搜档网
当前位置:搜档网 › Vacuum fluctuations and Casimir force

Vacuum fluctuations and Casimir force

Vacuum fluctuations and Casimir force
First lecture :
a short history of quantum fluctuations … a brief introduction to modern quantum optics …
Tests of the Casimir force
Casimir formula (1949)
FCas c 2 A 240 L4
ECas
Second lecture :
the Casimir force between two flat mirrors at rest in vacuum effects of imperfect reflection (finite conductivity) comparison between theory and experiments search for a violation of Newton force law at short distances
c 2 A 720 L3
attraction measured as a pressure
A lot of simplifications
plane parallel mirrors perfect reflection zero temperature perfectly flat surfaces
P Cas
3
F Cas A
m L
4
Third lecture :
geometry of the plates – effect of roughness motion of the plates – “dynamical Casimir effect”
P Cas
10 Pa
B. Duplantier in Poincaré Seminar on Vacuum Energy (2002)
The Casimir force in the plane-sphere geometry
Recent experiments performed in the plane-sphere geometry
theory uses the proximity force approximation contributions of the surface elements added up independently
Riverside experiment (Mohideen et al)
Atomic force microscope (AFM)
Plane-sphere geometry Sphere (100μm) and plane covered with gold Distance 60-900nm Optical readout Experimental accuracy better than 2% at the smallest separations
Courtesy U. Mohideen B.W. Harris et al Phys. Rev. A62 052109 (2003)
R L
L
For the plane-sphere geometry ( if R>>L )
FPS
d 2x
FPP ( x) A
FPS 2 R
EPP A
This is not a theorem : Casimir forces are not additive

Riverside results (Mohideen et al)
Correct agreement with theory …
Casimir force (10 -9N)
0.0
Why the tests are going on
Casimir force is an important prediction of quantum theory which has been recently measured with a good precision
Experiment Theory
… after having accounted for large corrections
Plane-sphere geometry Imperfect reflection
-0.1
-0.2
-0.3
-0.4
a force induced by vacuum fluctuations which is directly observable in the macroscopic world ! accurate comparison with experiments allows for a test of theoretical predictions theory must take into account the differences between the ideal Casimir configuration and real experiments
-0.5
and small corrections
Room temperature Surface roughness
50
100
150
200
250
300
350
One of the few experimental ways for
approaching the puzzle of vacuum energy searching for hypothetical new forces at short distances
Plate-sphere surface separation (nm)
Courtesy U. Mohideen
A. Lambrecht & S. Reynaud in Poincaré Seminar (2002), quant-ph/0302073
Tests of the Newton force law
Yukawa correction to the Newton law
Short range tests of the Newton law
Exclusion domain in the ( , ) plane Gravity measurements at short distances Casimir force measurements Gravity measurements
log10
Geophysical Laboratory Satellites
> a few 10μm
Windows remain open for deviations at short ranges
log10
log10 (m)
LLR
Planetary
At even shorter distances tests of Casimir force
log10 (m)
or long ranges
Courtesy : J. Coy, E. Fischbach, R. Hellings, C. Talmadge, and E. M. Standish (2003)
The Search for Non-Newtonian Gravity, E. Fischbach & C. Talmadge (1998)
E. Adelberger et al Annu. Rev. Nucl. Part. Sci. (2003) hep-ph/0307284

Adelberger et al (U. Washington)
E?t-Wash : “Missing-mass” torsion balance Two disks with holes ; the attractor is rotated uniformly Separations down to 200μm : the best limits for 200μm< <3mm
Short distance gravity tests : Summary of the results
Stanford
fiber suspension
mirror for optical readout detector mass (Al)
source mass (Cu) creates a torque
Colorado
The Newtonian signal is largely, but not completely, cancelled C.D. Hoyle et al Phys. Rev. Lett. 86, 1418 (2001)
Washington E. Adelberger et al Annu. Rev. Nucl. Part. Sci. (2003) hep-ph/0307284
Newton vs Casimir : the challenge
For two Cu plates (1cm x 1cm x 1mm), Casimir dominates Newton at L<10μm
Recent Casimir force measurements
Lamoreaux 1997 : Torsion pendulum with electrostatic compensation; Plane & sphere R=12.5cm at L=0.6-6μm; Accuracy ~5% (??) Mohideen et al 1998-... : Atomic force microscope (AFM) Plane & sphere R=100μm at L=100-500nm; Accuracy 1-2% Ederth 2000 : Crossed cylinders R=10mm at L=20-100nm Capasso et al 2001 : Micro-Electro-Mechanical Systems Plane & sphere R=100μm at L=100-500nm Onofrio et al 2002 : Casimir geometry Two parallel planes at L=0.5-3μm; Accuracy ~15%
Casimir
Newton Yukawa m
As an hypothetical new force would appear as a difference between experimental and theoretical values, these two values have to be obtained independently with the same care and accuracy
L
m Coulomb force must also be controlled
Decca et al 2003-... : Measurement between dissimilar metals Plane & sphere R=600μm at L=200-1200nm; Accuracy 1-2%

Lamoreaux (Seattle)
The first “modern” experiment
Torsion pendulum with large electrostatic force used for compensation Correct agreement at shortest distances Accuracy announced at ~5% but not mastered Temperature effect not seen at largest distances (up to 6μm)
Pivot Point Compensator Plates Solenoid Plunger Piezo Stacks Screws
Capasso et al (Bell Labs)
Micro-electro-mechanical systems (MEMS) Poly-silicon plate hold by a torsional rod
Adjustment Rods
Vacuum Can
Sphere (100μm) and plane covered with gold Distance 100-500nm Capacitive readout
Courtesy S. Lamoreaux S. Lamoreaux Phys. Rev. Lett. 78 (1997)
Courtesy F. Capasso H.B. Chan et al Science 291, 1941 (2001), PRL 87, 211801 (2001)
Fischbach et al (Purdue)
Au-coated sphere (R=100-600μm) Cu-coated plate mounted on a torsional MEMS Capacitive readout
Static or dynamic measurements
L = 260-1200nm Courtesy F. Capasso
R. Decca et al Phys. Rev. D68 (2003)

Bressi et al (Padova)
The only recent experiment in the Casimir geometry
Two parallel planes at 0.5-3μm Dynamical measurement (shift of the vibration frequency of the flexible plate) Readout through an optical fiber interferometer Accuracy ~15%
Casimir tests of the Newton law : Summary of the results
Stockholm
Courtesy R. Onofrio
Riverside
Purdue Bressi, Carugno, Onofrio, Ruoso PRL 88 (2002)
Seattle
E. Adelberger et al Annu. Rev. Nucl. Part. Sci. (2003) hep-ph/0307284
Imperfectly reflecting mirrors
Perfectly plane, parallel and flat (but not perfectly reflecting) mirrors obey lateral translation invariance and show specular scattering Such mirrors are described by scattering amplitudes r,t which depend on
frequency incidence angle polarization p=TE,TM
transmitted reflected
Cavity with imperfectly reflecting mirrors
The spectral density is multiplied by the Airy function for the intracavity field
incident
1 g 1
r1 r2 e r1 r2 e
2 ik z L 2 ik z L
2
2
free field
r1 and r2 are the reflection amplitudes seen by the intracavity field kz is the longitudinal wave-vector kz
c
cos
intracavity field
The Casimir force can be expressed in terms of the reflection amplitudes
Jaekel, Reynaud, J. Physique (1991), arXiv:quant-ph/0101067
This is a theorem which has been proven for lossy as well as lossless mirrors
C. Genet, A. Lambrecht & S. Reynaud, Phys. Rev. A67 (2003)

Radiation pressure on the mirrors
For each field mode, vacuum radiation pressures differ
on the outer side and on the inner side
Sum over the modes
The force is an integral over all field modes
2 2
n n
cos2 cos2 g
attractive contributions repulsive contributions
FPP
modes
2
n
cos2
1 g
The net pressure is proportional to
g
The sum over the modes includes evanescent waves as well as ordinary propagating waves
g
f 1
1
f
f
*
This formula is valid for arbitrary mirrors
1
the reflection amplitudes are still to be specified through measurements or modeling of mirrors
r1 r2 e
2 ik z L 2 ik z L
r1 r2 e
cL
kz
we have only assumed specular reflection
Long-range force: electronic influence between the mirrors negligible
Fluctuations-dissipation theorem has been used
Final expression of the Casimir force …
Using causality properties
the formula can also be written as an integral over imaginary frequencies
… in the plane-sphere geometry
At zero temperature in the plane-sphere geometry
The final scattering formula is regular
no need for further regularization for any causal mirrors
FPS
E L 2 R PP A
EPP L
L
R
L
dL' FPP L'
It goes to the Casimir formula 1 and T 0 for r1 r2
FCas
c 2 A 240 L4
These expressions represent the QED prediction to be compared with measurements
reflection amplitudes still to be specified
C. Genet, A. Lambrecht & S. Reynaud, Phys. Rev. A67 (2003)
Proximity force approximation used for the plane-sphere geometry

Models of “real” mirrors
Simplest model for metallic mirrors
Fresnel reflection laws plasma model for the gas 0 of conduction electrons 10
F
More complete description of metals
F FCas
F
1
Plane, parallel and flat mirrors showing specular reflection
Scattering amplitudes deduced 6 from Fresnel laws 10 Optical response of 5 10 electrons described 4 10 by tabulated dielectric 3 function 10
i
perfect mirrors
( )
( ) 1
Plasma frequency and wavelength
P
2 P 2
dissipative part of the dielectric function for some metals
Cu Al
2 c
P
Reduction of the force calculated with respect to the ideal Casimir formula
reduction factor for plasma the << λ plasma L P model
10
-2
( )
r
( ) i i( )
x i( ) x2 2
ε’’(ω)
ηF
10
-1
10 10
2
1
and causality relations
r( ) 1
10 10 10
0
2
0
10
-2
dx
-1
Al Au Cu
12
Au
10
14
10
-1
10
0
10
1
10
2
-2
F
0
L/λP
L/
10
10
13
P
plasmon limit
as a function of frequency
10 ω[rad/s]
15
10
16
10
17
[rad/s]
Results for two Au-covered mirrors
global behaviour well reproduced by the plasma model integration of tabulated optical data needed for obtaining accurate predictions
0.0
Finite temperature correction
Radiation pressure of thermal fluctuations has to be added to that of vacuum fluctuations
3.0
1.0
F
F FCas
Au-coated mirrors (optical data)
0.8
2
2
e
/ k BT
1
2.0
perfect mirror, T
300 K
ηF
0.6
at T=300K, important corrections for L>3 m plasma model P = 136nm
plasma model optical data
plasma model, T
1.0 0.9 0.8 0.7 0.6 0.5 0.1
300 K
-0.1
Experiment Theory
Casimir force (10 -9N)
-0.2
-0.3
-0.4
1 L[μm] A. Lambrecht & S. Reynaud, Eur. Phys. J. D8 309 (2000)
50 100 150 200 250 300 350
-0.5
0.4
Plate-sphere surface separation (nm)
0.1
L μm
10
temperature & plasma corrections are correlated at intermediate distances L 1-3 m
plasma model, T
1.0
0K
10.0
L[ m]
C. Genet, A. Lambrecht & S. Reynaud, Phys. Rev. A62 (2000)

Conclusions (at the moment …)
The Casimir force is now measured with a good experimental accuracy ~ 1-2% Theory and experiment agree at the same level in the distance range 100nm < L < 500nm The effect of imperfect reflection is precisely measured and accurately calculated Theoretical discussions are still extremely active about the effect of non zero temperature (for dissipative mirrors) And the effect of thermal fluctuations has still to be detected unambiguously in experiments
Casimir and Casimir-Polder
Variation of the reduction factor for the energy as a function of distance
at large distances, limit of perfect mirrors
1.0
E
E ECas
E
1
ECas
c 2A 1 720 L3
0.1
at short distances, different scaling law
E c 2A 1 480 P L2
1.193
0.0 ?2 10 10
?1
L
E P
0 1 2
10
10
10
L/
P
This is reminiscent of the Casimir-Polder law for atomic forces
Casimir-Polder crossover
From the Van der Waals interaction between neutral atoms in their ground states
Instantaneous interaction for Retarded interaction for
Casimir force and surface plasmons
Surface plasmons collective electron excitations coupled to evanescent fields and propagating on the interface between each metallic bulk and vacuum
For each metallic bulk, dispersion relation versus transverse wavevector k Plasmons on the two bulks are coupled by Coulomb law
2 sp 2 P
2c 2k 2 2
2 P
E
c
A
2
r
6
EC - P
23 c 0 4 r7
2
4 P
4c 4k 4
London 1930
Casimir-Polder 1948 Casimir-
2
(1 e 2
kL
)
to the Casimir interaction between two mirrors
Instantaneous interaction for Retarded interaction for
At short distances, the Casimir force can be seen as the effect of Coulomb interaction between surface plasmons
E
c 2A 480 P L2
Lifshitz 1956
ECas
c 2A 720 L3
see also F. Intravaia & A. Lambrecht, Phys. Rev. Lett. (2005)
Casimir 1949

真空电镀及工艺流程(Vacuumplatingandprocess)

真空电镀及工艺流程(Vacuum plating and process)真空电镀及工艺流程(Vacuum plating and process) Vacuum plating and process Source: the full update training date: 2011 09 month 22 hits: 216 Vacuum evaporation is heated in a high vacuum condition of the metal, melting, evaporation, cooling after forming a metal film on plastic surface. The commonly used metal is aluminum and other low melting point metal. A method for heating metal: the heat generated by the resistance, but also the use of electron beam. In the implementation of evaporation of plastic products, in order to ensure that the metal cooling heat emitted by the resin to deformation, must adjust the evaporation time. In addition, the metal or alloy melting point, boiling point is too high is not suitable for evaporation. The plating metal and plated plastic products in the vacuum chamber, using certain methods of heating the plating material, the metal evaporation or sublimation, metal vapor encountered plastic surface cold condensed into a metal film. Under vacuum conditions can reduce the evaporation of materials in atomic and molecular collision to plastic products and other molecules, reduce the chemical reactivity of the molecules in a gas and steam source between materials (such as oxidation), thus providing the film

常用镀膜真空术语中英文对照

镀膜真空术语全集 1.一般术语 1-1.压力计pressure gauge: 1-2.真空计vacuum gauge: ⑴.规头(规管)gauge head: ⑵.裸规nude gauge : ⑶.真空计控制单元gauge control unit : ⑷.真空计指示单元gauge indicating unit : 2.真空计一般分类 2-1.压差式真空计differential vacuum gauge: 2-2.绝对真空计absolute vacuum gauge: 2-3.全压真空计total pressure vacuum gauge: 2-4.分压真空计;分压分析器partial pressure vacuum gauge; partial pressure analyser: 2-5.相对真空计relative vacuum gauge : 3.真空计特性 3-1.真空计测量范围pressure range of vacuum gauge: 3-2.灵敏度系数sensitivity coefficient: 3-4. 电离规系数(压力单位倒数)ionization gauge coefficient (in inverse pressure units): 3-5.规管光电流photon current of vacuum gauge head: 3-6.等效氮压力equivalent nitrogen pressure : 3-7.X射线极限值X-ray limit: 3-8.逆X射线效应anti X-ray effect: 3-9.布利尔斯效应blears effect: 4.全压真空计 4-1.液位压力计liquid level manometer: 4-2.弹性元件真空计elastic element vacuum gauge: 4-3.压缩式真空计compression gauge: 4-4.压力天平pressure balance: 4-5.粘滞性真空计viscosity gauge : 4-6.热传导真空计thermal conductivity vacuum gauge : 4-7.热分子真空计thermo-molecular gauge: 4-8.电离真空计ionization vacuum gauge: 4-9.放射性电离真空计radioactive ionization gauge: 4-10.冷阴极电离真空计cold cathode ionization gauge: 4-11.潘宁真空计penning gauge: 4-12.冷阴极磁控管真空计cold cathode magnetron gauge: 4-13.放电管指示器discharge tube indicator: 4-14.热阴极电离真空计hot cathode ionization gauge: 4-15.三极管式真空计triode gauge:

镀膜真空术语全集中英文对照要点

镀膜真空术语全集(中英文对照) 5.分压真空计(分压分析器) 5-1.射频质谱仪radio frequency mass spectrometer: 5-2.四极质谱仪(四级滤质器)quadrupole mass spectrometer;quadrupole mass filer:5-3.单极质谱仪momopole mass spectrometer: 5-4.双聚焦质谱仪double focusing mass spectrometer: 5-5.磁偏转质谱仪magnetic deflection mass spectrometer: 5-6.余摆线聚焦质谱仪trochoidal focusing mass spectrometer: 5-7.回旋质谱仪omegatron mass spectrometer: 5-8.飞行时间质谱仪time of flight mass spectrometer: 6.真空计校准 6-1.标准真空计reference gauges: 6-2.校准系统system of calibration: 6-3.校准系数K calibration coefficient: 6-4.压缩计法meleod gauge method: 6-5.膨胀法expansion method: 6-6.流导法flow method: 4. 1.真空系统vacuum system 1-1.真空机组pump system: 1-2.有油真空机组pump system used oil : 1-3.无油真空机组oil free pump system 1-4.连续处理真空设备continuous treatment vacuum plant: 1-5.闸门式真空系统vacuum system with an air-lock: 1-6.压差真空系统differentially pumped vacuum system: 1-7.进气系统gas admittance system: 2.真空系统特性参量

真空计(vacuum gauge)介绍

真空计(vacuum gauge)介绍 用于测量低于大气压的稀薄气体总压力的仪表,又称真空规。真空计的测量单位沿用压力测量单位,压力的国际单位为帕(Pa),曾使用的单位还有托(Torr)和毫巴(mbar)等。 自1643年意大利物理学家E.托里拆利进行大气压力实验以来,先后出现许多种真空计。最早出现的是U形管真空计,它只能用来测量粗真空和低真空。1874年,H.G.麦克劳发明的压缩式真空计,解决了低真空和高真空的绝对压力的测量,但仍不能进行连续测量。1906年,M.皮喇尼发明电阻式真空计,解决了工业生产中的低真空测量问题。继而,O.E.巴克利于1916年又发明电离真空计,这在当时不仅解决了10-1~10-5帕的高真空测量,而且促进了油扩散泵等真空设备的发展和应用。1937年,F.M.潘宁发明冷阴极电离真空计,适用于有大量放气和经常暴露于大气的真空设备的测量,所以在真空冶金和机械工业中得到广泛应用。1950年,R.T.贝阿德和D.A.阿尔伯特发明BA式电离真空计,解决了10-8帕的超高真空测量问题,从而使真空测量获得了突破,并推动了超高真空技术的发展;而与此有关的表面物理、核能、航天和大型集成电路等科学技术也得到了迅速发展。1960年以来,相继研制成功的调制规、抑制规、弯注规、分离规和磁控式电离规等已能实现10-11帕左右的超高真空测量。 分类真空计可分为绝对真空计和相对真空计两大类。凡能从其本身测得的物理量(如液柱高度、工作液、比重等)直接计算出气体压力的称绝对真空计,这种真空计测量精度较高,主要用作基准量具。相对真空计主要利用气体在低压力下的某些物理特性(如热传导、电离、粘滞性和应变等)与压力的关系间接测量,其测量精度较低,而且测量结果还与被测气体种类和成分有关。因此相对真空计必须用绝对真空计标定和校准后方能用作真空测量。但它能直接读出被测压力,使用方便,在实际应用中占绝大多数。真空技术需要测量的压力范围为105~10-11帕,甚至更小,宽达16个数量级以上,尚无一种真空计能适用于从粗真空(105~102帕)、低真空(102~10-1帕)、高真空(10-1~10-5帕)、超高真空(小于10-5帕)到极高真空(小于10-10帕)的全范围测量,因而有多种真空计。最常用的有U形管真空计、压缩式真空计、电阻真空计和冷热阴极电离真空计。 U形管真空计用以测量粗真空和低真空的绝对真空计。在U字形的玻璃管中充以工作液(低蒸气压的油、汞)。管的一端被抽成真空(或直接通大气),另一端接被测真空系统。根据两边管中的压差所造成的液柱差可测出被测真空系统的压力。 压缩式真空计又称麦克劳真空计,是一种测量低真空和高真空的绝对真空计。这种真空计一般用硬质玻璃制成。A是一根与被测真空系统相连接的开管,D、B为内径相同的毛细管,V为球泡,其体积远大于毛细管。测量时,通过活塞2抽真空,然后用活塞1充气,使汞储存器C中的汞上升到覆没交叉口ΜΜ′,则D、V和B、A内的气体被隔成两个区域。再充气继续提高汞液面,D、V内的气体则进一步被压缩,压力增高。这样D、B间存在的压差可由汞柱高度差来表示。玻璃容器的体积和毛细管的高度是可精确测出的,所以用玻意耳定律即可算出被测压力。测量精度较高,在10-3帕时的精度小于或等于5%。 电阻真空计又称皮喇尼真空计,是一种测量低真空的相对真空计,主要由电阻式规管和测量线路两部分组成。电阻式规管是在管壳内封装着一条电阻温度系数较大的电阻丝,常用的为钨或铂丝。测量时,规管与被测真空系统相接,用一定的电压、电流加热电阻丝,其表面温度可用电阻值来反映,且与周围的气体分子的热传导有关,而气体分子的热传导又与压力有关。当被测压力降低时,由气体分子传走的热量减小,电阻丝表面温度就增高,电阻值增大;反之,电阻值减小。因此根据电阻值的大小就可测量出压力。 热阴极电离真空计通称电离真空计,主要用于高真空测量。它是由圆筒式热阴极电离规管和测量线路两部分组成。这种规管与三极电子管相似,有 3个电极:阴极(灯丝)、螺旋

相关主题