搜档网
当前位置:搜档网 › 二氧化钛

二氧化钛

二氧化钛
二氧化钛

二氧化钛简介

管制信息

该品不受管制。

名称

中文名称:二氧化钛

中文别名:二氧化钛,钛酐,氧化钛(IV)

英文别名:Titanium(IV) oxide,Titanium dioxide,Titanic anhydride,Titunic acid anhydride,Titania,Titanic acid anhydride,Titania,Unitane,Pigment white 6,C.I. 77891

化学式

TiO2

相对分子质量

79.88

性状

白色无定形氢粉末。溶于氟酸和热浓硫酸,不溶于水、盐酸、硝酸和稀硫酸。与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。相对密度约4.0。熔点1855℃。储存

密封保存。

用途

制备一定浓度的钛化合物标准、颜料、陶瓷工业、聚乙烯着色剂、研磨剂、电容介质、高纯钛盐制备、耐高温合金、耐高温海绵钛制造。

具体介绍

白色固体或粉末状的两性氧化物。又称钛白。化学式TiO2,分子量79.9,熔点1830~1850℃,沸点2500~3000℃。自然界存在的二氧化钛有三种变体:金红石为四方晶体;锐钛矿为四方晶体;板钛矿为正交晶体。二氧化钛在水中的溶解度很小,只溶于氢氟酸和热浓硫酸。二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。二氧化钛性质稳定,

大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑;它又具有锌白一样的持久性。二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。

钛的氧化物——二氧化钛,是雪白的粉末,是最好的白色颜料,俗称钛白。以前,人们开采钛矿,主要目的便是为了获得二氧化钛。钛白的粘附力强,不易起化学变化,永远是雪白的。特别可贵的是钛白无毒。它的熔点很高,被用来制造耐火玻璃,釉料,珐琅、陶土、耐高温的实验器皿等。

二氧化钛是世界上最白的东西,l克二氧化钛可以把450多平方厘米的面积涂得雪白。它比常用的白颜料一—锌钡白还要白5倍,因此是调制白油漆的最好颜料。世界上用作颜料的二氧化钛,一年多到几十万吨。二氧化钛可以加在纸里,使纸变白并且不透明,效果比其他物质大10倍,因此,钞票纸和美术品用纸就要加二氧化钛。此外,为了使塑料的颜色变浅,使人造丝光泽柔和,有时也要添加二氧化钛。在橡胶工业上,二氧化钛还被用作为白色橡胶的填料。是目前主要的光催化剂,在工业生产中,有着很重要的作用。

结晶特征及物理常数

物性金红石型锐钛型

结晶系四方晶系四方晶系相对密度3.9~4.2

3.8~

4.1

折射率2.76 2.55

莫氏硬度6-7 5.5-6

电容率114 31

熔点1858 高温时转变为金红石型

晶格常数A轴0.458,c轴0.795 A轴0.378,c轴0.949

线膨胀系数25℃/℃

a轴7.19X10-6 2.88?10-6

c轴9.94X10-6 6.44?10-6

热导率1.809?10-3

吸油度16~48 18~30

着色强度1650~1900 1200~1300

颗粒大小0.2~0.3 0.3

功函数5.58eV

级别性能

分级

Ⅰ类:二氧化钛干磨和未处理,Ⅰ类二氧化钛具有低表面积和低吸油值。

Ⅱ类:为Ⅰ类二氧化钛经过处理,并进行湿法研磨,去除大颗粒,并用4%量的硅-铝包覆,它具有最低表面积和最低吸油值。

Ⅲ类:为典型的超细包覆级,并有有机包覆。

Ⅳ类:大包覆量,又可分为Ⅳa和Ⅳb,其包覆量在5~10%之间。Ⅳb主要应用添加量高的

性能

金红石型在高能(较短波长)吸收辐射能较锐钛型大,换句话说,对于金红石型钛白粉,在具有很强杀伤力的UV-波长段内(350-400nm),它对紫外线的反射率要远远低于锐钛型钛白粉,在这种情况下,它对周围的成膜物、树脂等身上所要分担的紫外光线就要多得多,那么这些有机物的使用寿命就长,这就是说,为什么通常所说的金红石型钛白粉的耐候性要比锐钛型好之原因所在物理性质

相对密度

在常用的白色颜料中,二氧化钛的相对密度最小,同等质量的白色颜料中,二氧化钛的

熔点和沸点

由于锐钛型和板钛型二氧化钛在高温下都会转变成金红石型,因此板钛型和锐钛型二氧

化钛的熔点和沸点实际上是不存在的。只有金红石型二氧化钛有熔点和沸点,金红石型二氧化钛的熔点为1850℃、空气中的熔点(1830土15)℃、富氧中的熔点1879℃,熔点与二氧化钛的纯度有关。金红石型二氧化钛的沸点为(3200±300)K,在此高温下二氧化钛稍有挥发性。

介电常数

由于二氧化钛的介电常数较高,因此具有优良的电学性能。在测定二氧化钛的某些物理性质时,要考虑二氧化钛晶体的结晶方向。例如,金红石型的介电常数,随晶体的方向不同而不同,当与C轴相平行时,测得的介电常数为180,与此轴呈直角时为90,其粉末平均值为114。锐钛型二氧化钛的介电常数比较低只有48。

电导率

二氧化钛具有半导体的性能,它的电导率随温度的上升而迅速增加,而且对缺氧也非常

敏感。例如,金红石型二氧化钛在20℃时还是电绝缘体,但加热到420℃时,它的电导率增加了107倍。稍微减少氧含量,对它的电导率会有特殊的影响,按化学组成的二氧化钛(TiO2)电导率<10-10s/cm,而TiO1.9995的电导率只有

10-1s/cm。

金红石型二氧化钛的介电常数和半导体性质对电子工业非常重要,该工业领域利用上述特性,生产陶瓷电容器等电子元器件。

硬度

按莫氏硬度10分制标度,金红石型二氧化钛为6~6.5,锐钛型二氧化钛为5.5~6.0,因此在化纤消光中为避免磨损喷丝孔而采用锐钛型。

吸湿性

二氧化钛虽有亲水性,但吸湿性不太强,金红石型较锐钛型为小。

二氧化钛的吸湿性与其表面积的大小有一定关系,表面积大,吸湿性高。

二氧化钛的吸湿性也与表面处理及性质有关。

热稳定性

二氧化钛属于热稳定性好的物质

CAS 编号:13463-67-7

一般用量为0.01%~0.12%。

食品应用研究

金红石型二氧化钛代替目前允许使用的锐钛型二氧化钛的安全性。

二氧化钛(俗称钛白粉)是一种允许使用的食用色素,

JECFA中没有规定ADI值。得出此项结论的依据是在大量的物种研究包括对人类的研究中,并没有发现二氧化钛被大量的吸收和组织的存积。在欧盟,二氧化钛(俗称钛白粉)作为允许的食用色素被列入欧共体94/36/条例的附录I中。生产出的二氧化钛有两种晶型结构——锐钛矿型和金红石型。在94/36/条例中规定二氧化钛仅允许使用锐钛型。而JECFA规定允许使用两种形式。

金红石型和锐钛矿型两种晶型的二氧化钛(俗称钛白粉)具有相近的化学性质,但它们的晶型结构及光反射度是不同的。这两种形式的生物利用率本质上是相同的,近而毒理学数据适用于任何一种形式。这种型式的二氧化钛可能会代替锐钛矿二氧化钛应用于目前的各个使用领域。

毒理数据

介绍

二氧化钛的安全性包括吸收,分布,新陈代谢,排泄以及急性短期和长期的毒性。

―二氧化钛为难溶化合物。对包括人在内的几个物种进行研究,显示摄取二氧化钛后既没有大量的吸收也没有组织的沉积。关于可溶性钛化合物的研究至今还没有结论。有价值的记载论述吸收少量的钛离子没有毒性影响。这样就没有必要规定人类每日摄取量。‖

在鼠类中进行研究新生物利用率,评论提议者对不同级别的二氧化钛吸收、分布和排泄进行描述。

1.rutile titanium dioxide (thick platelet),金红石二氧化钛(厚片)

2.rutile titanium dioxide (thin platelet) 金红石二氧化钛(薄片)

3.rutile titanium dioxide (amorphous) 金红石二氧化钛(不定形)

4.anatase titanium dioxide (amorphous).锐钛矿二氧化钛(不定形)

在服用含有片状金红石二氧化钛、不定形金红石和锐钛矿二氧化钛之后,雄性和雌性鼠的吸收速度和排泄过程以及钛分布。三个动物群每个性别每个时间点接受或者指定食物或者含有二氧化钛四种类型之一的食物。四种形式的二氧化钛放入食物中,表明的浓度为200 mg/kg(大约近似于体重每公斤30毫克)。当指定的食物代替了治疗的食物之后,这些食物又连续喂给鼠类7天,当停止服用治疗性食物后,二氧化钛在组织(肝脏、肾、肌肉和血液)和尿以及面部收集超过72小时的容量诱导一对血浆原子发射光谱(ICP-AES) 而导致动物群分别在1小时、24小时和72小时死去。

二氧化钛主要的通道是经过面部。所有二氧化钛涉及的组群排泄的排泄物每个收集间隔(0 - 24,24 - 48,48 – 72小时)是相同的。雄性鼠服用范围为1.1-2.2mg,雌性鼠服用范围为1.1-1.3mg,当停止服用二氧化钛食物后,计算72小时内面部钛排泄的总量。尿排泄的钛量一般低于极限量(<0.04 mg/l)。所有组的血液中钛浓度也低于0.04 mg/l,而肝脏、肾和肌肉中低于检测极限(<0.1 - <0.2 mg/kg wet weight)或者大多数动物服用含二氧化钛的食物湿

重范围为0.1 - 0.3 mg/kg。这些结果表明当服用含二氧化钛200 mg/kg食物后,在组织中并没有钛的积累,对照早期研究报道:大鼠服用高浓度的二氧化钛(100000 mg/kg diet)至少30天(West and Wyzan 1963),在肌肉中只累积少量钛。

实验室动物进行慢性毒性和致癌性研究

致癌性研究50组每组由不同性别的334只大鼠和小鼠组成,剂量为每kg 食物含

0,25000 and 50000 mg二氧化钛,服用103周(NCI,1979)。增加甲状腺C-细胞的注射发现在雌性大鼠产生腺瘤或者癌,但是这些增加既不是统计的重要部分也不是值得考虑与试验化合物有关的部分。在其他组中进行肿瘤注射,比控制者并没有明显提高。慢性饮食研究0,1,2 and 5%二氧化钛涂在云母上334只大鼠130周没有显示毒性或致癌影响(Bernard et al.,1990)。

评价

既然不同形式的二氧化钛在生物利用率上没有明显的不同,所以应该对比毒性剖面,并且推断不同形式。专家委员会目前采用JECFA对二氧化钛的评价,并指出它得到更多近来慢性毒性和致癌性研究的支持。

结论和建议

二氧化钛金红石和锐钛矿两种形式化学性质接近而晶形结构和折光性不同。专家委员会一致认为新的生物利用率研究显示这两种形式的生物利用率本质相同,所以毒理性数据可以用于任意一种形式。虽然评论显示提议者提供片状金红石二氧化钛的使用,但是金红石二氧化钛的片状或不定形都能在目前任何应用领域代替锐钛矿二氧化钛。金红石二氧化钛片状或不定型的应用不会引起任何安全性的关注。

食用规定

二氧化钛可以作为所有的食品白色素,最大的使用量为1g/kg Sec. 73.575二氧化钛。

性质

1.色素添加剂二氧化钛是从其他物质共存的混合物中分离精制合成得到的。

2.对于着色食品,食用的色素添加剂二氧化钛可以含有适当的稀释剂,作为安全的色素添加剂,如下:二氧化硅,作为分散助剂,含量不超过2%。

规定

二氧化钛应满足以下规定:

铅(以Pb计),不超过10ppm。

砷(以As计),不超过1ppm。

锑(以Sb计),不超过2ppm。

汞(以Hg计),不超过1ppm。

800℃灼烧失重(105℃烘干3小时)不超过0.5%。

水溶性物质不超过0.3%。

酸溶性物质不超过0.5%。

(105℃烘干3小时)二氧化钛含量不少于99.0%

10g二氧化钛在50ml0.5N盐酸中煮沸15分钟,从溶液中可以得到铅、砷和锑。

使用和限量

色素添加剂二氧化钛可以安全用于一般着色食品中,服从下列规定:

(1) 二氧化钛的数量不超过食物重量的1%。

(2) 按照法令的401条所公布的特殊标准,不得使用的着色食品,除非有类似的标准允许添加色素。

标签。色素添加剂和任何单独混合物或者某部分为了着色都应该按照本章70.25的要求。免除证明:为了维护公众的健康而对这种色素进行证明是不必要的,此法令的721部分其中有一批免除了证明。

不危害健康

一种安全无毒的食品添加剂——二氧化钛(钛白粉)国际上食品卫生及食品添加剂等主管组织(JECFA)、(CAC)、(FDA)、(EFSA)在食品添加剂使用法规中规定二氧化钛可以广泛用于食品,包括面粉和面制品中,对二氧化钛在食品中使用的ADI值没有做任何限制。这充分说明了二氧化钛是一种对人体没有毒性的、十分安全的食品添加剂。

二氧化钛是一种十分安全的食品添加剂(GRAS)。

二氧化钛是一种无毒无害的物质,是被世界许多国家广泛使用的食品添加剂,关于二氧化钛已有明确结论。二氧化钛是一种没有任何毒性,不会在人体蓄积,不会对人体产生危害的惰性物质。

二氧化钛在油炸制品、膨化食品等食品中的最大添加量,说明二氧化钛是一种十分安全可的食用添加剂。

二氧化钛在面包、面条、馒头等改良剂中作为稀释剂使用,其目的是为了使面包、面条、馒头改良剂所使用的酶制剂(如真菌α-淀粉酶、面条褐变抑制酶等)能够均匀地加入面粉中,提高产品的分散性,可以替代中国已经允许在面粉中使用的稀释剂碳酸钙(石灰石)、硫酸钙(石膏)等。二氧化钛一般在改良剂中的使用量在30%左右。二氧化钛的使用不仅使面粉具有很好的流散性,同时还具有很好的安全性。这样的改良剂添加到面粉中二氧化钛的含量一般不超过1/万,远远低于国家规定(GB2760-1996规定的二氧化钛在油炸制品、膨化食品等食品中的最大添加量为1%)。

根据以上规定及实践足以说明二氧化钛是一种安全无毒无害的食品添加剂。

《中国药典》注释

二氧化钛

二氧化钛

拼音名:Eryanghuatai

英文名:Titanium Dioxide 书页号:2000年版二部-15

TiO<[2]>78.88

该品按干燥品计算,含TiO<[2]>不得少于98.0%。

性状

该品为白色粉末;无臭,无味。

该品在水、盐酸、硝酸或稀硫酸中不溶。

鉴别

取该品约0.5g,加无水硫酸钠5g与水10ml,混匀,加硫酸10ml,加热煮

沸至澄清,冷却,缓缓加硫酸溶液(25→100)30ml,用水稀释至100ml,摇匀,照下述

方法试验。

(1) 取溶液5ml,加过氧化氢试液数滴,即显橙红色。

(2) 取溶液5ml,加锌粒数颗,放置45分钟后,溶液显紫蓝色。

检查

水中溶解物取该品10.0g ,加硫酸铵0.5g,加水150ml ,加热煮沸5

分钟,冷却,用水稀释至200ml ,摇匀,用双层定量滤纸滤过,精密量取续滤液100ml ,

蒸干,在600℃炽灼至恒重,遗留残渣不得过12.5mg(0.25%)。

酸中溶解物取该品5.0g,加0.5mol/L盐酸溶液100ml ,置水浴上加热30分钟,并

不时搅拌,用三层定量滤纸滤过,滤渣用0.5mol/L盐酸溶液洗净,合并滤液与洗液,蒸干,在600 ℃炽灼至恒重,遗留残渣不得过25mg(0.5%)。

钡盐取含量测定项下的供试品溶液1ml,加稀硫酸1ml,放置后不得发生浑浊或

沉淀。

干燥失重取该品,在105℃干燥3小时,减失重量不得过0.5 %(附录ⅧL)。

炽灼失重取干燥品约2g ,精密称定,在约800℃炽灼至恒重,减失重量不得过

0.5%。

重金属取该品2.0g,加盐酸3ml,振摇1分钟,加水10ml,加热煮沸,滤过,滤

渣用水洗净,合并滤液与洗液,置20ml量瓶中,用水稀释至刻度,摇匀,精密量取10ml 滴加氨试液至对酚酞指示液显中性,再加稀醋酸2ml,用水稀释成25ml,依法检查(附

录ⅧH第一法),含重金属不得过百万分之二十。

砷盐取该品0.25g ,置250ml 锥形瓶中,加水35ml ,硫酸肼0.3g ,溴化钾0.3g

氯化钠13g 与硫酸17ml,装上具有温度计与导气管的的塞子,将导气管的另一端通入盛有水23ml的测砷瓶中,将锥形瓶加热至90~100℃反应15分钟,取下测砷瓶,冷却,加盐酸5ml,依法检查(附录ⅧJ第一法),应符合规定(0.0008%)。

含量测定

取该品约1.0g,精密称定,置铂钳锅中,加碳酸钾2g,混合均匀,在

900℃炽灼30分钟,放冷,用水20ml和盐酸30ml的混合液分次将残渣移入100ml 量瓶中

置水浴上加热至溶液澄清,放冷,用水稀释至刻度,摇匀,精密量取10ml,加水200ml

与浓过氧化氢溶液4ml,混匀,精密加入乙二胺四醋酸二钠滴定液(0.05mol/L)50ml ,放置5.分钟,加甲基红指示液1滴,用20%氢氧化钠溶液中和,加乌洛托品5g,溶解后,加0.1 %二甲酚橙溶液1ml,用锌滴定液(0.05mol/L) 滴定至溶液自橙色变黄色最后转为橙红色,即得,每1ml的乙二胺四醋酸二钠液(0.05mol/L) 相当于3.995mg 的TiO<[2]>。

类别

赋形剂。

贮藏

密闭,在干燥处保存。

二氧化钛及其应用

编辑本段

编辑本段应用特性 纳米TiO2的功能及用途 纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中。 2.1.杀菌功能 在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米TiO2能净化空气,具有除臭功能。 1)纳米二氧化钛抗菌特点: 1 对人体安全无毒,对皮肤无刺激性。 2 抗菌能力强,抗菌范围广。 3 无臭味、怪味,气味小。 4耐水洗,储存期长。 5热稳定性好,高温下不变色,不分解,不挥发,不变质。

6即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h。 7纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂。 8具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。 2)纳米二氧化钛的抗菌原理: 纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满 TiO2的价带和一个空的导带 ,在水和空气的体系中 , 纳米二氧化钛在阳光尤其是在紫外线的照射下 ,当电 子能量达到或超过其带隙能时 ,电子就可从价带激发到导带 ,同时在价带产生相应的空穴 ,即生成电子、空穴对 ,在电场的作用下 ,电子与空穴发生分离 ,迁移到粒子表面的不同位置 ,发生一系列反应 : TiO2 + hν e —— + h H2O + h——·OH+ H O2 +e——O2 · O2 ·+ H——HO2· 2HO2· —— O2 + H2O2 H2O2 +O2 · ——·OH+OH +O2 吸附溶解在 TiO2 表面的氧俘获电子形成O2 ·, 生成的超氧化物阴离子自由基与多数有机物反应(氧化) ,同时能与细菌内的有机物反应 ,生成CO2和 H2O;而空穴则将吸附在 TiO2 表面的 OH 和H2O氧化成·OH,·OH 有很强的氧化能力 ,攻击有机物的不饱和键或抽取 H原子产生新自由基 ,激发链式反应 ,最终致使细菌分解。 TiO2 的杀菌作用在于它的量子尺寸效应 ,虽然钛白粉(普通 TiO2)也有光催化作用 ,也能够产生电子、空穴对 ,但其到达材料表面的时间在微秒级以上 ,极易发生复合 ,很难发挥抗菌效果,而达到纳米级分散程度的TiO2 ,受光激发的电子、空穴从体内迁移到表面 ,只需纳秒、皮秒、甚至飞秒的时间 ,光生电子与空穴的复合则在纳秒量级 ,能很快迁移到表面 ,攻击细菌有机体 ,起到相应的抗菌作用。 惠尔牌纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验表明,惠尔牌纳米二氧化钛对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。 3)国内外对纳米二氧化钛抗菌性的研究及应用实例 1 农田抗菌剂:日本开发了一种新型无菌杀菌剂。其主要成分为纳米二氧化硅、纳米二氧化钛和银、铜等离子,可用于土壤中,对所有的细菌都有很强的抗菌性。改杀菌剂是陶瓷类微量混合金属离子,并在含有相同离子的催化剂作用下,具有使土壤中的氧活化之功能,该功能能持续时间长达2-5年。

钛白粉的制备

钛白粉生产工艺 介绍钛白粉的生产工艺 钛白粉生产工艺钛白粉生产工艺 6.3.1 6.3.1 硫酸法钛白生产的工艺流程简述硫酸法生产钛白是成熟的生产方法,使用的原料为钛铁矿或钛渣。下面主要叙述以钛精矿为原料的生产方法。 A、工艺流程硫酸法生产钛白主要由下列几个工序组成:原矿准备;用硫酸分解精矿制取硫酸钛溶液;溶液净化除铁;由硫酸钛溶液水解析出偏钛酸;偏钛酸煅烧制得二氧化钛以及后处理工序等。 B、工艺流程简述(1)原矿准备按照酸解的工艺要求,用雷蒙磨磨矿,将钛精矿粉碎至一定的粒度。(2)硫酸钛溶液的制备钛液的制备实际上包括钛精矿的酸分解,固相物的浸取,还原等工艺步骤。酸分解作业是在耐酸瓷砖的酸解罐中进行的。将浓度为 92-94%的浓硫酸装入酸解罐中并通入压缩空气,在搅拌的情况下加入磨细的钛精矿。精矿与硫酸的混合物用蒸气加热以诱酸解主反应的进行,主反应结束后,让生成的固相物在酸解罐中熟化,使钛精矿进一步分解,分解后所得固相物基本上是由钛铁硫酸盐和一定数量的硫酸组成。固相物冷却到一定温度后,用水浸出,并用压缩空气搅拌,浸出完全以后,浸出溶液用铁屑还原,将溶液的硫酸高铁还原成硫酸亚铁。(3)钛液的净化钛液净化包括沉降、结晶、分离、过滤等工序。沉降是借助于重力作用,向钛液中加入沉降剂(主要絮凝剂是改性聚丙烯酰胺),除去钛液中的不溶性杂质和胶体颗粒,使钛液初步净化。冷冻结晶在冷冻锅中进行,主要利用硫酸亚铁的溶解度随着钛液温度降低而降低的性质。用冷冻盐水带走钛液热量,使其降至适当的温度,从而使大量的硫酸亚铁结晶析出。分离、过滤是由锥蓝离心机分离,抽滤及板框压滤三个工序构成。冷冻后的钛液经锥蓝离心机分离及抽滤池抽滤,得到初步净化的稀钛液,最后将稀钛液通过板框压滤,得到符合生产需要的清钛液。(4)钛液浓缩钛液浓缩采用连续式薄膜蒸发器,在减压真空的条件下蒸发掉钛液中的水份,以符合水解工序的需要。(5)水解水合二氧化钛是由钛的硫酸盐溶液热水解而生成的。为了促进热水解反应,并使得到的水合二氧化钛符合要求,一般采用引入晶种或自生晶种的方法。 1 (6)水洗及漂洗由于水解反应是在较高的酸度下进行的,因此大部分杂质磷酸盐仍以溶解状态留在母液中。水洗的任务是将水合二氧化钛与母液分离,再用水洗涤以除尽偏钛酸中所含可溶性杂质。经过水洗而仍

锐钛型二氧化钛与金红石型二氧化钛的区分

1、(锐钛型二氧化钛与金红石型二氧化钛)的区分 1.1 方法 利用X射线衍射仪得到XRD图谱进行分析 1.2用到的仪器 X射线衍射仪 X射线产生原理: 高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高 1.2.1 X射线管的结构 阴极:又称灯丝(钨丝),通电加热后便能释放出热辐射电子。 阳极:又称靶,通常由纯金属制成(Cr,Fe,Co,Ni,Cu,Mo,Ag, W等),使电子突然减速并发射X射线。阳极需要水强制冷却。 窗口:是X射线射出的通道,维持管内高真空,对X射线吸收 较少,如金属铍、含铍玻璃、薄云母片 X射线管中心焦点

在X射线衍射中,总希望有较小的焦点(提高分辨率)和较强的X射线强度(缩短爆光时间)。 一般采用在与靶面成一定角度的位置接受X射线,这样可以达到焦点缩小,X射线相应增强的目的。 1.2.2 X射线特点

1.2.3理论基础:布拉格方程 1.2.4具体方法 用X射线衍射分析法中的粉末法来分析两种结构。 只有满足Bragg方程,才能产生衍射现象,因此用粉末法对测定的晶体样品,不改变λ,要连续改变θ。: ?用单色的X射线照射多晶体试样,利用晶体的不同取向来改变θ,以满足 Bragg方程。试样要求:粉末,块状晶体。 ?特点:试样容易获得,衍射花样反映晶体的全面信息。

粉末法:由于多晶体由无数取向无规的单晶组成,相当于单晶绕所有取向的轴转动,晶体内某等同晶面族{HKL}的倒易点,形成-相应倒易矢量gHKL为半径的倒易球。一系列的倒易球与反射球相交,其交集是一系列园,则相应的衍射线束分布于以样品为中心、入射方向为轴、上述交线园为底的园锥面上。 1.2.5 两者结构分析 晶胞结构的不同 金红石型二氧化钛及锐钛型二氧化钛结晶类型均为正方结晶,前者为R型,后者为A型。金红石型二氧化钛晶格结构致密,比较稳定,光化学活性小,因而耐久性由于锐钛型二氧化钛。另外,金红石型二氧化钛晶体结构是细长的成对的孪生晶体,每个金红石晶胞含有2个二氧化钛分子,以两个棱相连,这比锐钛型二氧化钛八面体的形式体积更小、结构更密,因而硬度和密度增大,介电常数和导热性增加,所以耐候性好,不易粉化 (a)金红石型 (b)锐钛型 金红石型和锐钛型晶胞中TiO2分子数分别是2和4。晶胞参数分别是:金红石型a:4.593A,c=2.959A;锐钛型a=3.784A,c=9.515^。金红石型二氧化钛比锐钛型二氧化钛稳定而致密,有较高的硬度、密度、介电常数及折射率,其遮

钛白粉的使用

钛白粉的使用 基于钛白粉具有折射率高,消色力强,遮盖力大,耐候性好,分散性强,光泽好,物理与化学性能稳定等许多优异的特性,所以是用量最大,质量最好,应用最广的白色颜料。是电子、化工、轻工和冶金等行业中不可缺少的原料,是一种重要的化工产品,具有广泛的应用前景。 (一)、在涂料上的应用 涂料是由颜料、油料、漆料(树脂)、溶剂和催干剂等组成的粘稠悬浮液,它涂布在物体表面受空气的氧化和溶剂的挥发而形成一层坚韧的涂膜,对物体起到装饰和防护的作用。涂料中的颜料,不但使漆膜呈现不同的色彩,达到美观和装饰外,它还可以增强漆膜的机械强度和附着力,并且能防止紫外线及水分等的穿透,使漆膜本身推迟了老化作用,延长了使用寿命。 颜料中白色颜料用途最广,白色漆和浅色漆都要用到它,所以在造漆中,白色颜料的用量比其他颜料多得多,能用于造漆的白色颜料常为锌白、锌钡白和钛白粉等。由于涂料工业品种的发展,出现合成树脂涂料,其聚合度较大,如加入锌白,则因锌白有碱性,与涂料中的游离脂肪酸作用,而有变稠的倾向;如加入锌钡白,则耐候性差。但采用钛白,就可以改善以上的缺点,因为钛白粉的粒子细小而均匀,光化学稳定性高,遮盖率比锌白、锌钡白大二倍以上,消色力大5~6倍,因此可以大大降低整个漆料中颜料的用量,同时制成的漆颜色好,不易泛黄,并且有耐热性和耐酸、耐硫、耐碱等化学稳定性,特别是金红石型钛白粉,其结构稳定,耐候性比锐钛型好,能耐紫外线的照射,在室外不会粉化等优点,因此适用于高度耐候性的各种高级船舶、桥梁、汽车、建筑等室外涂料。而锐钛型钛白粉一般只用于室内涂料。由此可见,钛白粉已成为涂料生产中必不可少的白色颜料。世界上大约有60%以上的钛白粉用于各种涂料的生产。 (二)、在塑料上的应用 塑料是树脂、增塑剂、填料和着色剂的混和物,它具有质轻、耐腐蚀、耐摩擦、机械性能高、电绝缘性好、易于加工、美观等特点,可以作结构材料、绝缘材料和耐腐蚀材料,在国民经济各部门、军事工业和尖端科学技术中得到广泛的应用。 为了使塑料具有美观的色彩,常在塑料中加入一定量的色料。对色料的要求是在加工过程中易于着色和分散,并与塑料中的其他成分不起化学反应。由于钛白粉的白度高,消色力大,具有良好的不透明度和化学稳定性,用钛白粉代替立德粉,白色颜料的用量可降低2~3倍所以制造白色或彩色塑料的必需的着色填充剂,是最优良的白色颜料。当它和其他颜料配合使用,能形成美丽鲜艳的色彩,由于玩具和食品用具是无毒的。 (三)、在油墨上的应用 油墨是由色料、填料、助剂和展色剂等所组成的一种粘性流体。目前印刷报纸、书籍、画片和印铁、印金属、印瓷、印橡胶、印塑料和印无线电半导体的电路板都离不开油墨。由于钛白粉具有遮盖力大、消色力高、颗粒细、耐稀酸稀碱、耐光、耐热、不易泛黄、憎水性好、流动性小、不溶于展色剂且能均匀分散在展色剂中,所以是高级白色油墨和浅色油墨不可缺

二氧化钛后处理及设备

二氧化钛后处理及设备 (一)二氧化钛的制浆、分散、湿磨和分级 氯化法氧化工序的半成品粒度已经很细,不需要进行前粉碎。硫酸法经回转窑煅烧后的产品首先要经过磨细才能充分发挥湿磨机的作用。国内几家大的硫酸法钛白粉厂前粉碎基本上都是采用雷蒙磨来实现的(见表1)。 表1 雷蒙磨的具体设备情况 公司名称型号来源 核工业部华原公司雷蒙磨R5M 从德国进口 攀渝钛业雷蒙磨R5M — 裕兴钛白粉厂雷蒙磨R5M — 河南漯河4R、5R雷蒙磨国产 国产的雷蒙磨在质量和使用寿命上远远赶不上进口雷蒙磨,其使用10年以上仍然完好。配备有自动控制的DCS控制系统,以提高研磨效率。 磨细的物料通常由螺旋计量器加到制浆罐中。制浆用脱盐水作稀释剂,进行充分搅拌,固相浓度(质量)25%-30%。制浆的同时加人分散剂,调整pH值至9-12可达到最佳分散效果。此时要求体积电阻率不低于20000Ω·cm,若有可能可用黏度计检测,到黏度最低时为最好,以便湿磨效果充分发挥。 分散剂的种类很多,通常分为有机分散剂、无机分散剂。 有机分散剂主要是烷醇胺类和多元醇(即常用的有三乙醇胺)、二异丙醇胺、山梨糖醇、甘露糖醇等;无机分散剂主要是六偏磷酸钠、焦磷酸钠、碳酸钠、碳酸二氢铵、偏硅酸钠等。通常使用六偏磷酸钠和偏硅酸钠最多。六偏磷酸钠对微细分散体中的固体粒子有很强的分散作用,因为它是一种直链的多磷酸盐玻璃体,其中n为20-100能与分散介质中钙、镁、亚铁等金属离子生成可溶性的配位化合物,起到遮蔽多价阳离子,防止这些带正电荷的离子与带负电荷的二氧化钛产生电中和而凝聚在一起,其分子结构式如下。 氯化法钛白浆料pH值为2. 3左右,呈酸性。大多数工厂都采用偏硅酸钠作分散剂调整pH值达到9-11,以达到最佳分散效果。作分散剂的偏硅酸钠又是包硅膜的一部分,在定量加人后,尚未达到最佳pH值时,可以加人离子膜碱液协助调整pH值到达终点。 近几年,国内金红石型钛白粉产品的产量和产能扩大,进入市场后的信息反馈使生产厂家逐渐认识到,分散单元在后处理中是非常重要的工序,分散的好坏直接影响到湿磨后浆料分级的效果,特别是影响包膜的质量。分散不好,再好的包膜配方也不能生产出满足用户要求和使用性能优良的产品,所以分散的作用应该引起人们充分重视。 分散操作要非常重视以下几种影响分散的因素:①前工序产出的二氧化钛粒度和形态;②制浆的水质要好,选用去离子水,体积电阻率不低于20000Ω·cm;③浆液的pH值是控制分散好坏的重要条件,根据后处理的情况,可以通过小型试验确定最佳pH值(通常为9-11);④分散剂的选择和用量,也可以通过工业实践确认,通常用量不超过粉料量的1%;⑤浆液的浓度要合适,通常浆液中固体物料为600-1200g/L;⑥分散罐的力学性能如机械搅拌的强度等。 湿磨是后处理中一道重要的工序,不仅硫酸法需要,氯化法也同样需要,国外大型氯化法工厂湿磨的环节往往是一点不能忽视的。湿磨与水选法比较,为获得粒度细而均匀的浆料,在相同的条件下湿磨生产能力是水选法的1. 5-2. 0倍。 湿磨的作用就是进一步磨碎在上道工序产生的聚集粒子、附聚粒子和絮凝粒子。因其粒子间的结合力非常弱,很容易通过机械研磨的方式把它们打开,在分散剂的作用下,可防止它们再聚凝在一块。这样可使一些较粗大的粒子经研磨达到具有应用性能的粒度范围(一)。 湿磨设备主要包括球磨机、振动磨、砂磨机。由于前道工序的进步,金红石型产品的湿磨设备主要选用砂磨机。它是用途较广泛的亚微米级的湿磨设备,就研磨细度而论仅次于胶体磨。

二氧化钛制造过程

·二氧化钛制造过程【工艺流程】二氧化钛的制造过程二氧化钛颜料的制造有两种生产工艺:硫酸法和氯化法。R型二氧化钛和A型二氧化钛均可由任一种过程来生产。目前杜邦只使用先进的氯化法工艺来生产。 图19的流程图以简化形式说明生成二氧化钛中间体的两种加工程序。图19的下半部说明最后处理操作,此操作适用于两种制造方法。 硫酸法在1931年商业化,先是生产A型二氢化钛(A—Type),后来(1941年)生产R型二氧化钛(R—Type),在这种方法中,含钛的矿砂溶于硫酸中,产生钛的溶液及铁和其他金属的硫酸盐。然后经过一连串的步骤,包括化学还原、纯化、沉淀、洗涤、燃烧。最后产生颜料大小的二氧化钛中间体。A型二氧化钛和R型二氧化钛硅晶体结构是由核晶过程和燃烧过程控制的 FeTiO3十2H2SO4 TiOSO4十FeSO4十2H2O TiOSO4十H2O TiO2十H2SO4 氯化法大约是在1950年由杜邦公司商业化的,只用于生产R型二氧化钛。自从1975年以来,亦已用于生产A型二氧化钛了。这个方法包括两个高温无水蒸汽相反应。钛矿和氯气在还原条件下发生反应,生成四氯化钛和金属氯化物杂质,杂质随后清除。 然后,将高纯度的四氯化钛征高温下氧化,生成非常光亮的二氧化钛中间体。利用氯化法中的氧化阶段能够严格控制粒子的大小和晶体类型,能生产有高覆盖能力和着色强度的二氧化钛。 2FeTiO3十7Cl2十3C 2TiCl4十2FeCl3十3CO2 TiCl4十O2 TiO2十2Cl2 在硫酸法和氯化法两种方法中,中间产品都是颜料粒子的成簇二氧化钛晶体,这种成簇品粒必须加以分离(研磨)以得到最佳光学性能。根据最后用途的要求,采用各种湿加工方法来改良二氧化钛,包括硅、铝或锌的水合氧化物征颜料粒子表面上沉淀,可以使用个别的水合氧化物处理法或不同处理法的组合,以获得特殊用途上的最佳性能。 制造二氧化钛颜料的重要问题足钛矿的供应,虽然钛的蕴藏量列在前十名元素之中,但它在自然界中却以低浓度广泛地分布,需要提高采矿和矿物加工操作的效率,以满足制造二氧化钛的经济要求。杜邦公司的业务范围是世界性的,可保证对自己几个生产工厂有源源不断供应含钛浓缩矿物。

颜料级钛白粉在涂料中的作用

颜料级钛白粉在涂料中的作用 涂料是由基料、颜料、填料、溶剂和助剂等组成的黏稠悬浮液。将其涂布在物体表面形成一层坚韧的涂膜,对物体起到装饰和防护的作用。 涂料中的颜料具有一定的遮盖力,它不仅能遮住被涂物面原来的色彩,还能赋于涂膜鲜艳的色彩,达到美观和装饰的作用。同时颜料与固着剂紧密结合,融成一体,能增强涂膜的机械强度和附着力,防止裂纹,并且能增加涂膜厚度,防止紫外线及水分等的穿透,提高涂膜耐老化性能,延长使用寿命。 不论溶剂型还是水性涂料,若使用了钛白粉,其作用不仅仅是遮盖和装饰,更重要的作用是改善涂料的物化性能,增强化学稳定性,以至提高遮盖力、消色力、防腐蚀性、耐光、耐候性,增强漆膜的机械强度和附着力,防止裂纹,防止紫外线和水分的透过,从而推迟老化,延长漆膜寿命。同时还可节省用料和增多品种。 在颜料中,白色颜料用途最广,白色涂料和浅色涂料都要用到它,所以在涂料生产中,白色颜料的用量要比其他颜料多得多。涂料常用的白色颜料有锌白、锌钡白、钛白等。由于有些合成树脂涂料聚合度较大,若加入锌白,则因锌白有碱性,与涂料中的游离脂防酸作用而有变稠的倾向;若加入锌钡白,则耐候性差。但是使用了钛白就可以改善上述缺点。因为钛白粒子细小而均匀,光化学稳定性高,在遮盖力方面,金红石型钛白是锌白的7倍、是锌钡白的5.56倍,锐钛型钛白是锌白的5.57倍、是锌钡白的4.3倍;在消色力方面,金红石型钛白是锌白的8.3倍,是锌钡白的6.25倍,锐钛型钛白是锌白的6.4倍,是锌钡白的4.8倍。在使用效果方面,1t钛白至少相当于4t锌钡白;在使用寿命方面(指室外抗粉化性),用钛白作颜料的涂层比锌钡白作颜料的涂层高3倍。因此,使用钛白可以大大降低整个涂料中颜料的用量,同时制成的涂料色彩鲜艳、不易泛黄、耐光、耐热、耐磨、耐候、耐碱、耐硫、耐稀酸。正是由于钛白具有比锌白、锌钡白更优越的性能,以至成为涂料生产中必不可少的最好的白色颜料。钛白用量占涂料用颜料总量的90%以上,占涂料用白色颜料的95%以上。在涂料原材料成本中占10%~25%。

纳米二氧化钛的应用

纳米二氧化钛的应用 纳米二氧化钛作为一种高效、无毒的光催化剂,在环保领域的应用越来越 受到人们的广泛关注和重视。抗菌材料纳米TiO2以其优异的抗菌性能成为开发研 究的热点之一,以期应用于水处理装置、医疗设备、食品包装、建材(如抗菌地砖、抗菌陶瓷卫生设施、抗菌砂浆、抗菌涂料等)、化妆品、纺织品、日用品以及家用电器等各个领域。1、气体净化环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。TiO2通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。大气污染气体,主要是由汽车尾气与工业废气等带来的氮氧化物和硫氧化合物。利用纳米TiO2的催化作用将这些气体氧化成蒸汽压低的硫酸和硝酸,在降雨过程中除去,从而达到降低大气污染的目的。在居室、办公室窗玻璃、陶瓷等建材表面涂敷TiO2光催化薄膜或在房间内安放TiO2光催化设备,均可有效地降解污染物,净化室内空气。利用纳米TiO2开发出来的一种抗剥离光催化薄板,可利用太阳光有效去除空气中的NOx气体,而且薄板表面生成的HN03可由雨水冲洗掉,保证了催化剂活性的稳定。2、抗菌除臭抗菌是指纳米TiO2在光照下对环境中微生物的抑制或杀灭作用。TiO2光催化剂对绿脓杆菌、大肠杆菌、金黄色葡萄球菌等具有很强的杀能力。当细菌吸附于由纳米二氧化钛涂敷的光催化陶瓷表面时,2被紫外光激发后产生的活性超氧离子自由基(·O2-)和羟基自由基(·OH)能穿透细菌的细胞壁,破坏细胞膜质,进入菌体,阻止成膜物质的传输,阻断其呼吸系统和电子传输系统,从而有效地杀灭细菌,并抑制细菌分解有机物产生臭味物质(如H2S、SO2、硫醇等)。因此,纳米TiO2能净化空气,具有除臭功能。3、处理有机污水工业污水和生活污水中含有大量的有机污染物,尤其是工业污水中含有大量的有毒、有害的有机物质,这些污染物用生物处理技术很难消除。许多学者对水中有机污染物光催化分解进行了系统的研究,结果表明以TiO2为光催化剂,在光照的条件下,可使水中的烃类、卤代物、羧酸等发生氧化还原反应,并逐步降解,最终完全氧化为环境友好的CO2和H2O等无害物质。4、处理无机污水除有机物外,许多无机物在TiO2表面也具有光学活性,例如无机污水中的Cr6+接触到TiO2催化剂表面时,能够捕获表面的光生电子而发生还原反应,使高价有毒的Cr6+降解为毒性较低或无毒的Cr3+,从而起到净化污水的作用;一些重金属离子如Pt4+,Hg2+,Au3+等,在催化剂表面也能够捕获电子而发生还原沉淀反应,可回收污水的无机重金属离子。5、防雾、自清洁功能TiO2薄膜在光照下具有超亲水性和超永久性,因此其具有防雾功能。如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线的水滴,使得后视镜表面保持原有的光亮,提高行车的安全性。阅读会员限时特惠 7大会员特权立即尝鲜 如果把高层建筑的窗玻璃、陶瓷等这些建材表面涂覆一层氧化钛薄膜,利用氧化钛的光催化反应就可以把吸附在氧化钛表面的有机污染物分解为CO2和O2,同剩余的无机物一起可被雨水冲刷干净,从而实现自清洁功能。 6、抗菌塑料 在日常生活中人们是离不开塑料制品的,如卫生间设施、桌面、垃圾箱、厨房用具、家用电器的塑料外壳、食品包装袋等等,由于温度、湿度合适,非常容易滋生感染细菌。因此!,对此类材料进行抗菌处理是极其必要的。 徐瑞芬等【2】 利用纳米TiO2作为无机抗菌剂,研制抗菌广谱长效的功能塑料。结果表明:采用锐钛矿

二氧化钛的制备方法

1.3二氧化钛的制备方法 1.3.1常规二氧化钛制备方法 二氧化钛的工业化生产方法有两种:硫酸法和氯化法。 1)硫酸法 用硫酸酸解含钛矿物,得到硫酸氧钛溶液,经纯化和水解得到偏钛酸沉淀, 再进入转窑焙烧产出二氧化钛颜料产品,是非连续生产工艺,工艺流程复杂,需要20道左右的步骤,排放废弃物较多。晶型转变需更多操作步骤,采用的焚烧工艺需要消耗大量能源[9]。 硫酸法工艺主要包括以下几个步骤: 除杂:FQ6+3H2SCH=Fe2(SO4)3+3H2O, TiO2+2H2SO4=Ti(SO4) 2+2H2O 然后:Fe+F&(SO4)3=3Fe2 SO4 调PH 至5-6,使Ti(SO4)2水解:Ti(SO4)2+3H2O=H2TiO3 J +2H2SO4 过滤沉淀加热得到TiO2:H2TiO3= TQ2+H2O T 2)氯化法 氯化法是以钛铁矿、高钛渣、人造金红石或天然金红石等与氯气反应生成四氯化钛,经精馏提纯,再进行气相氧化;速冷后,经过气固分离得到二氧化钛。由于没有转窑焙烧工艺形成的烧结,其二氧化钛原级粒子易于解聚,所以在产品精制的过程较硫酸法大幅度节省能量[10]0 氯化法工艺主要包括以下几个步骤:先用盐酸除杂:Fe2O3+6HCI=2FeCl3+3H2O 过滤洗涤然后加焦炭和氯气:TiO2 (粗)+C+2Cl2=TiCl4(气)+CO2 冷却、收集TiCl4 (液)小心水解:TiCl4+3H2O =H2TiO3+4HCl 加热提纯得到精制二氧化钛:H2TiO3=TiO2(精)+H2O T 1.3.2微细二氧化钛的制备工艺 粉体的超微细加工通常有物理方法和化学方法两大类。物理加工法是将粗粒子粉碎得到微粉体的方法。虽然目前粉碎技术已有改进,但粉碎过程很容易混入杂质,很难制备1ym以下的超微粒子。化学法是由离子、原子形核,然后再长大,分两步过程制备微粒子的方法,这种方法易得到粒径1ym以下的超微粒子。微细二氧化钛的制备主要包括气相法和液相法。气相法是指直接利用气体或采用激光、电子束照射等方法将原料变为气体或离子体,使之在气体状态下发生化学或物理变化,然后再经冷却、凝结、长大等过程制备微细颗粒的方法,由于气相法生产

钛白粉工艺流程简图

金红石钛白工艺流程简图如下: 钛铁矿钛铁矿粉碎酸解沉降及泥浆处理 亚铁分离结晶 水解一次水洗漂白 表面处理中粉煅烧盐处理 干燥汽流粉碎 工艺流程说明: 1. 钛铁矿粉碎 拆包后的散装钛铁矿由自卸车运至原矿库,经铲车加料至斗式提升机,再经链式输送机送入磨前贮斗。经电子秤称重量后加入磨机,磨后料由循环风机送至分级机进行粗细分选,细度不合格的物料经返料链运机返回磨机重磨。细度合格矿粉随风进入旋风分离矿粉后进入循环风机,一部分热风回到磨前与热风炉供给的热风一起进磨供研磨与干燥,并把磨后物料带出磨机,一部分热风回到磨后作为输送的分级所需风量的补充。多余的含尘气体经布袋收尘器净化后由风机排空。 旋风和布袋收尘器的矿粉由链式输送机集中送入矿粉贮斗转由斗式提升机、链式输送机送至酸解的计量贮斗待用,或送入矿粉的缓冲贮仓贮存。 2.酸解-泥浆处理: 由硫酸装置送来的95%(或91%)硫酸进入本工序设置的硫酸贮槽经计量加入到预混合槽,与来自原矿粉碎工段经计量后的钛精矿在预混合槽经搅拌充分混合,混合均匀后经分配器放入选定的酸解罐中。 用蒸汽加热引发酸解反应。酸解反应使钛铁矿中的大部分金属氧化物与硫酸发生反

应,其中钛以硫酸氧钛的形式作为分解产物。酸解反应为放热反应,反应放出的热量使酸解罐中的物料温度迅速升高至180℃~200℃左右,温度的升高加速了酸解反应的进行。 酸解主反应完成后熟化一定时间,通过仪表计量加水浸取,浸取一段时间调整钛液中的三价钛离子含量及F值。浸取完成后的钛液用泵送到沉降工序。 酸解反应产生的酸解尾气中含有大量的水蒸气及微量的矿粉尘、二氧化硫、三氧化硫、硫酸雾等污染物质。通过管道将酸解尾气引至酸解罐主烟囱中,将水池中的碱性水通过水泵喷射进入酸解罐主烟囱,洗涤除去酸解尾气中的矿粉尘及二氧化硫等污染物质,并将酸解尾气冷却至50℃左右,洗涤后的酸解尾气通过酸解罐烟囱40米高点达标排放。洗涤废水设冷却塔循环使用,并用其中一部分输送酸解泥渣至污水处理场,分离部分未反应矿粉后进入污水处理场同其它酸性废水一并中和处理。 将改性好的絮凝剂加入到絮凝剂溶解槽,加水通过蒸汽加热使絮凝剂溶解,絮凝剂稀释到使用浓度后送入絮凝剂计量槽。 稀释后的絮凝剂按照一定的比例通过比值流量调节方式与酸解后的硫酸钛液一道加入沉降槽。在絮凝剂的絮凝作用下,钛液中未反应的钛矿和其它不溶性的杂质在沉降槽内以泥浆的形式沉降到沉降槽的底部。吸取沉降槽上部澄清合格的清钛液用泵送钛液热过滤工序进一步净化。 沉降槽底部的泥浆待积累到一定位置后用泵送到泥浆处理工序,泥浆在泥浆槽中通过蒸汽间接加热,加热后的泥浆用板框过滤,滤液返回到沉降槽,泥渣用压缩空气吹干,直接送泥渣场堆放。 3.过滤-结晶-分离: 由酸解-沉降工序来的钛液加入助滤剂木屑粉或硅藻土,经混合均匀后泵送至钛液板框进行一次控制过滤,除去钛液中的杂质。除杂后的钛液进入真空结晶系统,亚铁结晶析出。达到放料终温后去圆盘分离机分离硫酸亚铁。亚铁去堆场进行包装,叉车送至亚铁库。滤液进入稀钛液贮槽再泵至以木炭为助滤层的板框压滤机中进行二次精过滤。 4.浓缩-水解 合格的清钛液经泵送入钛液预热器,用蒸汽冷凝水预热后进入薄膜蒸发器,使之浓度提高至200 g/l,然后进入浓钛液贮槽。二次蒸汽同一次控制过滤的钛液换热后进气压式冷凝器,不凝性气体由水环泵排空。

锐钛矿TiO2转变为金红石TiO2机制和性能

锐钛矿TiO2转变为金红石TiO2机制和性能 摘要:TiO2 是多相光催化研究中使用较多的一种材料。其在自然界存有3种不同的晶型:锐钛矿、金红石、板钛矿相。锐钛矿相转变为金红石相的过程是扩散相变。金红石是热力学稳定相, 锐钛矿是亚稳相, 并且从锐钛矿相到金红石相的相变是亚稳相到稳定相的不可逆相变。而煅烧时间与煅烧温度会影响其晶型的转变。在众多影响光催化性能的因素中,晶型是较为重要的一个因素。 关键字:锐钛矿、金红石、TiO2、相变、光催化 光催化降解是一门新型的并正在迅速发展的科学技术。研究表明,在适当的条件下,许多有机物污染物经光催化降解,可生成无毒无味的CO2、H2O及一些简单的无机物。目前,在光催化降解领域所采用的光催化剂多为N型半导体材料, 如TiO2、ZnO、Fe2O3、SnO2、WO3和CdS 等, 其中TiO2以其无毒、价廉、稳定和特殊的光、电性能等优点倍受人们青睐,成为最受重视的一种光催化剂[1]。 1.二氧化钛的结构 近年来, TiO2纳米材料制备、表征及改性一直是光催化研究领域的重点。同一种半导体可能具有不同的晶型,晶型的不同实际上就是组成物质的原子不同的空间构型有序的排布。二氧化钛是白色粉末状多晶型化合物, 自然界有锐钛矿型, 金红石型和板钛型三种晶 型结构, 但板钛型二氧化钛极不稳定且无实用价值[2]。所以目前的研究一般都主要为金红石相及锐钛矿相。TiO2晶体基本结构是钛氧八面体( TiO6)。钛氧八面体连接形式不同而构成锐钛矿相、金红石相和板钛矿相。锐钛矿型和金红石型均属于四方晶系,二者均可用相互连接的Ti06八面体表示,但八面体的畸变程度和连接方式各不不同。板钛矿型属正交晶系,一般难以制备,目前研究很少。如图1所示,金红石型(a)的八面体不规则,微显斜方晶;锐钛矿(b)呈明显的斜方晶畸变,对称性低于前者。从图2[3]中可以看出锐钛矿TiO2的Ti-Ti键长比金红石大,而Ti-O键比金红石小。 TiO2晶体基本结构——钛氧八面体有两种连接方式。如图3所示,分别为共边连接与共顶角连接。从图4[4]中可以看到锐钛矿中每个八面体与周围8个八面体相联(四个共边,四个共顶角)。金红石中的每个八面体与周围10个八面体相联(其中两个共边,八个共顶角)。 图1 金红石、锐钛矿和板钛矿的TiO6八面体结构

选用钛白粉时应考虑的几种特性

选用钛白粉时应考虑的几种特性 作者:王俊忠毅兴行技术部 一,分散性(Dispersion) 由于库存或包装所形成的钛白粉结块(clumps)(聚积物和凝结块),在分散搅拌后形成钛白粉和树脂的均匀混合物。良好的分散性不仅可消除最后产品中之斑点(speaks)和(streaks)之现象,且可保证有最大光散射效率。在选择钛白粉品级和分散过程时,下列三点需特别注意: ?钛白品级的分散性因制造程序而有不同。例如,经无机氧化物表面处理的钛白粉品级通常较末处理的品级易于分散于液体系统中(可塑剂 (plasticizers)、塑化物(plasticized vinyl))。但就另一方面而言,末经表面处 理的品级通常易分散于干拌研磨(dry blending)如聚乙烯、聚苯乙烯或其他模制用树脂的制造程序。 ?钛白粉粒子个体无法打破的。不管加入结块过程中的能量有多大,在打散束缚的结块时,它们只是粒子彼此间的分离。 ?分散(dispersion)这个词常常被含糊其词的使用。例如,有些"分散"问题实际上是配方上稀释不充分的问题,而在塑胶中还留下不可溶的浓斑点。 二,光学性质 在塑胶应用中,钛白粉是较受欢迎的颜料,因其在低颜料含量下,可提供最佳的散射效果。除了光学性质外,其他重要的产品特性,亦可决定钛白粉等到级,以适用于特殊的用途。一些重要的产品特性将在本章予以讨论。 光学性质(Optical) 在选择应用钛白粉时需用考虑适应力,著色强度,底色和色泽(color)等到基本的光学性质。白色颜料的适应力和著色强度显示其对光的散射效率,适应力显示白色颜料使用权塑胶系统不透明的能力,而著色强度则显示白色颜料对有色塑胶系统所提供的白度(whiteness)和亮度(brightness)。因为较容易度量,著色强度最常用来表示白色颜料的光散射效率。为度量相对著色强度,在每公克钛白粉试品中掺入0.008公克碳黑,使用权用这种混合的黑色颜料组群(Master batch)分散塑胶之中,其所产生之灰色塑胶制成均匀,不透明的塑胶片(sheets)或模制碎片(molded chips)。有最大光散射效率的钛白粉试口可提供最浅的灰色和最佳的光反射性。 钛白粉的底色(UNDERTONE)对于著色的色泽具有影响。底色因钛白粉微粒大小而不同,它无法以干革命粉末或白色塑胶的外观来评定之。底色通常被叙

常见的钛白粉的生产工艺流程

常见的钛白粉的生产工艺流程 硫酸法锐钛型钛白粉的工艺简述: 硫酸法生产钛白粉步骤1、钛矿粉碎 将购进的钛矿砂用雷蒙机或者风扫磨等粉碎成符合工艺要求的钛矿粉,并送到储存和计量钛矿粉的料仓。 硫酸法生产钛白粉步骤2、酸解 用浓硫酸分解钛矿,制取可溶性的钛的硫酸盐。钛铁矿的主要成分为偏钛酸铁(FeTiO3),是一种弱酸弱碱盐,可以用强酸把它分解。用过量的酸就能使反应进行到底。由于这个反应是一个放热反应,最高温度可以达到250℃,因此必须采用高沸点的酸--硫酸才能适应这一反应。在酸分解的过程当中,矿粉当中的各种杂质大部分也被分解,生成相应的可溶性硫酸盐,并在浸取的时候与钛的可溶性盐一起进入溶液当中,形成黑钛液。为了除铁,用金属铁把钛液中的高价铁还原成亚铁,同时,为了避免亚铁的再一次氧化,还必须用过量的金属铁把定量的四价钛还原成三价钛。 硫酸法生产钛白粉步骤3、沉降 酸解浸取、还原以后的体系是一个复杂的体系,含有可溶性杂质和不溶性的杂质。铁、钒、铬、锰等金属的硫酸盐为可溶性的杂质,在结晶或水解、水洗的过程中除去。不溶性杂质中的大多数,如未分解的钛矿、沙粒等靠重力的作用可以自然沉降除掉。不溶性杂质中的另一部分是硅和铝的胶体化合物,以及一些早期水解了的钛,虽然数量并不大,但具有很高的动力稳定性,需要另外加沉降剂,强化沉降澄清过程。 硫酸法生产钛白粉步骤4、洗渣 经过净化沉降后的泥渣中还含有大量的可溶性与不可溶性的钛,为保证收率,要通过用板框压滤机压滤的办法回收其中的大部分可以溶解的钛元素,不溶性钛和其他的未溶解杂质作为废渣排掉。 硫酸法生产钛白粉步骤5、结晶 结晶有两种方式:冷冻结晶和真空结晶。FeSO4溶解度受溶液的温度影响很大。因此,在组成一定的钛液中,FeSO4的溶解度随温度的降低而降低,本工序的主要目的就是使钛液的温度降低。 5.1 冷冻结晶是利用制冷介质(液氨或者氟利昂或者溴化锂等)的蒸发带走热量,使冷冻盐水温度降低,通过盘管换热,从而使钛液的温度降低下来,造成FeSO4 处于过饱和状态,过饱和的部分便以含七个结晶水的FeSO4?7H2O的形式结晶析出,同时带出部分结晶水,然后将其分离除去。 5.2 根据溶液绝热蒸发的原理,利用闪蒸的方式使钛液中的水分快速绝热蒸发,吸收钛液的热

污水净化过程中二氧化钛的使用

The Use of Titanium Dioxide in the Process of Water Purification Valentina Smirnova, Olga Nazarenko and Alexander Ilyin Tomsk Polytechnic University, 30 Lenin Ave, Tomsk, 634050, Russia. vv_smirnova@https://www.sodocs.net/doc/4311824238.html, Abstract – This paper relates to the problem of drinking water contaminants from soluble heavy metals. Proposed for sorption purification of water using titanium dioxide, which was synthesized by chemical and electrochemical methods. The synthesized products are nanostructured compounds x-ray amorphous and crystalline titanium dioxide. Adsorbed and crystallization water is removed by heating from sorbent to 110 °C in air. To stabilize the amorphous structure of the sorbent calcined at 600 °C. At the same time formed titanium dioxide, containing two crystalline phases: anatase and rutile. Sorption properties with respect to the soluble ions of Fe+2/Fe+3 and Mn+2 was investigated in static mode, using titanium dioxide powders synthesized in acidic, neutral and alkaline media. Pre-sorbents were subjected to activation by the action of ultrasound (22 kHz, 0.15 W/cm2). The best results were obtained using a titanium dioxide powder, which was synthesized in an alkaline environment. For practical use of sorbent needed to achieve two objectives: to transfer the sorbent powder into pellets with preservation of the active surface, resistant to water and to develop a system of regeneration of used sorbent. In this paper we studied the water resistance of granular titanium dioxide and how it can regenerate after purification. Keywords: water purification, titanium dioxide, ultrasound treatment, cavitation, IR spectroscopy, thermal analysis, the heavy metal impurities I.I NTRODUCTION Initial purification of drinking water is primarily from the use of mechanical methods in which the sorption loading are: quartz sand, charcoal, activated carbon and some of minerals. This gives rise to secondary contamination, related to the leaching them from the sorbent. Water treatment with chemical sorbents is a new promising direction in obtaining large amounts of clean drinking water. In this regard, chemically inert to leaching and promising sorbent is titanium dioxide, which has recently seen an increased interest, as on the surface except for the sorption process is possible and the process of disinfecting water. In addition, titanium dioxide under certain conditions can act as cation and anion both. This versatility in the water treatment increases the interest in the study of the sorbent. At the same time, the properties and characteristics of titanium dioxide, and how it is received not been studied for practical use. One method of modifying the surface of the sorbents is their ultrasonic treatment in various media with the formation of sorption sites in cavitation. When the ultrasonic cavitation bubbles effects occur within which pressure fluctuations (± P) reaches 105 kPa. Under the action of ultrasound is the change of solid surfaces and thereby increases the sorption capacity. The aim of this study was to establish the nature of the functional groups formed under the conditions of cavitation, and their influence on the sorption activity of soluble impurities of iron and manganese cations. II.EXPERIMENTAL METHODS Titanium dioxide was synthesized by hydrolysis of titanium tetrachloride [1, 2], followed drying (110 °C) and calcination in air (600 °C). To determine the nature of the functional groups on the surface of the synthesized titanium dioxide recorded infrared spectra (IR) absorption of the sample in the range 4000 - 400 cm-1 (FT-IR spectrometer, Nicolet 5700 Research and Analytical Center TPU). Recording of samples the spectra were carried out in the form of compressed tablets of potassium bromide. Thermal properties of the synthesized titanium dioxide were investigated by means thermoanalyzer Q 600 STD when heated to 800 °C at 10 °C per minute in the air. The accuracy of temperature measurement was 0.01 °C. Soluble impurities Fe+2 and Mn+2, really present in the drinking water of Tomsk city, were used as objects of study. The content of iron impurities were determined by photometry of the standard method [3]. The method is based on the interaction of iron ions with sulfosalicylic acid in an alkaline medium and the formation of yellow colored complex compound. The color intensity is proportional to the weight concentration of iron was measured at a wavelength of 400 - 430 nm. The content of manganese impurities were analyzed by photometry [4]. The method is based on the oxidation of manganese compounds to MnO4-. Oxidation occurs in the acidic environment of ammonium or potassium persulfate in the presence of silver ions as a catalyst. Thus there is a pink color of the solution, the absorption intensity was measured at the wavelength range 530 - 525 nm. To prepare the model solutions used analytical grade purity chemicals. Solutions for the study was prepared by dissolving geptahydrate iron sulfate (II) and pentahydrate manganese sulfate (II). The accuracy of the experiment provided the construction of calibration function and statistical processing of the data with a probability P = 0.95: for iron - in the range of concentrations from 0.01 to 2.00 mg/l, for manganese – from 0.005 to 0.3 mg/l. For the experiments were prepared model solutions of iron and manganese, 3 and 1 mg/l, respectively, by dissolving accurately weighed portion of salts. Previously, before the sorption experiments, the synthesized 978-1-4673-1773-3/12/$31.00 ?2013 IEEE

相关主题