搜档网
当前位置:搜档网 › Solar cell efficiency tables (Version 38)

Solar cell efficiency tables (Version 38)

Solar cell efficiency tables (Version 38)
Solar cell efficiency tables (Version 38)

RESEARCH:SHORT COMMUNICATION:ACCELERATED PUBLICATION

Solar cell ef?ciency tables(Version38)

Martin A.Green1*,Keith Emery2,Yoshihiro Hishikawa3,Wilhelm Warta4and Ewan D.Dunlop5 1ARC Photovoltaics Centre of Excellence,University of New South Wales,Sydney2052,Australia

2National Renewable Energy Laboratory,1617Cole Boulevard,Golden,CO80401,USA

3National Institute of Advanced Industrial Science and Technology(AIST),Research Center for Photovoltaics(RCPV),Central2, Umezono1-1-1,Tsukuba,Ibaraki305-8568,Japan

4Fraunhofer-Institute for Solar Energy Systems,Department of Solar Cells–Materials and Technology,Heidenhofstr.2,D-79110 Freiburg,Germany

5European Commission–Joint Research Centre,Renewable Energy Unit,Institute for Energy,Via E.Fermi2749,IT-21027Ispra (VA),Italy

ABSTRACT

Consolidated tables showing an extensive listing of the highest independently con?rmed ef?ciencies for solar cells and modules are presented.Guidelines for inclusion of results into these tables are outlined and new entries since January,2011 are reviewed.Copyright#2011John Wiley&Sons,Ltd.

KEYWORDS

solar cell efficiency;photovoltaic efficiency;energy conversion efficiency

*Correspondence

Martin A.Green,ARC Photovoltaics Centre of Excellence,University of New South Wales,Sydney2052,Australia.

E-mail:m.green@https://www.sodocs.net/doc/4e3068361.html,.au

Received23May2011

1.INTRODUCTION

Since January,1993,‘‘Progress in Photovoltaics’’has published six monthly listings of the highest con?rmed ef?ciencies for a range of photovoltaic cell and module technologies[1–3].By providing guidelines for the inclusion of results into these tables,this not only provides an authoritative summary of the current state-of-the-art but also encourages researchers to seek independent con?r-mation of results and to report results on a standardized basis.In a recent version of these Tables(Version33)[2], results were updated to the new internationally accepted reference spectrum(IEC60904-3,Ed.2,2008),where this was possible.

The most important criterion for inclusion of results into the Tables is that they must have been measured by a recognized test centre listed elsewhere[1].A distinction is made between three different eligible areas:total area, aperture area,and designated illumination area[1].‘‘Active area’’ef?ciencies are not included.There are also certain minimum values of the area sought for the different device types(above0.05cm2for a con-centrator cell,1cm2for a1-sun cell,and800cm2for a module)[1].

Results are reported for cells and modules made from different semiconductors and for sub-categories within each semiconductor grouping(e.g.,crystalline,polycrys-talline,and thin?lm).From Version36onwards,spectral response information is included when available in the form of a plot of the external quantum ef?ciency(EQE) versus wavelength,normalized to the peak measured value. Starting from the present version,current–voltage(IV) curves will also be included when possible.

2.NEW RESULTS

Highest con?rmed‘‘one sun’’cell and module results are reported in Tables I and II.Any changes in the Tables from those previously published[3]are set in bold type.In most cases,a literature reference is provided that describes either the result reported or a similar result.Table I summarizes the best measurements for cells and sub-modules while Table II shows the best results for modules. Table III contains what might be described as‘‘notable exceptions.’’While not conforming to the requirements to be recognized as a class record,the cells and modules in this Table have notable characteristics that will be of

PROGRESS IN PHOTOVOLTAICS:RESEARCH AND APPLICATIONS

Prog.Photovolt:Res.Appl.2011;19:565–572

Published online in Wiley Online Library(https://www.sodocs.net/doc/4e3068361.html,).DOI:10.1002/pip.1150 Copyright?2011John Wiley&Sons,Ltd.565

Table I.Con?rmed terrestrial cell and submodule ef?ciencies measured under the global AM1.5spectrum(1000W/m2)at

258C(IEC60904-3:2008,ASTM G-173-03global).

Classi?cation a Ef?c.b

(%)Area c

(cm2)

V oc

(V)

J sc

(mA/cm2)

FF d

(%)

Test Centre e

(and date)

Description

Silicon

Si(crystalline)25.0?0.5 4.00(da)0.70642.7f82.8Sandia(3/99)g UNSW PERL[13]

Si(multicrystalline)20.4?0.5 1.002(ap)0.66438.080.9NREL(5/04)g FhG-ISE[14]

Si(thin?lm transfer)19.1W0.4 3.983(ap)0.65037.8h77.6FhG-ISE(2/11)ISFH(43m m thick)[4]

Si(thin?lm submodule)10.5?0.394.0(ap)0.492i29.7i72.1FhG-ISE(8/07)g CSG Solar(1–2m m

on glass;20cells)[15]

III–V cells

GaAs(thin?lm)28.1W0.80.998(ap) 1.11129.4h85.9NREL(3/11)Alta Devices[5]

GaAs(multicrystalline)18.4?0.5 4.011(t)0.99423.279.7NREL(11/95)g RTI,Ge substrate[16]

InP(crystalline)22.1?0.7 4.02(t)0.87829.585.4NREL(4/90)g Spire,epitaxial[17]

Thin?lm chalcogenide

CIGS(cell)19.6?0.6j0.996(ap)0.71334.8k79.2NREL(4/09)NREL,CIGS on glass[18] CIGS(submodule)16.7?0.416.0(ap)0.661i33.6i75.1FhG-ISE(3/00)g U.Uppsala,4serial cells[19] CdTe(cell)16.7?0.5j 1.032(ap)0.84526.175.5NREL(9/01)g NREL,mesa on glass[20] Amorphous/nanocrystalline Si

Si(amorphous)10.1?0.3l 1.036(ap)0.88616.75f67.0NREL(7/09)Oerlikon Solar Lab,

Neuchatel[21]

Si(nanocrystalline)10.1?0.2m 1.199(ap)0.53924.476.6JQA(12/97)Kaneka(2m m on glass)[22] Photochemical

Dye-sensitized10.9W0.3n 1.008(da)0.73621.7h68.0AIST(1/11)Sharp[6]

Dye-sensitized(submodule)9.9?0.4n17.11(ap)0.719i19.4i,k71.4AIST(8/10)Sony,eight parallel cells[23] Organic

Organic polymer8.3?0.3n 1.031(ap)0.81614.46k70.2NREL(11/10)Konarka[24]

Organic(submodule) 3.5?0.3n208.4(ap)8.6200.84748.3NREL(7/09)Solarmer[25]

Multijunction devices

GaInP/GaAs/Ge32.0?1.5m 3.989(t) 2.62214.3785.0NREL(1/03)Spectrolab(monolithic) GaAs/CIS(thin?lm)25.8?1.3m 4.00(t)–––NREL(11/89)Kopin/Boeing(four

terminal)[26]

a-Si/nc-Si/nc-Si(thin?lm)12.4W0.7o 1.050(ap) 1.9368.9671.5NREL(3/11)United Solar[7]

a-Si/nc-Si(thin?lm cell)11.9?0.8p 1.227(ap) 1.34612.92k68.5NREL(8/10)Oerlikon Solar Lab,

Neuchatel[27]

a-Si/nc-Si(thin?lm

submodule)

11.7?0.4m,q14.23(ap) 5.462 2.9971.3AIST(9/04)Kaneka(thin?lm)[28] Organic(two-cell tandem)8.3?0.3n 1.087(ap) 1.7338.03k59.5FhG-ISE(10/10)Heliatek[29]

a CIGS,CuInGaSe2;a-Si,amorphous silicon/hydrogen alloy.

b Ef?c.,ef?ciency.

c(ap),aperture area;(t),total area;(da),designated illumination area.

d FF,?ll factor.

e FhG-ISE,Fraunhofer Institut fu¨r Solare Energiesysteme;JQA,Japan Quality Assurance;AIST,Japanese National Institute o

f Advanced Industrial Science and Technology.

f Spectral response reported in Version36of these Tables.

g Recalibrated from original measurement.

h Spectral response and current-voltage curve reported in present version of these Tables.

i Reported on a‘‘per cell’’basis.

j Not measured at an external laboratory.

k Spectral response reported in Version37of these Tables.

l Light soaked at Oerlikon prior to testing at NREL(1000h,1sun,508C).

m Measured under IEC60904-3Ed.1:1989reference spectrum.

n Stability not investigated.Refs.[30,31]review the stability of similar devices.

o Light soaked under100mW/cm2white light at508C for over1000h.

p Stabilized by1000h,1sun illumination at a sample temperature of508C.

q Stabilized by174h,1sun illumination after20h,5sun illumination at a sample temperature of508C.

566Prog.Photovolt:Res.Appl.2011;19:565–572?2011John Wiley&Sons,Ltd.

DOI:10.1002/pip Solar cell efficiency tables M.A.Green et al.

Table II.Con?rmed terrestrial module ef?ciencies measured under the global AM1.5spectrum(1000W/m2)at a cell temperature of

258C(IEC60904-3:2008,ASTM G-173-03global).

Classi?cation a Ef?c.b(%)Area c

(cm2)V oc

(V)

I sc(A)FF d

(%)

Test Centre

(and date)

Description

Si(crystalline)22.9?0.6778(da) 5.60 3.9780.3Sandia(9/96)e UNSW/Gochermann[32] Si(large crystalline)21.4?0.615780(ap)68.6 6.29378.4NREL(10/09)SunPower[33]

Si(multicrystalline)17.8W0.414920(ap)38.869.04f75.7ESTI(2/11)Q-Cells(60serial cells)[8] Si(thin-?lm polycrystalline)8.2?0.2661(ap)25.00.32068.0Sandia(7/02)e Paci?c Solar

(1–2m m on glass)[34] GaAs(crystalline)21.1W0.6921(ap)12.69 1.98f77.1NREL(4/11)Alta Devices[5]

CIGS15.7?0.59703(ap)28.247.254g72.5NREL(11/10)Miasole[35]

CIGSS(Cd free)13.5?0.73459(ap)31.2 2.1868.9NREL(8/02)e Showa Shell[36]

CdTe12.8W0.46687(ap)94.1 1.2771.4NREL(1/11)PrimeStar monolithic[9] a-Si/a-SiGe/a-SiGe(tandem)10.4?0.5h,i905(ap) 4.353 3.28566.0NREL(10/98)e USSC[37]

a CIGSS,CuInGaSSe;a-Si,amorphous silicon/hydrogen alloy;a-SiGe,amorphous silicon/germanium/hydrogen alloy.

b Ef?c.,ef?ciency.

c(ap),aperture area;(da),designated illumination area.

d FF,?ll factor.

e Recalibrated from original measurement.

f Spectral response and current–voltage curve reported in present version of these Tables.

g Spectral response reported in Version37of these Tables.

h Light soaked at NREL for1000h at508C,nominally1-sun illumination.

i Measured under IEC60904-3Ed.1:1989reference spectrum.

Table III.‘‘Notable Exceptions’’:‘‘Top ten’’con?rmed cell and module results,not class records measured under the global AM1.5 spectrum(1000W/m2)at258C(IEC60904-3:2008,ASTM G-173-03global).

Classi?cation a Ef?c.b

(%)Area c

(cm2)

V oc

(V)

J sc

(mA/cm2)

FF

(%)

Test Centre

(and date)

Description

Cells(silicon)

Si(MCZ crystalline)24.7?0.5 4.0(da)0.70442.083.5Sandia(7/99)d UNSW PERL,SEH MCZ

substrate[38]

Si(large crystalline)24.2?0.7155.1(t)0.72140.5e82.9NREL(5/10)Sunpower n-type CZ

substrate[39]

Si(large crystalline)23.0?0.6100.4(t)0.72939.680.0AIST(2/09)Sanyo HIT,n-type

substrate[40]

Si(large multicrystalline)19.5W0.4242.7(t)0.65239.0f76.7FhG ISE(3/11)Q-Cells,laser

?red contacts[8]

Cells(others)

GaInP/GaAs/GaInAs(tandem)35.8?1.50.880(ap) 3.01213.985.3AIST(9/09)Sharp,monolithic[41] CIGS(thin?lm)20.3?0.60.5015(ap)0.74035.4e77.5FhG-ISE(6/10)ZSW Stuttgart,

CIGS on glass[42]

CZTSS(thin?lm)9.7W0.30.4362(ap)0.51628.6f65.4NREL(8/09)IBM solution grown[10]

a-Si/nc-Si/nc-Si(tandem)12.5?0.7g0.27(da) 2.0109.1168.4NREL(3/09)United Solar stabilized[43] Dye-sensitized11.2?0.3h0.219(ap)0.73621.072.2AIST(3/06)d Sharp[44]

Luminescent submodule7.1?0.2h25(ap) 1.0088.84e79.5ESTI(9/08)ECN Petten,GaAs cells[45] a CIGS,CuInGaSe

2

;CZTSS,Cu2ZnSnS4ày Se y.

b Ef?c.,ef?ciency.

c(ap),aperture area;(t),total area;(da),designated illumination area.

d Recalibrated from original measurement.

e Spectral response reported in Version37o

f these Tables.

f Spectral response and current-voltage curve reported in the present version of these Tables.

g Light soaked under100mW/cm2white light at508C for1000h.

h Stability not investigated.

Prog.Photovolt:Res.Appl.2011;19:565–572?2011John Wiley&Sons,Ltd. DOI:10.1002/pip 567

M.A.Green et al.Solar cell ef?ciency tables

interest to sections of the photovoltaic community,with entries based on their signi?cance and timeliness.

To ensure discrimination,Table III is limited to nominally10entries with the present authors having voted for their preferences for inclusion.Readers who have suggestions of results for inclusion into this Table are welcome to contact any of the authors with full details. Suggestions conforming to the guidelines will be included on the voting list for a future issue.

Table IV shows the best results for concentrator cells and concentrator modules(a smaller number of‘‘notable exceptions’’for concentrator cells and modules addition-ally is included in Table IV).

Ten new results are reported in the present version of these Tables.

The?rst new result in Table I is for a layer transfer, 43m m thick silicon solar cell with19.1%ef?ciency measured for a4cm2cell fabricated by the Institute for Solar Energy Research,Hamelin(ISFH)[4]and measured by the Fraunhofer Institute for Solar Energy Systems(FhG-ISE),representing a large improvement on the previously best result of16.7%for a cell of this type.

The second new result in Table I is an outright record for solar conversion by any single-junction photovoltaic device,following on from the27.6%result reported in the previous version of these Tables[3].An ef?ciency of 28.1%has been measured at the National Renewable Energy Laboratory(NREL)for a1cm2thin-?lm GaAs device fabricated by Alta Devices,Inc.Alta Devices is a Santa Clara based‘‘start-up’’seeking to develop low-cost, 30%ef?cient solar modules[5].

A third new result in Table I is for a dye-sensitized cell with ef?ciency of10.9%reported for a1cm2cell fabricated by Sharp[6]and measured by the Japanese National Institute of Advanced Industrial Science and Technology(AIST).

The?nal new result in Table I is for a small area (1.05cm2)triple junction amorphous/nanocrystalline sili-con solar cell(a-Si/nc-Si/nc-Si)fabricated by United Solar (USlr)[7]where a stabilized ef?ciency of12.4%has been measured by NREL.

Following a vigorous burst of activity in the multi-crystalline silicon module area reported in the three previous versions of these Tables,where?ve groups exceeded the previous record for module ef?ciency over an 18month period,one of these groups has done even better. In Table II,a new ef?ciency record of17.8%is reported for

a large(1.5m2aperture area)module fabricated by Q-Cells

[8]and measured by the European Solar Test Installation, Ispra(ESTI).

Also reported in Table II is a record result for a thin-?lm GaAs module,with an ef?ciency of21.1%reported for a 0.92m2module fabricated by Alta Devices[5]and measured by NREL.With the recent improvement in GaAs cell performance reported in Table I,this ef?ciency might also be expected to improve rapidly in the future.

Table IV.Terrestrial concentrator cell and module ef?ciencies measured under the ASTM G-173-03direct beam AM1.5spectrum at

a cell temperature of258C.

Classi?cation Ef?c.a

(%)Area b

(cm2)

Intensity c

(suns)

Test Centre

(and date)

Description

Single Cells

GaAs29.1?1.3d,e0.0505(da)117FhG-ISE(3/10)Fraunhofer ISE

Si27.6?1.0f 1.00(da)92FhG-ISE(11/04)Amonix back-contact[46] Multijunction cells

GaInP/GaAs/GaInNAs

(2-terminal)

43.5W2.60.3124(ap)418NREL(3/11)Solar Junction,triple cell[11]

GaInP/GaInAs/Ge(2-terminal)41.6?2.5e0.3174(da)364NREL(8/09)Spectrolab,lattice-matched[47] Submodules

GaInP/GaAs;GaInAsP/GaInAs38.5?1.9g0.202(ap)20NREL(8/08)DuPont et al.,split spectrum[48] GaInP/GaAs/Ge27.0?1.5h34(ap)10NREL(5/00)ENTECH[49]

Modules

Si20.5?0.8d1875(ap)79Sandia(4/89)i Sandia/UNSW/ENTECH(12cells)[50]‘‘Notable Exceptions’’

Si(large area)21.7?0.720.0(da)11Sandia(9/90)i UNSW laser grooved[51]

a Ef?c.,ef?ciency.

b(da),designated illumination area;(ap),aperture area.

c One sun corresponds to direct irradiance of1000W/m2.

d Not measured at an external laboratory.

e Spectral response reported in Version36o

f these Tables.

f Measured under a low aerosol optical depth spectrum similar to ASTM G-173-03direct[52].

g Spectral response reported in Version37of these Tables.

h Measured under old ASTM E891-87reference spectrum.

i Recalibrated from original measurement.

568Prog.Photovolt:Res.Appl.2011;19:565–572?2011John Wiley&Sons,Ltd.

DOI:10.1002/pip Solar cell efficiency tables M.A.Green et al.

The ?nal new result in Table II is a new record for a thin-?lm CdTe module.An ef?ciency of 12.8%was measured by NREL for a 0.7m 2module fabricated by PrimeStar Solar [9].

The ?rst new result in Table III relates to an ef?ciency increase to 19.5%for a large 243cm 2multicrystalline silicon cell fabricated by Q-Cells [8]and measured by FhG-ISE.The cell is described as using screen-printed contacts with a dielectrically passivated rear,with local rear contacts formed by laser ?ring.

Another new result in Table III is the improvement of a small area (0.45cm 2)Cu 2ZnSnS 4ày Se y (CZTSS)cell fabricated by IBM T.J.Watson Research Center [10]to 9.7%ef?ciency as measured by NREL.This cell is smaller than the 1cm 2size required for classi?cation as an outright record.

Yet another new result is reported in Table IV for a high performance concentrator cell.This is a new ef?ciency record for any photovoltaic cell with 43.5%ef?ciency measured by NREL at 418suns concentration (418kW/m 2irradiance)for a 0.3cm 2cell fabricated by Solar Junction using a proprietary approach [11].This cell maintained ef?ciency above 43%to 1000suns concentration.

The external quantum ef?ciencies (EQE),in some cases normalized to the peak EQE values,for the new GaAs cell and module results of Tables I and II are shown in Figure 1a as well as the response for the dye-sensitized cell of Table I and the CdTe module of Table II.Figure 1b shows the EQE of the new silicon cell and modules results in the present issue of these Tables together with the new CZTSS result (normalized)of Table III.The wavelength at which the EQE drops to 50%of its peak value at long wavelength provides a reasonable estimate of the cell bandgap,estimated in this way as 1.27eV for the CZTSS cell.The bandgaps of CZTSS and CZTS are commonly quoted as circa 1.0and 1.5eV ,respectively [12],suggesting a mid-range composition for the record cell.

Figure 2shows the current density–voltage (JV )curves for the corresponding devices.For the case of modules and tandem cells,the measured current–voltage data has been reported on a ‘‘per cell’’basis (voltage has been divided by the number of cells in series per series string,while

current

Figure 1.(a)EQE for the new GaAs cell and module results in this issue,as well as for the new dye-sensitized cell and the new CdTe module results;and (b)EQE for the new silicon cell and module entries in this issue plus for the new CZTSS cell result

(?normalized

data).

Figure 2.(a)Current density–voltage (JV )curve for the new GaAs cell and module results in this issue,as well as for the new dye-sensitized cell and the new CdTe module results;and (b)JV curves for the new silicon cell and module entries in this issue plus for the new CZTSS cell result (?cells per series string

estimated).

Prog.Photovolt:Res.Appl.2011;19:565–572?2011John Wiley &Sons,Ltd.DOI:10.1002/pip

569

M.A.Green et al.Solar cell ef?ciency tables

has been multiplied by this quantity and divided by the cell or module area).In some cases the number of cells per series string has been estimated.

3.DISCLAIMER

While the information provided in the tables is provided in good faith,the authors,editors,and publishers cannot accept direct responsibility for any errors or omissions. REFERENCES

1.Green MA,Emery K,King DL,Igari S.Solar cell

ef?ciency tables(Version15).Progress in Photo-voltaics:Research and Applications2000;8:187–196.

2.Green MA,Emery K,Hishikawa Y,Warta W.Solar

cell ef?ciency tables(Version33).Progress in Photo-voltaics:Research and Applications2009;17:85–94.

3.Green MA,Emery K,Hishikawa Y,Warta W.Solar

cell ef?ciency tables(Version37).Progress in Photo-voltaics:Research and Applications2011;19:84–92.

4.Petermann JH,Zielke D,Schmidt J,Haase F,Rojas

EG,Brendel R.19%-Ef?cient and43m m-thick crys-talline Si solar cell from layer transfer using porous silicon.Progress in Photovoltaics(accepted for pub-lication).

5.Kayes BM,Nie H,Twist R,Spruytte SG,Reinhardt F,

Kizilyalli IC,Higashi GS,27.6%Conversion Ef?-ciency,a New Record for Single-Junction Solar Cells Under1Sun Illumination.Proceedings,37th IEEE Photovoltaic Specialist Conference,Seattle,June2011;

https://www.sodocs.net/doc/4e3068361.html,/articles/read/

stealthy-alta-devices-next-gen-pv-challenging-the-

status-quo/.

6.Koide N,Yamanaka R,Katayama H.Recent advances

of dye-sensitized solar cells and integrated modules at SHARP.MRS Proceedings2009;1211:1211-R12-02.

7.Banerjee A,Su T,Beglau D,Pietka G,Liu F,DeMag-

gio G,Almutawalli S,Yan B,Yue G,Yang J,Guha S.

High ef?ciency,multi-junction nc-Si:h based solar cells at high deposition rate.37th IEEE PVSC,Seattle, June2011.

8.Engelhart P,Wendt J,Schulze A,Klenke C,Mohr A,

Petter K,Stenzel F,Ho¨rnlein S,Kauert M,Jungha¨nel M,Barkenfelt B,Schmidt S,Rychtarik D,Fischer M, Mu¨ller JW,Wawer P.R&D pilot line production of multi-crystalline Si solar cells exceeding cell ef?cien-cies of18%.Energy Procedia,1st International Con-ference on Silicon Photovoltaics,Freiburg,17–20 April2010;(https://www.sodocs.net/doc/4e3068361.html,/locate/procedia). 9.GE Achieves Highest Publicly Reported Ef?ciency for

Thin Film Solar,Earns New Orders and Unveils Plans to Build US Manufacturing Plant,Press Release, April72011(https://www.sodocs.net/doc/4e3068361.html,).

10.Todorov TK,Reuter KB,Mitzi DB.High-ef?ciency

solar cell with earth-abundant liquid-processed absor-

ber.Advanced Energy Materials2010;22:E156–E159.

https://www.sodocs.net/doc/4e3068361.html,.

12.Guo Q,Ford GM,Yang W-C,Walker BC,Stach EA,

Hillhouse HW,Agrawal R.Fabrication of7.2% ef?cient CZTSSe solar cells using CZTS nanocrystals.

Journal of the American Chemical Society2010;

132(49):17384–17386.

13.Zhao J,Wang A,Green MA,Ferrazza F.Novel19.8%

ef?cient‘‘honeycomb’’textured multicrystalline and

24.4%monocrystalline silicon solar cells.Applied

Physics Letters1998;73:1991–1993.

14.Schultz O,Glunz SW,Willeke GP.Multicrystalline

silicon solar cells exceeding20%ef?ciency.Progress in Photovoltaics:Research and Applications2004;12: 553–558.

15.Keevers MJ,Young TL,Schubert U,Green MA.10%

Ef?cient CSG Minimodules.22nd European Photovoltaic Solar Energy Conference,Milan, September2007.Progress in Photovoltaics:Research and Applications2008;16:235–239.

16.Venkatasubramanian R,O’Quinn BC,Hills JS,Sharps

PR,Timmons ML,Hutchby JA,Field H,Ahrenkiel A, Keyes B.18.2%(AM1.5)ef?cient GaAs solar cell on optical-grade polycrystalline Ge substrate.Conference Record,25th IEEE Photovoltaic Specialists Con-ference,Washington,May1997;31–36.

17.Keavney CJ,Haven VE,Vernon SM.Emitter struc-

tures in MOCVD InP solar cells.Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee,May1990;141–144.

18.Repins I,Contreras MA,Egaas B,DeHart C,Scharf J,

Perkins CL,To B,Nou?R.19.9%-Ef?cient ZnO/CdS/ CuInGaSe2solar cell with81.2%?ll factor.Progress in Photovoltaics:Research and Applications2008;16: 235–239.

19.Kessler J,Bodegard M,Hedstrom J,Stolt L.New

world record Cu(In,Ga)Se2based mini-module:

16.6%.Proceedings,16th European Photovoltaic

Solar Energy Conference,Glasgow,2000;2057–2060.

20.Wu X,Keane JC,Dhere RG,DeHart C,Duda A,

Gessert TA,Asher S,Levi DH,Sheldon P.16.5%-ef?cient CdS/CdTe polycrystalline thin-?lm solar cell.

Conf.Proceedings,17th European Photovoltaic Solar Energy Conference,Munich,22–26October2001;

995–1000.

21.Benagli S,Borrello D,Vallat-Sauvain E,Meier J,

Kroll U,Ho¨tzel J,Spitznagel J,Steinhauser J,Castens L,Djeridane Y.High-ef?ciency Amorphous Silicon Devices on LPCVD-ZNO TCO Prepared in Industrial KAI-M R&D Reactor.24th European Photovoltaic Solar Energy Conference,Hamburg,September 2009.

22.Yamamoto K,Toshimi M,Suzuki T,Tawada Y,

Okamoto T,Nakajima A.Thin?lm poly-Si solar cell on glass substrate fabricated at low temperature.MRS Spring Meeting,San Francisco,April1998.

570Prog.Photovolt:Res.Appl.2011;19:565–572?2011John Wiley&Sons,Ltd.

DOI:10.1002/pip Solar cell efficiency tables M.A.Green et al.

23.Morooka M,Ogura R,Orihashi M,Takenaka M.

Development of dye-sensitized solar cells for practical applications.Electrochemistry2009;77:960–965.

24.https://www.sodocs.net/doc/4e3068361.html,.

25.https://www.sodocs.net/doc/4e3068361.html,.

26.Mitchell K,Eberspacher C,Ermer J,Pier D.Single and

tandem junction CuInSe2cell and module technology.

Conf.Record,20th IEEE Photovoltaic Specialists Conference,Las Vegas,September,1988;1384–1389.

27.Bailat J,Fesquet L,Orhan J,Djeridane Y,Wolf B,

Madliger P,Steinhauser J,Benagli S,Borrello D, Castens L,Monteduro G,Marmelo M,Dehbozorghi B,Vallat-Sauvain E,Multone X,Romang D,Boucher J,Meier J,Kroll U.Recent developments of high-ef?ciency micromorph1tandem solar cells in Kai-M PECVD reactors.25th European Photovoltaic Solar Energy Conf.,Valencia,September2010.

28.Yoshimi M,Sasaki T,Sawada T,Suezaki T,Meguro

T,Matsuda T,Santo K,Wadano K,Ichikawa M, Nakajima A,Yamamoto K.High ef?ciency thin?lm silicon hybrid solar cell module on Im2-class large area substrate.Conf.Record,3rd World Conference on Photovoltaic Energy Conversion,Osaka,May2003;

1566–1569.

29.https://www.sodocs.net/doc/4e3068361.html,.

30.Jorgensen M,Norrman K,Krebs FC.Stability/degra-

dation of polymer solar cells.Solar Energy Materials and Solar Cells2008;92:686–714.

31.Kato N,Higuchi K,Tanaka H,Nakajima J,Sano T,

Toyoda T.Improvement in the long-term stability of dye-sensitized solar cell for outdoor use.Presented at 19th International Photovoltaic Science and Engin-eering Conference,Korea,November2009.

32.Zhao J,Wang A,Yun F,Zhang G,Roche DM,

Wenham SR,Green MA.20,000PERL silicon cells for the‘‘1996World Solar Challenge’’solar car race.

Progress in Photovoltaics1997;5:269–276.

33.Swanson RM.Solar cells at the cusp.Presented at19th

International Photovoltaic Science and Engineering Conference,Korea,November2009.

34.Basore PA.Pilot production of thin-?lm crystalline

silicon on glass modules.Conf.Record,29th IEEE Photovoltaic Specialists Conference,New Orleans, May2002;49–52.

35.https://www.sodocs.net/doc/4e3068361.html,.

36.Tanaka Y,Akema N,Morishita T,Okumura D,Kush-

iya K.Improvement of V oc upward of600mV/cell with CIGS-based absorber prepared by Seleniza-tion/Sulfurization.Conf.Proceedings,17th EC Photovoltaic Solar Energy Conference,Munich, October2001;989–994.

37.Yang J,Banerjee A,Glatfelter T,Hoffman K,Xu X,

Guha S.Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution.Conf.Record,1st World Conference on Photovoltaic Energy Conversion,Hawaii,December 1994;380–385.38.Zhao J,Wang A,Green MA.24.5%Ef?ciency silicon

PERT cells on MCZ substrates and24.7%ef?ciency PERL cells on FZ substrates.Progress in Photovol-taics1999;7:471–474.

39.Cousins PJ,Smith DD,Luan HC,Manning J,Dennis

TD,Waldhauer A,Wilson KE,Harley G,Mulligan GP.Gen III:Improved Performance at Lower Cost.

35th IEEE PVSC,Honolulu,HI,June2010.

40.Maruyama E,Terakawa A,Taguchi M,Yoshimine Y,

Ide D,Baba T,Shima M,Sakata H,Tanaka M.

Sanyo’s challenges to the development of high-ef?ciency HIT solar cells and the expansion of HIT business.4th World Conference on Photo-voltaic Energy Conversion(WCEP-4),Hawaii,May 2006.

41.Takamoto T,Sasaki K,Agui T,Juso H,Yoshida A,

Nakaido K.III–V compound solar cells.SHARP Technical Journal2010;100:1–10.

42.Jackson P,Hariskos D,Lotter E,Paetel S,Wuerz R,

Menner R,Wischmann W,Powalla M.New world record ef?ciency for Cu(In,Ga)Se2thin-?lm solar cells beyond20%.Progress In Photovoltaics:Research and Applications,2011;published online DOI:

10.1002/pip.1078.(Presented at25th EU PVSEC

WCPEC-5,Valencia,Spain,2010).

43.Yan B,Yue G,Guha S.Status of nc-Si:H solar cells at

United Solar and roadmap for manufacturing a-Si:H and nc-Si:H based solar panels.In‘‘Amorphous and Polycrystalline Thin-Film Silicon Science and Tech-nology2007,’’Chu V,Miyazaki S,Nathan A,Yang J, Zan H-W(eds).(eaterials Research Society Sym-posium Proceedsings Vol).989:Materials Research Society:Warrendale,PA,2007;Paper#:0989-A15-

01.

44.Han L,Fukui A,Fuke N,Koide N,Yamanaka R.High

ef?ciency of dye sensitized solar cell and module.

4th World Conference on Photovoltaic Energy Con-version(WCEP-4),Hawaii,May2006.

45.Slooff LH I,Bende EE,Burgers AR,Budel T,

Pravettoni M,Kenny RP,Dunlop ED,Buechtemann

A.A luminescent solar concentrator with7.1%power

conversion ef?ciency.Physica Status Solidi(RRL) 2008;2(6):257–259.

46.Slade A,Garboushian V.27.6%ef?cient silicon

concentrator cell for mass production.Technical Digest,15th International Photovoltaic Science and Engineering Conference,Shanghai,October2005;

701.

47.King RR,Boca A,Hong W,Liu X-Q,Bhusari D,

Larrabee D,Edmondson KM,Law DC,Fetzer CM, Mesropian S,Karam NH.Band-gap-engineered archi-tectures for high-ef?ciency multijunction concentrator solar cells.Presented at the24th European Photo-voltaic Solar Energy Conference and Exhibition, Hamburg,Germany,21–25September2009;

48.McCambridge JD,Steiner MA,Unger BA,Emery KA,

Christensen EL,Wanlass MW,Gray AL,Takacs L, Buelow R,McCollum TA,Ashmead JW,Schmidt GR,

Prog.Photovolt:Res.Appl.2011;19:565–572?2011John Wiley&Sons,Ltd. DOI:10.1002/pip 571

M.A.Green et al.Solar cell ef?ciency tables

Haas AW,Wilcox JR,Meter JV,Gray JL,Moore DT, Barnett AM,Schwartz https://www.sodocs.net/doc/4e3068361.html,pact spectrum splitting photovoltaic module with high ef?ciency.Progress In Photovoltaics:Research and Applications2011;19: 352–360.

49.O’Neil MJ,McDanal AJ.Outdoor measurement

of28%ef?ciency for a mini-concentrator module, Proceedings,National Center for Photovoltaics Program Review Meeting,Denver,16–19April 2000.50.Chiang CJ,Richards EH.A20%ef?cient photovoltaic

concentrator module.Conf.Record,21st IEEE Photo-voltaic Specialists Conference,Kissimimee,May 1990;861–863.

51.Zhang F,Wenham SR,Green https://www.sodocs.net/doc/4e3068361.html,rge area,con-

centrator buried contact solar cells.IEEE Transactions on Electron Devices1995;42:144–149.

52.Gueymard CA,Myers D,Emery K.Proposed refer-

ence irradiance spectra for solar energy systems test-ing.Solar Energy2002;73:443–467.

572Prog.Photovolt:Res.Appl.2011;19:565–572?2011John Wiley&Sons,Ltd.

DOI:10.1002/pip Solar cell efficiency tables M.A.Green et al.

相关主题