搜档网
当前位置:搜档网 › 线性方程组的迭代解法(Matlab)

线性方程组的迭代解法(Matlab)

线性方程组的迭代解法(Matlab)
线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法

2015年12月27日17:12

迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR)

1.雅可比迭代法(Jacobi)

A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。

A=D+L+U

要解的方程变为Dx+Lx+Ux=b

x=D^(-1)(b-(L+U)x)

所以Jocabi方法如下:

Matlab程序

function [x,iter] =jacobi(A,b,tol)

D=diag(diag(A));

L=D-tril(A);

U=D-triu(A);

x=zeros(size(b));

for iter=1:500

x=D\(b+L*x+U*x);

error=norm(b-A*x)/norm(b);

if(error

break;

end

End

2.高斯-塞德尔迭代法(Guass-Seidel)

在雅可比迭代法中将算出来的的分 马上投入到下一个迭代方程中进行

Matlab程序

function [x,iter]=guass_seidel(A,b,tol)

D=diag(diag(A));

L=D-tril(A);

U=D-triu(A);

x=zeros(size(b));

for iter=1:500

x=(D-L)\(U*x+b);

error=norm(b-A*x)/norm(b);

if(error

break;

end

end

3.超松弛迭代法(SOR)

GS迭代格式可以改写成

上面等式的右边第二项可以看成修正 ,在修正 之前加参数w(松弛因子),SOR迭代格式为

Matlab程序

function [x,iter]=sor(A,b,omega,tol)

D=diag(diag(A));

L=D-tril(A);

U=D-triu(A);

x=zeros(size(b));

for iter=1:500

x=(D-omega*L)\(omega*b+(1-omega)*D*x+omega*U*x);

error=norm(b-A*x)/norm(b);

if(error

break;

end

end

研究线性方程组迭代收敛速度

研究解线性方程组迭代收敛速度 一. 实验目的 科学研究与生产实践中许多问题都可归结为线性方程组的求解,高效求解线性方程组成为了许多科学与工程计算的核心.迭代法就是用某种极限过程去逼近线性方程组精确解的方法,该方法具有对计算机的存贮单元需求少,程序计算简单,原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法。常用的迭代法有Jacobi 迭代法、Gauss —seidel 迭代法、逐次超松驰法(SOR 法)等。 二. 实验摘要 由迭代法平均收敛速度与渐进收敛速度的关系引入近似估计法,即通过对迭代平均收敛速度取对数,然后利用Mathematica 软件对其进行拟合,给出拟合函数,最终得到了Jacobi 迭代法、Gauss —seidel 法的平均收敛速度收敛到渐进收敛速度的近似收敛阶,以及逐次超松驰法(SOR 法)的渐进收敛速度,且该法适用于其他迭代法收敛速度的估计。 三. 迭代法原理 1.Jacobi 迭代法(J 法) 设方程组b Ax =,其中, n n n n ij R a A ??∈=)(,。n R b x ∈, A 为可逆矩阵,可分裂为,U D L A ++=其中, ??????? ???? ???? ?=-00 00 1 ,21323121 n n n n a a a a a a L ΛO O M M ??????? ????? ??? ?=-00 0,1223 11312n n n n a a a a a a U M O O ΛΛ

??????? ? ???? ??? ?=nn a a a D O O 22 11 从而由b Ax =得到, b D x A D I b D x A D D b D x U L D x 111111)()()(------+-=+-=++-= 令 A D I B J 1--=, b D f J 1-=, 由此可构造出迭代公式:J k J k f x B x +=+)()1( 令初始向量)0,...,0,0()0(=x ,即可得到迭代序列,从而逼近方程组的解 这种方法称为Jacobi 迭代法,其中J B 称为Jacobi 迭代矩阵。 2. Gauss-Seidel 迭代法(GS 法) 与Jacobi 迭代法类似,将方程组b Ax =中的系数矩阵 A 分裂为 ,U D L A ++=,其中U L D ,,与前面相同。 与Jacobi 迭代法所不同的是,Gauss-Seidel 迭代法将Jacobi 迭代公式中的 b Ux Lx Dx k k k +--=+)()()1( 改为 b Ux Lx Dx k k k +--=++)()1()1( 从而b Ax =可写成矩阵形式 b Ux x D L k k +-=++)()1()(, 若设1 )(-+D L 存在,则 b D L Ux D L x k k 1)(1)1()()(--++++-=, 其中, U D L B G 1)(-+-=,b D L f 1)(-+=, 于是Gauss —Seidel 迭代公式的矩阵形式为f x B x k G k +=+)() 1(。

线性方程组迭代解法

实验六:线性方程组迭代解法 1)实验目的 ? 熟悉Matlab 编程; ? 学习线性方程组迭代解法的程序设计算法 2)实验题目 1.研究解线性方程组Ax=b 迭代法收敛速度。A 为20阶五对角距阵 ??????????????? ?????????????????------------------=321 412132141412132141412132141 412132 141213 O O O O O A 要求: (1)选取不同的初始向量x 0 及右端向量b ,给定迭代误差要求,用雅可比迭代和高斯-赛 德尔迭代法求解,观察得到的序列是否收敛?若收敛,记录迭代次数,分析计算结果并得出你的结论。 (2)用SOR 迭代法求解上述方程组,松弛系数ω取1< ω <2的不同值,在 时停止迭代.记录迭代次数,分析计算结果并得出你的结论。 2.给出线性方程组b x H n =,其中系数矩阵n H 为希尔伯特矩阵: ()n n ij n h H ??∈=,.,,2,1,,1n j i j i i h ij Λ=-+= 假设().,1,,1,1*x H b x n n T =?∈=Λ若取,10,8,6=n 分别用雅可比迭代法及SOR 迭代 (5.1,25.1,1=ω)求解,比较计算结果。 3)实验原理与理论基础 1.雅克比(Jacobi )迭代法算法设计: ①输入矩阵a 与右端向量b 及初值x(1,i); ②按公式计算得 ),,2,1(1)(1)1(n i x a b a x k j n i j j ij i ii k i Λ=????? ??-=∑≠=+ 2.高斯――赛得尔迭代法算法设计: 1. 输入矩阵a 与右端向量b 及初值x(1,i).

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法 2015年12月27日17:12 迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR) 1.雅可比迭代法(Jacobi) A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。 A=D+L+U 要解的方程变为Dx+Lx+Ux=b x=D^(-1)(b-(L+U)x) 所以Jocabi方法如下: Matlab程序 function [x,iter] =jacobi(A,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=zeros(size(b)); for iter=1:500 x=D\(b+L*x+U*x); error=norm(b-A*x)/norm(b); if(error

解线性方程组的几种迭代算法

解线性方程组的几种迭代算法 内容摘要: 本文首先总结了分裂法解线性方程组的一些迭代算法,在此基础上分别通过改变系数矩阵A的分裂形式和对SSOR算法的改进提出了两种新的算法,并证明了这两种算法的收敛性.与其它方法相比,通过改变系数矩阵A的分裂形式得到的新算法具有更好的收敛性,改进的SSOR算法有了更快的收敛速度.最后通过数值实例验证了这两种算法在有些情况下确实可以更有效的解决问题. 关键词: 线性方程组迭代法算法收敛速度 Several kinds of solving linear equations iterative algorithm Abstract: In this paper, we firstly summarize some Iterative algorithms of Anti-secession law solution of linear equations. Based on these, two new algorithms are put forward by changing the fission form of coefficient matrix A and improving the algorithm of SSOR, and the convergence of the two algorithms is demonstrated. Compared with other methods, the new algorithm acquired by changing the fission form of coefficient matrix A is possessed of a better convergence. And the improved SSOR algorithm has a faster convergence speed. Finally, some numerical examples verify that the two algorithms can solve problems more effectively in some cases. Key words: Linear equations Iteration method algorithm Convergence speed

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪 费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量) 1(+k i x 时, 用最新分量) 1(1 +k x ,???+) 1(2 k x ) 1(1 -+k i x 代替旧分量)(1k x ,???) (2 k x ) (1-k i x ,可以起到节省存储 空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 )()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=, 则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+)()1( 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(1111 1 )() 1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)() 1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

线性方程组的直接法和迭代法

线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 线性方程组迭代法 迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法.该方法具有对计算机的存贮单元需求少,程序设计简单、原始系数矩阵在计算过程中不变等优点,是求解大型稀疏矩阵方程组的重要方法.迭代法不是用有限步运算求精确解,而是通过迭代产生近似解逼近精确解.如Jacobi 迭代、Gauss — Seidel 迭代、SOR 迭代法等。 1. 线性方程组的直接法 直接法就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。 1.1 Cramer 法则 Cramer 法则用于判断具有n 个未知数的n 个线性方程的方程组解的情况。当方程组的系数行列式不等于零时,方程组有解且解唯一。如果方程组无解或者有两个不同的解时,则系数行列式必为零。如果齐次线性方程组的系数行列式不等于零,则没有非零解。如果齐次线性方程组有非零解,则系数行列式必为零。 定理1如果方程组Ax b =中0D A =≠,则Ax b =有解,且解事唯一的,解为1212,,...,n n D D D x x x D D D ===i D 是D 中第i 列换成向量b 所得的行列式。 Cramer 法则解n 元方程组有两个前提条件: 1、未知数的个数等于方程的个数。 2、系数行列式不等于零 例1 a 取何值时,线性方程组

1231231 2311x x x a ax x x x x ax ++=??++=??++=?有唯一解。 解:2111111 11011(1)11001 A a a a a a a ==--=--- 所以当1a ≠时,方程组有唯一解。 定理2当齐次线性方程组0Ax =,0A ≠时该方程组有唯一的零解。 定理3齐次线性方程组0Ax =有非零解0A <=>=。 1.2 Gauss 消元法 Gauss 消元法是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。 1.2.1 用Gauss 消元法为线性方程组求解 eg :Gauss 消元法可用来找出下列方程组的解或其解的限制: ()()()123283211223x y z L x y z L x y z L +-=??--+=-??-++=-? 这个算法的原理是:首先,要将1L 以下的等式中的x 消除,然后再将2L 以下的等式中的y 消除。这样可使整个方程组变成一个三角形似的格式。之后再将已得出的答案一个个地代入已被简化的等式中的未知数中,就可求出其余的答案了。 在刚才的例子中,我们将132 L 和2L 相加,就可以将2L 中的x 消除了。

迭代法解线性方程组(C语言描述)

用Gauss-Seidel迭代法解线性方程组的C语言源代码:#include #include #include struct Line{ int L; struct Row *head; struct Line *next; }; struct Row{ int R; float x; struct Row *link; }; //建立每次迭代结果的数据存储单元 struct Term{ float x; float m; }; struct Line *Create(int Line,int Row){ struct Line *Lhead=NULL,*p1=NULL,*p2=NULL; struct Row*Rhead=NULL,*ptr1,*ptr2=NULL; int i=1,j=1; float X; while(i<=Line){ while(j<=Row+1){ scanf("%f",&X); if(X!=0||j==Row+1){ ptr1=(struct Row*)malloc(sizeof(Row)); if(ptr1==NULL){ printf("内存分配错误!\n"); exit(1); } ptr1->x=X; ptr1->R=j; if(ptr2==NULL){ ptr2=ptr1; Rhead=ptr1; } else{

ptr2->link=ptr1; ptr2=ptr1; } } j++; } if(ptr2!=NULL){ ptr2->link=NULL; ptr2=NULL; } if(Rhead!=NULL){ p1=(struct Line*)malloc(sizeof(Line)); if(p1==NULL){ printf("内存分配错误!\n"); exit(1); } p1->L=i; p1->head=Rhead; if(p2==NULL){ Lhead=p1; p2=p1; } else{ p2->next=p1; p2=p1; } } i++; Rhead=NULL; j=1; } if(p2!=NULL) p2->next=NULL; return Lhead; } struct Line *Change(struct Line*Lhead,int n){ struct Line*p1,*p2,*p3,*p; struct Row*ptr; int i=1,k,j; float max,t; if(Lhead==NULL){ printf("链表为空!\n");

第6章 线性方程组迭代解法 参考答案

第6章 线性方程组迭代解法 参考答案 一、选择题(15分,每小题3分) 1、(3) 2、(4) 3、(4) 4、(1) 5、(2) 二、填空题(15分,每小题3分) 1、1a <;2 、2a < ;3、1a <;4 ;5、Ax b ? 三、(9分) 解: (1) 19.01<=B ,∴迭代法f Bx x k k +=?1的收敛;--------------------(3分) (2) B 的特征值8.0,5.1=λ,15.1)(>=B ρ,∴迭代法f Bx x k k +=?1发散;(6分) (3) B 的特征值19.0)(<=B ρ,∴迭代法f Bx x k k +=?1收敛。 ---------(9分) 四、(14分) 解:(1)Jacobi 迭代法的分量形式 1123121313121222012322()()()()()()()()() ;,,,k k k k k k k k k x x x x x x k x x x +++?=?+?=??=??=???L ----------------------------------(2分) Gauss-Seidel 迭代法的分量形式 1123112131113 121222012322()()()()()()()()() ;,,,k k k k k k k k k x x x x x x k x x x ++++++?=?+?=??=??=???L ---------------------------------(4分) (2)Jacobi 迭代法的迭代矩阵为 1022101220()B D L U ??????=+=?????????? , --------------------------------(6分) 1230λλλ===,01()B ρ=<,Jacobi 迭代法收敛 ------------------------(8分) Gauss-Seidel 迭代法的迭代矩阵为 1022023002()G D L U ??????=?=??????? , --------------------------------(10分) 12302,λλλ===,21()B ρ=>,Gauss-Seidel 迭代法发散------------------(12分) (3)SOR 迭代法的分量形式

线性方程组的迭代法

第六章 线性方程组的迭代法 一、教学目标及基本要求 通过对本节的学习,使学生掌握线性方程组的数值解法。 二、教学内容及学时分配 本节主要介绍线性方程组的数值解法,迭代公式的建立,迭代收敛性。 三、教学重点难点 1.教学重点:迭代公式的建立、迭代收敛性。 2. 教学难点:迭代收敛性。 四、教学中应注意的问题 多媒体课堂教学为主。适当提问,加深学生对概念的理解。 6.2 解线性方程组的迭代法 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用。如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题。在实际问题中产生的线性方程组的类型有很多,如按系数矩阵含零元素多少分类,有稠密和稀疏(零元素占80%以上)线性方程组之分;如按阶数的高低分类,有高阶(阶数在1000阶以上)中阶、(500~1000阶) 和低阶(500阶以下)线性方程组之分;如按系数矩阵的形状和性质分类,有对称正定、三对角、对角占优线性方程组之分。因为数值解法必须考虑方法的计算时间和空间效率以及算法的数值稳定性。因此,不同类型的线性方程组,其数值解法也不相同。但是,基本的方法可以归结为两大类,即直接法和迭代法。 分类:线性方程组的解法可分为直接法和迭代法两种方法。 (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解。最基本的直接法是Gauss 消去法,重要的直接法全都受到Gauss 消去法的启发。计算代价高。但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解,如何避免舍入误差的增长是设计直接法时必须考虑的问题。 (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列。收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题。迭代法要求方程组系数矩阵具有某种特殊形式(如对角占优阵),是解高阶稀疏矩阵方程组的重要方法。 §6.1 迭代公式的建立 迭代法的基本思想是用逐次逼近的方法求线性方程组的解。 设有方程组b Ax = (1) 将其转化为等价的便于迭代的形式f Bx x += (2) (这种转化总能实现,如令b f A I B =-=,)并由此构造迭代公式

数值分析-方程迭代法

实验内容 1 用下列方法求方程201303==--x x x 在附近的根,要求准确到四位有效数字。 (1)牛顿法。(2)单点弦截法(3)双点弦截法 2 用Aitken 法求方程0123=--x x 在5.10=x 附近的根,精度要求为410-=ε。 三 实验步骤(算法)与结果 1: 用双点弦截法求方程201303==--x x x 在附近的根 ①算法的C 语言代码: #include #include double f(double x) { double f; f=x*x-1/x; return f; } void main() { double y=0,z=0,x; printf("please enter a number near the root: ") ; scanf("%f",&x); for (y=f(x),z=f(y);fabs(z-y)>5e-5;) { x=(x*z-y*y)/(x-2*y+z) ; y=f(x); z=f(y); } printf("the root is:") ; printf("X=%-10.4f\n",z); } ②实验结果: 如下图,按题要求输入2,则可得结果X=1.4656

2:用Aitken 法求方程0123=--x x 在5.10=x 附近的根 ①算法的C 语言代码: #include #include double f(double x) { double f=pow(x,3)-3*x-1; return f; } void main() { double f1,f2,x=2.0,y=1.5,z; for(;fabs(y-x)>5e-5;) { f1=f(x); f2=f(y); z=y-f2*(y-x)/(f2-f1); x=y;y=z; } printf("the root is:") ; printf("X=%-10.4f\n",y); } ②实验结果: 如下图,在程序代码中预先设置接近于根的两个值x1=2.0与x2=1.5作为初值,则可得结果X=1.8794.

解线性方程组的迭代法

解线性方程组的迭代法 Haha 送给需要的学弟学妹 摘要:因为理论的分析表明,求解病态的线性方程组是困难的,但是实际情况是否如此,需要我们来具体检验。系数矩阵H 为Hilbert 矩阵,是著名的病态问题。因而决定求解Hx b =此线性方程组来验证上述问题。 详细过程是通过用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法求解Hx b =线性方程组。 关键词:病态方程组、Gauss 消去法、J 迭代法、GS 迭代法、SOR 迭代法 目录: 一、问题背景介绍 二、建立正确额数学模型 三、求解模型的数学原理 1、Gauss 消去法求解原理 2、Jacobi 迭代法求解原理 3、G-S 迭代法求解原理 4、SOR 迭代法求解原理 5、Jacobi 和G-S 两种迭代法收敛的充要条件 四、计算过程 (一)Hilbert 矩阵维数n=6时 1、Gauss 消去法求解 2、Jacobi 迭代法求解 3、G-S 迭代法求解 4、SOR 迭代法求解 (二)Hilbert 矩阵维数n=20、50和100时 1、G-S 迭代法求解图形 2、SOR 迭代法求解图形 五、编写计算程序 六、解释计算结果 1、Gauss 消去法误差分析 2、G-S 迭代法误差分析 3、SOR 迭代法误差分析 G-S 迭代法与SOR 迭代法的误差比较 七、心得体会 正文: 一、问题背景介绍。 理论的分析表明,求解病态的线性方程组是困难的。实际情况是否如此,会出现怎样的现象呢? 二、建立正确的数学模型。 考虑方程组Hx b =的求解,其中系数矩阵H 为Hilbert 矩阵, ,,1 (), , ,1,2, ,1 i j n n i j H h h i j n i j ?== =+- 这是一个著名的病态问题。通过首先给定解(为方便计算,笔者取x 的各个分量等于1),再计算出右端,b Hx =这样Hx b =的解就明确了,再用Gauss 消去法、J 迭代法、GS 迭代法和SOR 迭代法四种方法分别求解,Hx b =将求解结果与给定解比较,而后求出上述四种方法的误差,得出哪种方法比较好。 三、求解模型的数学原理。 1、Gauss 消去法求解原理 对于Ax b =(A 非奇异)求解时,可以先将A 分解成一个下三角矩阵L 和一个上三角矩阵U 的乘积,即A LU =,就可以通过

数值分析讲义——线性方程组的解法

数值分析讲义 第三章线性方程组的解法 §3.0 引言 §3.1 雅可比(Jacobi)迭代法 §3.2 高斯-塞德尔(Gauss-Seidel)迭代法 §3.3 超松驰迭代法§3.7 三角分解法 §3.4 迭代法的收敛性§3.8 追赶法 §3.5 高斯消去法§3.9 其它应用 §3.6 高斯主元素消去法§3.10 误差分析 §3 作业讲评3 §3.11 总结

§3.0 引言 重要性:解线性代数方程组的有效方法在计算数学和科学计算中具有特殊的地位和作用.如弹性力学、电路分析、热传导和振动、以及社会科学及定量分析商业经济中的各种问题. 分类:线性方程组的解法可分为直接法和迭代法两种方法. (a) 直接法:对于给定的方程组,在没有舍入误差的假设下,能在预定的运算次数内求得精确解.最基本的直接法是Gauss消去法,重要的直接法全都受到Gauss消去法的启发.计算代价高. (b) 迭代法:基于一定的递推格式,产生逼近方程组精确解的近似序列.收敛性是其为迭代法的前提,此外,存在收敛速度与误差估计问题.简单实用,诱人.

§3.1 雅可比Jacobi 迭代法 (AX =b ) 1 基本思想: 与解f (x )=0 的不动点迭代相类似,将AX =b 改写为X =BX +f 的形式,建立雅可比方法的迭代格式:X k +1=BX (k )+f ,其中,B 称为迭代矩阵.其计算精度可控,特别适用于求解系数为大型稀疏矩阵(sparse matrices)的方程组. 2 问题: (a) 如何建立迭代格式? (b) 向量序列{X k }是否收敛以及收敛条件? 3 例题分析: 考虑解方程组??? ??=+--=-+-=--2.453.82102 .72103 21321321x x x x x x x x x (1) 其准确解为X *={1, 1.2, 1.3}. 建立与式(1)相等价的形式: ??? ??++=++=++=84.02.01.083.02.01.072 .02.01.02 13312321x x x x x x x x x (2) 据此建立迭代公式: ?????++=++=++=+++84 .02.01.083.02.01.072.02.01.0)(2)(1)1(3 )(3 )(1)1(23)(2)1(1k k k k k k k k k x x x x x x x x x (3) 取迭代初值0) 0(3 )0(2)0(1===x x x ,迭代结果如下表. JocabiMethodP31.cpp

线性方程组的迭代解法及收敛分析

河南科技学院 2015届本科毕业论文 论文题目:线性方程组的三种迭代解法 及收敛分析 学生姓名:韦成州 所在院系:数学科学学院 所学专业:信息与计算科学 导师姓名:李巧萍 完成时间:2015年5月20日

线性方程组的三种迭代解法及收敛分析 摘要 对于线性方程组的迭代解法,本文重点讨论雅可比迭代法,高斯塞德尔迭代法和超松弛迭代法三种迭代解法。主要讨论内容有:首先,写出三种迭代解法的基本思想,基本算法及收敛条件;其次,针对这三种迭代解法进行举例分析,通过MATLAB程序,求得三种迭代法各自的迭代次数、每次迭代的结果及误差;最后,在满足设定精度的情况下,对每个迭代方法所用的迭代次数进行通过分析比较,得出了在选择适当的松弛因子后,三种迭代法的收敛速度:超松弛迭代法>高斯塞德尔迭代法>雅可比迭代法,对于方程组Ax b ,迭代法的收敛性只与系数矩阵A有关,而与右端项b无关。同时,本文又对算法设计,收敛速度的判定等问题提出了改进意见。 关键词:MATLAB,数学模型,迭代解法,收敛,线性方程组

Three kinds of solutions of systems of linear equations iterative method and convergence analysis Abstract For iterative solution of linear equations, this article focuses on the Jacobi iteration method, gauss seidel iteration method and overrelaxation iteration method of three kinds of iterative method.Main discussion: first of all, write down three iterative method, the basic idea of the basic algorithm and convergence condition;Secondly, in view of the three kinds of iterative solution methods for analysis, through the MATLAB program, get three iterative method respective number of iterations, the results of each iteration and error;Finally, in the case of meet the setting precision, for each iteration method to carry through analysis and comparison, the number of iterations used in selecting the appropriate relaxation factor is obtained, the convergence rate of the three types of iterative method: overrelaxation iteration method, gauss seidel iteration method, Jacobi iteration method for the system of equations, the convergence of iterative method is only related to the coefficient matrix, and has nothing to do with the right items.And at the same time, this paper, the algorithm design, and the convergence rate of decision problems, such as improvement opinions are put forward. Keywords:MATLAB, Mathematical model, Iterative method, Convergence System of linear equations

实验八、解线性方程组的迭代法

实验八、解线性方程组的迭代法 解线性方程组的迭代法是用某种极限过程去逐步逼近线性方程组精确解的方法,即是从一个初始向量)0(x 出发,按照一定的迭代格式产生一个向量序列}{)(k x ,使其收敛到方程组b Ax =的解。迭代法的优点是所需计算机存储单元少,程序设计简单,原始系数矩阵在计算过程中始终不变等。但迭代法存在收敛性及收敛速度问题。迭代法是解大型稀疏矩阵方程组的重要方法。 一、实验目的 1、熟悉迭代法的有关理论和方法; 2、会编制雅可比迭代法、高斯-塞德尔迭代法的程序; 3、注意所用方法的收敛性及其收敛速度问题。 二、实验任务 1、用雅可比迭代法解方程组 ?????=++=++=-+5222722321 321321x x x x x x x x x . 注意:若用高斯-塞德尔迭代法则发散。 解:输入主程序: function X=jacdd(A,b,X0,P,wucha,max1) [n m]=size(A); for j=1:m %a(j)=sum(abs(A(:,j)))-2*(abs(A(j,j))); %end %for i=1:n %if a(i)>=0 %disp('请注意:系数矩阵A 不是严格对角占优的,此雅可比迭代不一定收敛') %return %end %end %if a(i)<0 disp('请注意:系数矩阵A 是严格对角占优的,此方程组有唯一解,且雅可比迭代收敛 ') %end for k=1:max1 k for j=1:m X(j)=(b(j)-A(j,[1:j-1,j+1:m])*X0([1:j-1,j+1:m]))/A(j,j);

第6章 线性方程组迭代解法

第6章 线性方程组迭代解法 一、选择题(四个选项中仅有一项符合题目要求,每小题3分,共计15分) 1、设Ax b =的系数矩阵122111221A ?????=?????????? ,若用雅可比法和高斯-赛德尔法求解,则下列说法正确的是( ) (1)两者都收敛;(2)两者都发散;(3)前者收敛,后者发散;(4)前者发散,后者收敛。 2、用一般迭代法(1)()k k x Bx g +=+求解方程组Ax b =的解,则当( )时,迭代收敛。 (1)方程组系数矩阵A 对称正定;(2)方程组系数矩阵A 严格对角占优; (3)迭代矩阵B 严格对角占优;(4)迭代矩阵B 的谱半径()1B ρ<。 3、设求解方程组Ax b =的迭代格式为(1)()811717071088k k x x +????????=+???????????? ,其系数矩阵为711160107A ???????=??????????,迭代矩阵为811170108B ????=?????? ,则下列说法正确的是( )。 (1)方程组系数矩阵A 严格对角占优,故此迭代收敛于方程组的解; (2)迭代矩阵B 严格对角占优,故此迭代收敛于方程组的解; (3)1101B B ∞==>,故此迭代发散; (4)迭代矩阵B 的谱半径()1B ρ>,故此迭代发散。 4、若线性代数方程组Ax b =的系数矩阵A 为严格对角占优阵,若用雅可比法和高斯-赛德尔法求解,则下列说法正确的是( ) (1)两者都收敛;(2)两者都发散;(3)前者收敛,后者发散;(4)前者发散,后者收敛。 5、若线性代数方程组Ax b =的系数矩阵A 为对称正定矩阵, 则下列说法正确的是( ) (1)雅可比法收敛;(2)高斯-赛德尔法收敛;(3)雅可比法和高斯-赛德尔法均收敛; (4)SOR 迭代法收敛。 二、填空题(每小题3分,共计15 分) 1、设10102a A ????=???? ,要使lim 0k k A →∞=,a 应满足的条件是________ __。

相关主题