用全局唯一地址。 3以太网数据帧格式 图2 基本的以太网帧格式及传输次序 图2显示了以太网MAC帧各个字段的大小和内容以及传输次序。 该格式中每个字段的字节次序是先传输的字节在左,后传输的字节在右。在每个字节中的位次序正好相反,低位在左,高位在右。字节次序和位的次序通常用于FCS之外的所有字段。FCS将作为一个特殊的32位字段(最高位在左),而不是4个单独的字节。 3.1前导码(Preamble)和帧起始定界符(SFD) 前导码包含8个字节。前7个字节(56位)的职位0x55,而最后一个字节为帧起始定界符,其值为0xD5。结果前导码将成为一个由62个1和0间隔(10101010---)的串行比特流,最后2位是连续的1,表示数据链路层帧的开始。其作用就是提醒接收系统有帧的到来,以及使到来的帧与输入定时进行同步。在DIX以太网中,前导码被认为是物理层封装的一部分,而不是数据链路层的封装。 3.2地址字段 每个MAC帧包含两个地址字段:目标地址(Destination Address)和源地址(Source Address)。目的地址标识了帧的目的地站点,源地址标识了发送帧的站。DA可以是单播地址(单个目的地)或组播地址(组目的地),SA通常是单播地

S7-200 SMART PLC 串口通信说明(图文并茂)

S 7-200 S M A R T 串口通信简介 S 7-200 S M A R T 支持的串口通信硬件及连接资源如表 1所示: 注意:1. P P I 模式只支持 S 7-200 S M A R T C P U 与 H M I 设备之间的通信; 2. 通信信号板的工作模式(R S 485/R S 232)是由用户决定的,可以在 M i c r o /W I N S M A R T 中通过设置系统块来设置。 详细设置方法见:如何设置串口通信参数 通信端口定义 1.S 7-200 S M A R T C P U 本体集成 R S 485 端口 (端口 0) 表 2. S 7-200 S M A R T C P U 本体集成 R S 485 端口引脚定义 2.通信信号板 表 1.S 7-200 S M A R T 串口参数 CPU 本体集成通讯口通信信号板(S B C M 01)通讯口类型R S 485 R S 485 R S 232 支持的通信协议 P P I / 自由口 / M O D B U S / U S S 波特率P P I (9600,19200,187500 b /s ) 自由口(1200,115200 b /s )连接资源 每个通信口可连接 4 个 H M I 设备 C P U 插座(9针母头)引脚号信号P o r t 0(端口0)引脚定义 1屏蔽机壳接地 224V 返回逻辑地(24V 公共端)3R S -485信号 B R S -485信号 B 4发送请求R T S (T T L )55V 返回逻辑地(5V 公共端)6+5V +5V ,通过100 O h m 电阻7+24V +24V 8R S -485信号 A R S -485信号 A 9 不用 10位协议选择(输入)金属壳屏蔽 机壳接地 表 3.通信信号板(P o r t 1)引脚定义 通信信号板(S B C M 01) 引脚标记 R S 485 R S 232 机壳接地 机壳接地T X /B R S 485-B R S 232-T x R T S R T S (T T L )R T S (T T L )M 逻辑公共端逻辑公共端R X /A R S 485-A R S 232-R x

以太网采用的通信协议

竭诚为您提供优质文档/双击可除以太网采用的通信协议 篇一:以太网基础协议802.3介绍 802.3 802.3通常指以太网。一种网络协议。描述物理层和数据链路层的mac子层的实现方法,在多种物理媒体上以多种速率采用csma/cd访问方式,对于快速以太网该标准说明的实现方法有所扩展。 dixethernetV2标准与ieee的802.3标准只有很小的差别,因此可以将802.3局域网简称为“以太网”。 严格说来,“以太网”应当是指符合dixethernetV2标准的局域网。 早期的ieee802.3描述的物理媒体类型包括:10base2、10base5、10baseF、10baset和10broad36等;快速以太网的物理媒体类型包括:100baset、100baset4和100basex等。 为了使数据链路层能更好地适应多种局域网标准,802委员会就将局域网的数据链路层拆成两个子层: 逻辑链路控制llc(logicallinkcontrol)子层 媒体接入控制mac(mediumaccesscontrol)子层。

与接入到传输媒体有关的内容都放在mac子层,而llc 子层则与传输媒体无关,不管采用何种协议的局域网对llc 子层来说都是透明的。 由于tcp/ip体系经常使用的局域网是dixethernetV2而不是802.3标准中的几种局域网,因此现在802委员会制定的逻辑链路控制子层llc(即802.2标准)的作用已经不大了。 很多厂商生产的网卡上就仅装有mac协议而没有llc协议。 mac子层的数据封装所包括的主要内容有:数据封装分为发送数据封装和接收数据封装两部分,包括成帧、编制和差错检测等功能。 数据封装的过程:当llc子层请求发送数据帧时,发送数据封装部分开始按mac子层的帧格式组帧: (1)将一个前导码p和一个帧起始定界符sFd附加到帧头部分; (2)填上目的地址、源地址、计算出llc数据帧的字节数并填入长度字段len; (3)必要时将填充字符pad附加到llc数据帧后; (4)求出cRc校验码附加到帧校验码序列Fcs中; (5)将完成封装后的mac帧递交miac子层的发送介质访问管理部分以供发送;接收数据解封部分主要用于校验帧

步进电机控制及其汇编程序

综合实践报告之第二次大作业 题目:步进电机控制设计 说明:在工业电气自动化工程中,步进电机是一种常用的控制设备,它以脉冲信号控制电机的转速,在数控机床、仪器仪表、计算机外围设备以及其它自动设备中有广泛的应用。 步进电机是指一步步走的电动机,所谓“步”指转动角度,每步都会使电机转过一个固定的角度。步进电机有不同的种类,但其控制方法均相同,均以脉冲信号进行驱动,很适合使用单片机来进行控制。 本次大作业要求设计一个步进电机的控制部分。 已知: 采用2相制5线步进电机,其结构如下图所示,线圈中心抽头X1与X2连接在一起; B 相X1A 相 2相步进电机 步进电机采用1相激磁法,即在每一个瞬间只有一个线圈导通,其它线圈休息; 单片机与步进电机之间可采用ULN2003类的驱动IC ; 要求: 查找资料,设计出步进电机的硬件连接电路图; 给出控制软件流程图; 用汇编语言写出控制软件的代码。 提示:本作业对电机的转动方向不做要求,在实际应用中,改变线圈激磁的顺序可以改变步进电机的转动方向,每送一次激磁信号后应经过一小段时间延时,让步进电机有足够的时间建立激励磁场及转动。可以使用单片机的~端口输出控制信号,经驱动IC 传至步进电机。

电路图设计说明 此控制电路选用AT89S51型单片机作为驱动时序的输出控制器,其输出作为两相四线步进电机的时序信号,经过驱动芯片ULN2003放大后输入到两相四线步进电机的输入端口;单片机作为控制指令的输入按键K1-K3的输入端口,K1为电机正转按键,K2为电机正转按键,K3为电机停止按键,这三个按键均为高电平输入有效,按一下K1电机正转,按一下K2电机反转转,按一下K3电机停止。其硬件电路如图一: 控制程序流程图

200Smart存储卡怎么用

S7-200Smart存储卡的使用 一、存储卡 S7-200 SMART CPU 支持商用MicroSD卡(支持容量为4G、8G、16G),可用于程序传输、CPU固件更新、恢复 CPU 出厂设置。 打开CPU本体数字量输出点上方的端子盖,可以看到右侧有一卡槽,将MicroSD卡缺口向里插入,如图 1所示: 图1:插入Micro SD 卡 二、使用 MicroSD 卡传送程序 制作程序传输卡: 步骤一: 用户在 CPU 上电且停止状态下插入存储卡。 注意:用户也可以在CPU断电状态下插入一张空的存储卡然后再将 CPU 上电,但是需要注意的是存储卡必须确实是空的而不是旧的 固件更新卡或者是程序传输卡。否则可能会更改 CPU 固件或者是内部存储的项目。 步骤二: 下载源程序到CPU(如果CPU中已经存在源程序则不需此步)。 步骤三: 在 Micro/WIN SMART 中,点击“PLC”->“编程存储卡”,打开“编程存储卡”对话框,选择需要被拷贝到存储卡上的块,点击“编程”按钮,如图2所示。

图2.:编程存储卡 步骤四: 当 Micro/WIN SMART 显示编程操作成功执行时(“编程存储卡”对话框显示编程成功,点击“关闭”)如图3所示,从CPU上取下存储 卡。 图3.:编程存储卡成功 注意:在 Micro/WIN SMART 中进行“编程存储卡”操作时,是将CPU中存储的程序拷贝至存储卡,而非软件中打开的程序。所以必须先将程序下载到CPU中,才能执行“编程存储卡”操作。 三、使用已制作好的程序传输卡拷贝项目到另一个 CPU 步骤一: 在 CPU 断电状态下插入存储卡。 步骤二: 给 CPU 上电,CPU 会自动识别存储卡为程序传输卡并且自动将其中的内容复制到 CPU 内

以太网用什么协议-

竭诚为您提供优质文档/双击可除 以太网用什么协议? 篇一:以太网协议报文格式 tcp/ip协议族 ip/tcp telnet和Rlogin、Ftp以及smtpip/udp dns、tFtp、bootp、snmp icmp是ip协议的附属协议、igmp是internet组管理协议 aRp(地址解析协议)和RaRp(逆地址解析协议)是某些网络接口(如以太网和令牌环网)使用的特殊协议,用来转换ip层和网络接口层使用的地址。 1、 以太帧类型 以太帧有很多种类型。不同类型的帧具有不同的格式和mtu值。但在同种物理媒体上都可同时存在。 标签协议识别符(tagprotocalidentifier,tpid):一组16位元的域其数值被设定在0x8100以用来辨别某个 ieee802.1q的帧为已被标签的,而这个域所被标定位置与乙

太形式/ 长度在未标签帧的域相同,这是为了用来区别未标签的帧。优先权代码点(prioritycodepoint,pcp):以一组3位元的域当作优先权的参考,从0(最低)到7(最高),用来对资料流(音讯、影像、档案等等)作传输的优先级。 标准格式指示(canonicalFormatindicator,cFi):1位 元的域。若是这个域的值 为1,则mac地指则为非标准格式;若为0,则为标准格式;在乙太交换器中他通常默认为0。在乙太和令牌环中,cFi用来做为两者的相容。若帧在乙太端中接收资料则cFi 的值须设为1,且这个端口不能与未标签的其他端口桥接。虚拟局域网识别符(Vlanidentifier,Vid):12位元的域,用来具体指出帧是属于 哪个特定Vlan。值为0时,表示帧不属于任何一个Vlan;此时,802.1q标签代表优先权。16位元的值0x000和0xFFF 为保留值,其他的值都可用来做为共4094个Vlan的识别符。在桥接器上,Vlan1在管理上做为保留值。这个12位元的域可分为两个6位元的域以延伸目的(destination)与源(source)之48位元地址,18位元的(triple-tagging)可和原本的48位元相加成为66位元的地址。 0、以太网的封装格式(RFc894)

步进电机的控制电路和程序

步进电机的控制电路和程序 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机分类与结构 现在比较常用的步进电机分为三种:反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)。本章节以反应式步进电机为例,介绍其基本原理与应用方法。反应式步进电机可实现大转矩输出,步进角一般为1.5度。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。常用小型步进电机的实物如图1 所示。 图1步进电机实物图 图 2 步进电机内部图 步进电机现场应用驱动电路 综合系统使用的是小型步进电机,对电压和电流 要求不是很高,为了说明应用原理,故采用最简单 的驱动电路,目的在于验证步进电机的使用,在正 式工业控制中还需在此基础上改进。一般的驱动电 路可以用图3的形式。 图3 一般驱动电路 在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多 场合用现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用 ULN2003或ULN2803。本书配套实验板上用的是ULN2003。ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A由7组达林顿晶体管阵列和相应的电阻网络以及钳位二极管网络构成,具有同时驱动7组负载的能力,为单片双极型大功率高速集成电路。ULN2003内部结构及等效电路图如图4:

相关主题