搜档网
当前位置:搜档网 › 高一数学一元二次不等式解法练习题及

高一数学一元二次不等式解法练习题及

高一数学一元二次不等式解法练习题及
高一数学一元二次不等式解法练习题及

高一数学一元二次不等式解法练习题及答案

例若<<,则不等式--<的解是1 0a 1(x a)(x )01

a

[ ]

A a x

B x a

.<<

.<<11

a

a

C x a

D x x a

.>或<.<或>x a

a

1

1

分析比较与的大小后写出答案. a 1

a

解∵<<,∴<,解应当在“两根之间”,得<<.

选.

0a 1a a x A 11

a a

例有意义,则的取值范围是

.2 x x 2--x 6

分析 求算术根,被开方数必须是非负数.

解 据题意有,x 2-x -6≥0,即(x -3)(x +2)≥0,解在“两根之外”,所以x ≥3或x ≤-2.

例3 若ax 2+bx -1<0的解集为{x|-1<x <2},则a =________,b =________.

分析 根据一元二次不等式的解公式可知,-1和2是方程ax 2+bx -1=0的两个根,考虑韦达定理.

解 根据题意,-1,2应为方程ax 2+bx -1=0的两根,则由韦达定理知

-=-+=-=-=-??

?????b

a

a

()()1211122×得

a b ==-1212

,.

例4 解下列不等式 (1)(x -1)(3-x)<5-2x (2)x(x +11)≥3(x +1)2 (3)(2x +1)(x -3)>3(x 2+2)

(4)3x 2-+-

-+-3132

511

3

122x x x x x x >>()()

分析 将不等式适当化简变为ax 2+bx +c >0(<0)形式,然后根据“解公式”给出答案(过程请同学们自己完成).

答 (1){x|x <2或x >4}

(2){x|1x }≤≤3

2

(3)?

(4)R (5)R

说明:不能使用解公式的时候要先变形成标准形式.

例不等式+>

的解集为5 1x 1

1-x

[ ]

A .{x|x >0}

B .{x|x ≥1}

C .{x|x >1}

D .{x|x >1

或x =0}

分析 直接去分母需要考虑分母的符号,所以通常是采用移项后通分.

解不等式化为+->,

通分得>,即>,

1x 0001

111

22

----x

x x x x

∵x 2>0,∴x -1>0,即x >1.选C .

说明:本题也可以通过对分母的符号进行讨论求解.

例与不等式≥同解的不等式是6 0x x

--3

2

[ ]

A .(x -3)(2-x)≥0

B .0<x -2≤1

C .

≥23

0--x

x D .(x -3)(2-x)≤0

解法一原不等式的同解不等式组为≥,

≠. ()()x x x ---??

?

32020 故排除A 、C 、D ,选B .

解法二≥化为=或-->即<≤

x 3

20x 3(x 3)(2x)02x 3--x

两边同减去2得0<x -2≤1.选B . 说明:注意“零”.

例不等式

<的解为<或>,则的值为7 1{x|x 1x 2}a ax

x -1

[ ]

A a

B a

C a

D a .<

.>

.=

.=-

1212

1

21

2

分析可以先将不等式整理为

<,转化为 0()a x x -+-11

1

[(a -1)x +1](x -1)<0,根据其解集为{x|x <1或x >2}

可知-<,即<,且-=,∴=.a 10a 12a 111

2

a -

答 选C .

说明:注意本题中化“商”为“积”的技巧.

例解不等式

≥.8 237

23

2x x x -+-

解 先将原不等式转化为

37

23

202x x x -+--≥

即≥,所以≤.

由于++=++>,

---+-+++-21232123

147

8

2222x x x x x x x x 002x x 12(x )022

∴不等式进一步转化为同解不等式x 2+2x -3<0,

即(x +3)(x -1)<0,解之得-3<x <1.解集为{x|-3<x <1}.

说明:解不等式就是逐步转化,将陌生问题化归为熟悉问题. 例9 已知集合A ={x|x 2-5x +4≤0}与B ={x|x 2-2ax +a +2

≤,若,求的范围.0}B A a ?

分析 先确定A 集合,然后根据一元二次不等式和二次函数图像关

系,结合,利用数形结合,建立关于的不等式.B A a ?

解 易得A ={x|1≤x ≤4} 设y =x 2-2ax +a +2(*)

(1)B B A 0若=,则显然,由Δ<得??

4a 2-4(a +2)<0,解得-1<a <2.

(2)B (*)116若≠,则抛物线的图像必须具有图-特征:? 应有≤≤≤≤从而{x|x x x }{x|1x 4}12?

12a 12042a 4a 2014

12a 22-·++≥-·++≥≤≤解得≤≤a a

--?

????

??22187

综上所述得的范围为-<≤

.a 1a 18

7

说明:二次函数问题可以借助它的图像求解. 例10 解关于x 的不等式

(x -2)(ax -2)>0.

分析 不等式的解及其结构与a 相关,所以必须分类讨论. 解 1° 当a =0时,原不等式化为 x -2<0其解集为{x|x <2};

2 a 02(x 2)(x )0°当<时,由于>,原不等式化为--<,其解

集为

22

a a

{x|2

a

x 2}<<; 3 0a 12(x 2)(x )0°当<<时,因<,原不等式化为-->,其解

集为

22

a a

{x|x 2x }<或>;2

a

4° 当a =1时,原不等式化为(x -2)2>0,其解集是{x|x ≠2};

5 a 12(x 2)(x )0°当>时,由于>,原不等式化为-->,其解

集是

22

a a

{x|x x 2}<或>.2

a

从而可以写出不等式的解集为: a =0时,{x|x <2};

a 0{x|2

a

x 2<时,<<};

0a 1{x|x 2x }<<时,<或>;2

a

a =1时,{x|x ≠2};

a 1{x|x x 2}>时,<或>.2

a

说明:讨论时分类要合理,不添不漏.

例11 若不等式ax 2+bx +c >0的解集为{x|α<x <β}(0<α<β),求cx 2+bx +a <0的解集.

分析 由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使用韦达定理:

解法一 由解集的特点可知a <0,根据韦达定理知:

-=α+β,=α·β.b

a

c a

??

????? 即=-α+β<,=α·β>.b

a c a

()00???????

∵a <0,∴b >0,c <0.

又×,b a a c b c

= ∴

=-α+β①

由=α·β,∴=α·β②

b c c a a c (1)111

对++<化为++>,cx bx a 0x x 022b c a

c

由①②得

α,β是++=两个根且α>β

>,1111

x x 002b c a c

∴+

+>即++<的解集为>α或<β

.x x 0cx bx a 0{x|x x }22b c a c 11 解法二 ∵cx 2+bx +a =0是ax 2+bx +a =0的倒数方程. 且ax 2+bx +c >0解为α<x <β,

∴++<的解集为>

α或<β

.cx bx a 0{x|x x } 211

说明:要在一题多解中锻炼自己的发散思维.

例解关于的不等式:

<-∈.12 x 1a(a R)x

x -1

分析 将一边化为零后,对参数进行讨论.

解原不等式变为

--<,即<, (1a)00x x ax a x -+--111

进一步化为(ax +1-a)(x -1)<0.

(1)当a >0时,不等式化为

(x )(x 1)01{x|a 1a x

1}--<,易见<,所以不等式解集为<<;

a a a a ---11

(2)a =0时,不等式化为x -1<0,即x <1,所以不等式解集为{x|x <1};

(3)a 0(x )(x 1)01{x|x 1x }<时,不等式化为-

·->,易见>,所以不等式解集为<或>.

a a a a

a a

---11

1

综上所述,原不等式解集为:

当>时,<<;当=时,<;当<时,>或<.a 0{x|a 1

a

x 1}a 0{x|x 1}a 0{x|x x 1}--a a

1

例13 (2001年全国高考题)不等式|x 2-3x|>4的解集是________. 分析 可转化为(1)x 2-3x >4或(2)x 2-3x <-4两个一元二次不等式.

由可解得<-或>,.(1)x 1x 4(2)?

答 填{x|x <-1或x >4}.

例14 (1998年上海高考题)设全集U=R,A={x|x2-5x-6>0},B={x||x

-5|<a}(a是常数),且11∈B,则

[ ] A.(U A)∩B=R

B.A∪(U B)=R

C.(U A)∪(U B)=R

D.A∪B=R

分析由x2-5x-6>0得x<-1或x>6,即

A={x|x<-1或x>6}由|x-5|<a得5-a<x<5+a,即

B={x|5-a<x<5+a}

∵11∈B,∴|11-5|<a得a>6

∴5-a<-1,5+a>11 ∴A∪B=R.

答选D.

说明:本题是一个综合题,涉及内容很广泛,集合、绝对值不等式、一元二次不等式等内容都得到了考查

一元二次不等式练习题含答案

一元二次不等式练习 一、选择题 1.设集合S ={x |-50 B .a ≥13 C .a ≤13 D .02} C .{x |-1≤x ≤2} D.{x |-1≤x <2} 4.若不等式ax 2 +bx -2>0的解集为? ????? x |-2

5.不等式x(x-a+1)>a的解集是{} x|x<-1或x>a,则( ) A.a≥1 B.a<-1 C.a>-1 D.a∈R 6.已知函数f(x)=ax2+bx+c,不等式f(x)>0的解集为{} x|-30的解集是(1,+∞),则关于x的不等式ax+b x-2 >0 的解集是________. 10.若关于x的方程9x+(4+a)3x+4=0有解,则实数a的取值范围是________. 三、解答题

高一数学集合与不等式测试题.

高一级数学单元测试题 集合与不等式 一、选择题:(4分×15=60分) 1、设{}|7M x x =≤,x = ( ) A. x ∈ M B. x M ? C .{}x M ∈ D .{x }∪M 2、下列不等式中一定成立的是( ). A .x >0 B . x 2≥0 C .x 2>0 D . |x |>0 3、已知集合A =[-1,1],B =(-2,0),则A ∩B =( )。 A .(-1,0) B .[-1,0) C .(-2,1) D .(-2,1] 4、下列表示①{0}=?、②{0}?∈、③{0}??、④0∈?中,正确的个数为( ) A.2 B.1 C.4 D.3 5、设U={0,1,2,3,4},A={0,1,2,3},B={2,3,4},则(C U A )∪(C U B )= ( ) A {0} B {0,1} C {0,1,4} D {0,1,2,3,4} 6、已知 ?∪A ={1,2,3},则集合A 真子集的个数( ) A 5 B 6 C 7 D 8 设U =[-3,5],C U A =[-3,0)∪(3,5] 7、设p 是q 的必要不充分条件,q 是r 的充要条件,则p 是r 的( )。 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8、不等式()()012<+-x x 的解集是( ) A 、〔—1,2〕 B 、〔2,—1〕 C 、R D 、空集 9、设、、均为实数,且<,下列结论正确的是( )。 A. < B. < C. -<- D. < 10、若x 2-ax -b <0的解集是{x |20的解集为( ) A .11{|}23x x - ≤≤ B .11{|}23x x -<< C .11{|}23x x -<<-D .11{|}23 x x -≤≤- 11、一元二次方程x 2 – mx + 4 = 0 有实数解的条件是m ∈( ) A.(-4,4) B.[-4,4] C.(-∞,-4)∪(4, +∞) D.(-∞,-4]∪[4, +∞) 12、下列不等式中,与 3 2<-x 的解集相同的是 ( ) A 0542 <--x x B 051 ≤-+x x C 0)1)(5(<+-x x D 0542 <-+x x 14、设全集U={(x ,y )R y x ∈,},集合M={(x ,y ) 12 2 =-+x y },N={(x ,y )4-≠x y },那么 (C U M )(C U N )等于( ) A {(2,-2)} B {(-2,2)} C φ D C U N 15、已知集合M={直线},N={圆},则M ∩N 中的元素个数为( ) A 0个 B 0个或1个或2个 C 无数个 D 无法确定 二、填空题(5分×6=30分) 13、 p :a 是整数;q :a 是自然数。则p 是q 的 。

一元二次不等式及其解法教学设计

一元二次不等式及其解法 【设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高;逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 【教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5第三章《不等式》第二节一元二次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 【学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 【教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 【教学重点】一元二次不等式的解法。 【教学难点】一元二次方程、一元二次不等式和二次函数的关系。 【教学策略】 探究式教学方法 (创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价) 【课前准备】 教具:“几何画板”及PPT课件. 粉笔:用于板书示范.

如何解一元二次不等式

如何解一元二次不等式,例如:x?2+2x+3≥0. 请大家写出解题过程和思路 解:对于高中“解一元二次不等式”这一块, 通常有以下两种解决办法: ①运用“分类讨论”解题思想; ②运用“数形结合”解题思想。 以下分别详细探讨。 例1、解不等式x2 -- 2x -- 8 ≥ 0。 解法①:原不等式可化为: (x -- 4) (x + 2) ≥ 0。 两部分的乘积大于等于零, 等价于以下两个不等式组: (1)x -- 4 ≥ 0 或(2)x -- 4 ≤ 0 x + 2 ≥ 0 x + 2 ≤ 0 解不等式组(1)得:x ≥ 4(因为x ≥ 4 一定满足x ≥ -- 2,此为“同大取大”) 解不等式组(2)得:x ≤ -- 2(因为x ≤ --2 一定满足x ≤ 4,此为“同小取小”) ∴不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 其解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法②:原不等式可化为: [ (x2 -- 2x + 1) -- 1 ] -- 8 ≥ 0。 ∴(x -- 1)2 ≥ 9 ∴x -- 1 ≥ 3 或x -- 1 ≤ -- 3 ∴x ≥ 4 或x ≤ -- 2。 ∴原不等式的解集为:( -- ∞,-- 2 ] ∪[ 4,+ ∞)。 解法③:如果不等式的左边不便于因式分解、不便于配方,

那就用一元二次方程的求根公式进行左边因式分解, 如本题,用求根公式求得方程x2 -- 2x -- 8 = 0 的两根为x1 = 4,x2 = -- 2,则原不等式可化为:(x -- 4) (x + 2) ≥ 0。下同解法①。 体会:以上三种解法,都是死板板地去解; 至于“分类讨论”法,有时虽麻烦,但清晰明了。 下面看“数形结合”法。 解法④:在平面直角坐标系内,函数f(x) = x2 -- 2x -- 8 的图像 开口向上、与x 轴的两交点分别为(-- 2,0) 和(4,0), 显然,当自变量的取值范围为x ≥ 4 或x ≤ -- 2 时, 图像在x 轴的上方; 当自变量的取值范围为-- 2 ≤ x ≤ 4 时,图像在x 轴的下方。 ∴当x ≥ 4 或x ≤ -- 2 时,x2 -- 2x -- 8 ≥ 0, 即:不等式x2 -- 2x -- 8 ≥ 0的解为:x ≥ 4 或x ≤ -- 2。 顺便说一下,当-- 2 ≤ x ≤ 4 时,图像在x 轴的下方,即:x2 -- 2x -- 8 ≤ 0,∴不等式x2 -- 2x -- 8 ≤ 0 的解为:-- 2 ≤ x ≤ 4 。其解集为:[ -- 2,4 ]。 领悟:对于ax2 + bx + c >0 型的二次不等式,其解为“大于大根或小于小根”; 对于ax2 + bx + c <0 型的二次不等式,其解为“大于小根且小于大根”。例2、解不等式x2 + 2x + 3 >0。 在实数范围内左边无法进行因式分解。 配方得:(x + 1)2 + 2 >0。 无论x 取任何实数,(x + 1)2 + 2 均大于零。 ∴该不等式的解集为x ∈R。 用“数形结合”考虑, ∵方程x2 + 2x + 3 = 0的根的判别式△<0, ∴函数f(x) = x2 + 2x + 3 的图像与x 轴无交点且开口向上。 即:无论自变量x取任意实数时,图像恒位于x 轴的上方。 ∴不等式x2 + 2x + 3 >0的解集为x ∈R。

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解: (1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f(x) g(x) 的形式. (2)将分式不等式转化为整式不等式求解,如: f(x) g(x) >0?f(x)g(x)>0; f(x) g(x) <0 ?f(x)g(x)<0; f(x) g(x) ≥0 ? ?? ? ??f(x)g(x)≥0, g(x)≠0; f(x) g(x) ≤0 ? ?? ? ??f(x)g(x)≤0, g(x)≠0. (2014·课标Ⅰ)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2)

解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值围是( ) A.-22 D.x <-2或x >1 2 解:当x >0时,x >1 2;当x <0时,x <-2. 所以x 的取值围是x <-2或x >1 2,故选D. 不等式1-2x x +1>0的解集是 . 解:不等式1-2x x +1>0等价于(1-2x )(x +1)>0, 也就是? ?? ??x -12(x +1)<0,所以-1<x <12. 故填???? ??x |-1<x <1 2,x ∈R . (2014·武汉调研)若一元二次不等式2kx 2 +kx -38 <0对一切实数x 都成立,则k 的 取值围为________. 解:显然k ≠0.若k >0,则只须(2x 2+x )max <38k ,解得k ∈?;若k <0,则只须38k <(2x 2 +x )min ,解得k ∈(-3,0).故k 的取值围是(-3,0).故填(-3,0). 类型一 一元一次不等式的解法 已知关于x 的不等式(a +b )x +2a -3b <0的解集为? ????-∞,-13,求关于x 的 不等式(a -3b )x +b -2a >0的解集. 解:由(a +b )x <3b -2a 的解集为? ????-∞,-13, 得a +b >0,且3b -2a a +b =-1 3 ,

高中数学不等式训练习题

不等式训练1 A 一、选择题(六个小题,每题5分,共30分) 1.若02522 >-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组? ??->-≥32x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________.

一元二次不等式测试题及答案

一元二次不等式测试题及答案 一、选择题 1.如果不等式ax 2 +bx+c<0(a ≠0)的解集为空集,那么( ) A .a<0,Δ>0 B .a<0,Δ≤0 C .a>0,Δ≤0 D .a>0,Δ≥0 2.不等式(x+2)(1-x)>0的解集是( ) A .{x|x<-2或x>1} B .{x|x<-1或x>2} C .{x|-2<x<1} D .{x|-1<x<2} 3.设f(x)=x 2 +bx+1,且f(-1)=f(3),则f(x)>0的解集是( ) A .),3()1,(+∞?--∞ B .R C .{x|x≠1} D .{x|x=1} 4.不等式(x+5)(3-2x)≥6的解集为( ) A.{x|x ≤-1或x≥ 29} B. {x|-1≤x≤29 } C.{x|x ≥1或x≤-29} D. {x|-2 9 ≤x≤1} 5.设一元二次不等式ax 2 +bx+1>0的解集为{x|-1≤x≤3 1},则ab 的值是( ) A.-6 B.-5 C.6 D.5 6.已知M={x|x2-2x -3>0},x |x2 +ax+b ≤0},若M ∪N =R ,M∩N=(3,]4,则a+b =( ) A.7 B.-1 C.1 D.-7 7.已知集合M ={x| x 2-3x -28≤0}, N={ x 2 -x -6>0},则M ∩N 为( ) A.{x|-4≤x<-2或3<x≤7} B .{x|-4<x≤-2或3≤x<7} C .{x|x≤-2或x>3} D .{x|x<-2或x≥3} 8.已知集合M ={x| 3 x 0x 1≥(-) },N ={y|y=3x2 +1,x∈R},则M ∩N =( ) A.? B. {x|x≥1} C.{x|x>1} D.{x| x≥1或x<0} 二.填空题 9、有三个关于x 的方程: ,已知其中至少 有一个方程有实根,则实数a 的取值范围为 10.若二次函数y=ax 2 +bx+c(x ∈R)的部分对应值如下表: x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 则不等式ax 2 +bx+c>0的解集是 。 11.若集合A={x∈R|x2 -4x+3<0},B={x∈R|(x-2)(x-5)<0},则A∩B=_______________________________. 12.关于x 的方程x 2+ax+a 2 -1=0有一正根和一负根,则a 的取值范围是 . 三.解答题: 13、①不等式(a 2 -1)x 2 -(a-1)x-1 <0的解集为R ,求a 的取值范围。②若a 2 -4 17 a+1<0的解集为A ,求使不等式x 2 +ax+1>2x+a 在A a ∈时恒成立的x 的取值范围. 114、①已知不等式02>++c bx ax 的解集为)3,2(,求不等式02 <++a bx cx 的解集。 ②不等式ax 2+bx+c >0的解集为{x|α<x <β},其中0>β>α,求不等式cx 2+bx+a <0的解集。 115、已知A=,B=。 (1)若B A ,求a 的取值范围; (2)若A∩B 是单元素集合,求a 取值范围。

(新)高一数学不等式测试题

高一数学不等式测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a <b <0,则 ( )A . b 11 2.若|a +c|<b ,则 ( )A . |a |<|b|-|c| B . |a |>|c| -|b| C . |a |>|b|-|c| D . |a |<|c|-|b| 3.设a =26c ,37b ,2-=-=,则a ,b,c 的大小顺序是 ( ) A . a >b >c B . a >c >b C . c >a >b D . b >c >a 4. 设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bd B . d b >c a C . a +c >b +d D . a -c >b -d 5.下列命题中正确的一个是 ( ) A .b a a b +≥2成立当且仅当a ,b 均为正数 B .222 2b a b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a 1 |≥2成立当且仅当a ≠0 6.函数y =log ??? ? ?-+?+-2134223x x x x 的定义域是 ( ) A .x ≤1或x ≥3 B .x <-2或x >1 C .x <-2或x ≥3 D .x <-2或x >3 7.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A .甲是乙的充分条件,但不是乙的必要条件 B .甲是乙的必要条件,但不是乙的充要条件 C .甲是乙的充要条件 D .甲不是乙的充分条件,也不是乙的必要条件 8.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21 和最大值1 B .最小值43 和最大值1 C .最小值21和最大值43 D .最小值1 9.关于x 的方程ax 2+2x -1=0至少有一个正的实根的充要条件是 ( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 10.函数y =x x x +++132 (x >0)的最小值是 ( ) A .23 B .-1+23 C .1+23 D .-2+23 二、填空题(本大题共4小题,每小题6分,共24分) 11.关于x 的不等式a x 2+b x +2>0的解集是}3 121|{<<-x x ,则a +b=_____________。 12.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________。 13.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 。

一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2 (2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

《一元二次不等式及其解法》典型例题透析

《一元二次不等式及其解法》典型例题透析 类型一:解一元二次不等式 例1. 解下列一元二次不等式 (1)2 50x x -<; (2)2 440x x -+>; (3)2 450x x -+-> 思路点拨: 转化为相应的函数,数形结合解决,或利用符号法则解答. 解析: (1)方法一: 因为2(5)410250?=--??=> 所以方程2 50x x -=的两个实数根为:10x =,25x = 函数25y x x =-的简图为: 因而不等式2 50x x -<的解集是{|05}x x <<. 方法二:2 50(5)0x x x x -???-? 解得05x x >?? ?,即05x <<或x ∈?. 因而不等式2 50x x -<的解集是{|05}x x <<. (2)方法一: 因为0?=, 方程2440x x -+=的解为122x x ==. 函数2 44y x x =-+的简图为: 所以,原不等式的解集是{|2}x x ≠ 方法二:2244(2)0x x x -+=-≥(当2x =时,2 (2)0x -=) 所以原不等式的解集是{|2}x x ≠ (3)方法一: 原不等式整理得2 450x x -+<.

因为0?<,方程2 450x x -+=无实数解, 函数245y x x =-+的简图为: 所以不等式2 450x x -+<的解集是?. 所以原不等式的解集是?. 方法二:∵2245(2)110x x x -+-=---≤-< ∴原不等式的解集是?. 总结升华: 1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力; 2. 当0?≤时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当0?>且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题). 3. 当二次项的系数小于0时,一般都转化为大于0后,再解答. 举一反三: 【变式1】解下列不等式 (1) 2 2320x x -->;(2) 2 3620x x -+-> (3) 2 4410x x -+≤; (4) 2 230x x -+->. 【答案】 (1)方法一: 因为2(3)42(2)250?=--??-=> 方程2 2320x x --=的两个实数根为:11 2 x =-,22x = 函数2 232y x x =--的简图为: 因而不等式2 2320x x -->的解集是:1 {|2}2 x x x <- >或. 方法二:∵原不等式等价于 21)(2)0x x +->(, ∴ 原不等式的解集是:1 {|2}2 x x x <->或. (2)整理,原式可化为2 3620x x -+<, 因为0?>, 方程2 3620x x -+=的解131x =231x =,

完整版一元二次不等式及其解法教学设计

元二次不等式及其解法 设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高; 逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课 正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学 生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决 问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学 生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5 第三章《不等式》第二节一元 次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不 等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领 悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数 之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解 决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 教学重点】一元二次不等式的解法。 教学难点】一元二次方程、一元二次不等式和二次函数的关系。 教学策略】 探究式教学方法 创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)课前准备】教具:“几何画板”及PPT 课件. 粉笔:用于板书示范. 第1 页共4 页

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

一元二次不等式的解法

一元二次不等式的解法(一) 学习目标: 1.会从实际情境中抽象出一元二次不等式模型; 2.掌握求解一元二次不等式的基本方法,并能解决一些实际问题。 3.培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力 知识点一:一元二次不等式的定义 只含有一个未知数,并且未知数的最高次数是2 的不等式,称为一元二次不等式。比如: . 任意的一元二次不等式,总可以化为一般形式:)0(02>>++a c bx ax 或 )0(02><++a c bx ax . 知识点二:一般的一元二次不等式的解法 ( (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程)0(02 >=++a c bx ax ,计算判别式?; ①0>?时,求出两根21x x 、,且21x x <(注意灵活运用因式分解和配方法); ②0=?时,求根a b x x 221-==; ③0--x x ; (3)0652 >--x x (4)0442 >+-x x ; (5)0542 >-+-x x ; (6)23262x x x -++<- 举一反三: 【变式1】解下列不等式 (1)02322 >--x x ; (2)02232 >+--x x (3)01442 ≤+-x x ; (4)0322 >-+-x x . (5)()()() 221332x x x +->+ 【变式2】解不等式:(1)6662<--≤-x x (2)18342 <-≤x x 类型二:已知一元二次不等式的解集求待定系数 例2 不等式02 <-+n mx x 的解集为)5,4(∈x ,求关于x 的不等式012 >-+mx nx 的解集 举一反三: 【变式1】不等式0122 >++bx ax 的解集为{} 23<<-x x ,则a =_______, b =________ 【变式2】已知关于x 的不等式02<++b ax x 的解集为)2,1(,求关于x 的不等式0 12 >++ax bx 的解集. 类型三:二次项系数含有字母的不等式恒成立恒不成立问题 例3 已知关于x 的不等式03)1(4)54(2 2 >+---+x m x m m 对一切实数x 恒成立,求实数m 的取值范围。 举一反三: 【变式1】 若关于x 的不等式01)12(2≥-++-m x m mx 的解集为空集,求m 的取值范围. 【变式2】若关于x 的不等式01)12(2≥-++-m x m mx 的解为一切实数,求m 的取值范围. 【变式3】若关于x 的不等式01)12(2≥-++-m x m mx 的解集为非空集,求m 的取值范围.

最新一元二次方程经典测试题(含答案)

更多精品文档 一元二次方程测试题 考试范围: 一元二次方程;考试时间:120分钟;命题人:瀚博教育 第Ⅰ卷(选择题) 一.选择题(共12小题,每题3分,共36分) 1.方程x (x ﹣2)=3x 的解为( ) A .x=5 B .x 1=0,x 2=5 C .x 1=2,x 2=0 D .x 1=0,x 2=﹣5 2.下列方程是一元二次方程的是( ) A .ax 2+bx +c=0 B .3x 2﹣2x=3(x 2﹣2) C .x 3﹣2x ﹣4=0 D .(x ﹣1)2+1=0 3.关于x 的一元二次方程x 2+a 2﹣1=0的一个根是0,则a 的值为( ) A .﹣1 B .1 C .1或﹣1 D .3 4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x ,则下列方程中正确的是( ) A .12(1+x )=17 B .17(1﹣x )=12 C .12(1+x )2=17 D .12+12(1+x )+12(1+x )2=17 5.如图,在△ABC 中,∠ABC=90°,AB=8cm ,BC=6cm .动点P ,Q 分别从点A , B 同时开始移动,点P 的速度为1cm/秒,点Q 的速度为2cm/秒,点Q 移动到点 C 后停止,点P 也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15cm 2的是( ) A .2秒钟 B .3秒钟 C .4秒钟 D .5秒钟 6.某幼儿园要准备修建一个面积为210平方米的矩形活动场地,它的长比宽多12米,设场地的长为x 米,可列方程为( ) A .x (x +12)=210 B .x (x ﹣12)=210 C .2x +2(x +12)=210 D .2x +2(x ﹣12)=210 7.一元二次方程x 2+bx ﹣2=0中,若b <0,则这个方程根的情况是( ) A .有两个正根 B .有一正根一负根且正根的绝对值大 C .有两个负根 D .有一正根一负根且负根的绝对值大 8.x 1,x 2是方程x 2+x +k=0的两个实根,若恰x 12+x 1x 2+x 22=2k 2成立,k 的值为( ) A .﹣1 B .或﹣1 C . D .﹣或1 9.一元二次方程ax 2+bx +c=0中,若a >0,b <0,c <0,则这个方程根的情况是( ) A .有两个正根 B .有两个负根 C .有一正根一负根且正根绝对值大 D .有一正根一负根且负根绝对值大 10.有两个一元二次方程:M :ax 2+bx +c=0;N :cx 2+bx +a=0,其中a ﹣c ≠0,以下列四个结论中,错误 的是( ) A .如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B .如果方程M 有两根符号相同,那么方程N 的两根符号也相同 C .如果5是方程M 的一个根,那么是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x=1 11.已知m ,n 是关于x 的一元二次方程x 2﹣2tx +t 2﹣2t +4=0的两实数根,则(m +2)(n +2)的最小值是( ) A .7 B .11 C .12 D .16 12.设关于x 的方程ax 2+(a +2)x +9a=0,有两个不相等的实数根x 1、x 2,且x 1<1<x 2,那么实数 a 的取值范围是( ) A . B . C . D . 第Ⅱ卷(非选择题) 二.填空题(共8小题,每题3分,共24分) 13.若x 1,x 2是关于x 的方程x 2﹣2x ﹣5=0的两根,则代数式x 12﹣3x 1﹣x 2﹣6的值是 . 14.已知x 1,x 2是关于x 的方程x 2+ax ﹣2b=0的两实数根,且x 1+x 2=﹣2,x 1?x 2=1,则b a 的值是 . 15.已知2x |m |﹣2+3=9是关于x 的一元二次方程,则m= . 16.已知x 2+6x=﹣1可以配成(x +p )2=q 的形式,则q= . 17.已知关于x 的一元二次方程(m ﹣1)x 2﹣3x +1=0有两个不相等的实数根,且关于x 的不等式组 的解集是x <﹣1,则所有符合条件的整数m 的个数是 . 18.关于x 的方程(m ﹣2)x 2+2x +1=0有实数根,则偶数m 的最大值为 .

高一数学不等式测试题

一、选择题(本大题共10小题,每小题5分,共50分) 1.若a <b <0,则 ( )A . b 11 2.若|a +c|<b ,则 ( )A . |a |<|b|-|c| B . |a | >|c|-|b| C . |a |>|b|-|c| D . |a |<|c|-|b| 3.设a =26c ,37b ,2-=-=,则a ,b,c 的大小顺序是 ( ) A . a >b >c B . a >c >b C . c >a >b D . b >c >a 4. 设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bd B . d b > c a C . a +c >b + d D . a -c >b -d 5.下列命题中正确的一个是 ( ) A .b a a b +≥2成立当且仅当a ,b 均为正数 B .2 222b a b a +≥+成立当且仅当a ,b 均为正数 C .logb +logb ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a 1|≥2成立当且仅当a ≠0 6.函数y =log ?? ? ??-+? +-2134223x x x x 的定义域是 ( ) A .x ≤1或x ≥3 B .x <-2或x >1 C .x <-2或x ≥3 D .x <-2或x >3 7.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A .甲是乙的充分条件,但不是乙的必要条件 B .甲是乙的必要条件,但不是乙的充要条件 C .甲是乙的充要条件 D .甲不是乙的充分条件,也不是乙的必要条件 8.已知实数x ,y 满足x +y =1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21和最大值1 B .最小值43和最大值1 C .最小值21和最大值43 D .最小值1 9.关于x 的方程ax +2x -1=0至少有一个正的实根的充要条件是 ( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 10.函数y =x x x +++132 (x >0)的最小值是 ( ) A .23 B .-1+23 C .1+23 D .-2+23 二、填空题(本大题共4小题,每小题6分,共24分) 11.关于x 的不等式a x 2+b x +2>0的解集是}3 121|{<<-x x ,则a +b=_____________。 12.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________。 13.方程() 02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 。 14.建造一个容积83m ,深为m 2长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造

一元二次不等式及其解法练习题.doc

一元二次不等式及其解法练习 班级: 姓名: 座号: 1 比较大小: (1)2 6+ (2)2 21)-; (3 ; (4)当0a b >>时,12log a _______12 log b . 2. 用不等号“>”或“<”填空: (1),____a b c d a c b d >><>? (4)2211 0___a b a b >>?. 3. 已知0x a <<,则一定成立的不等式是( ). A .220x a << B .22x ax a >> C .20x ax << D .22x a ax >> 4. 如果a b >,有下列不等式:①22a b >,②11 a b <,③33a b >,④lg lg a b >, 其中成立的是 . 5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 . 6.比较(3)(5)a a +-与(2)(4)a a +-的大小. 7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化 8.(1)已知1260,1536,a a b a b b <<<<-求及的取值范围. (2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围. 9. 已知22 ππ αβ-≤<≤,则2αβ-的范围是( ). A .(,0)2 π - B .[,0]2π - C .(,0]2π- D .[,0)2 π - 10.求下列不等式的解集. (1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤.