搜档网
当前位置:搜档网 › 几种重要的汽车传感器原理

几种重要的汽车传感器原理

几种重要的汽车传感器原理
几种重要的汽车传感器原理

几种重要的汽车传感器原理

一、传感器概述

传感器的概念:指能感受规定的物理量,并按照一定规律转换成可用输信号的器件或装置。简单的说,传感器即使把非电量转换成电量的装置。

汽车传感器的工作条件极为恶劣,因此,传感器能否精确可靠地工作至关重要。在该领域中,理论研究及材料应用发展迅速,半导体和金属膜技术研究及材料应用技术发展迅速,半导体和金属膜技术、陶瓷烧结技术等得到迅猛发展。智能化、集成化和数字化将是传感器的未来发展趋势。

传感器通常由敏感元件、转换元件及测量电路组成。敏感元件是指能直接感受被测量的部分。转换元件是指能将非电量转换成电量的部分。有些敏感元件可以直接输入电量。测量电路是指将转换元件输入的电量经过处理,以便进行显示、记录和控制的部分。测量电路中较多的使用电桥电路。比如后面要讲到的热线式空气流量计。

传感器的种类比较多,像我们一般碰到的传感器一般有:

温度传感器(冷却水温度传感器THW,进气温度传感器THA);

流量传感器(空气流量传感器,燃油流量传感器);

进气压力传感器MAP

节气门位置传感器TPS

发动机转速传感器

车速传感器SPD

曲轴位置传感器(点火正时传感器)

氧传感器

爆震传感器(KNK)

二、空气流量传感器

为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。

1、卡门旋涡式空气流量计

涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。

众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。

同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。

卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。

对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。

根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。

(1)光学式卡门旋涡空气流量计

现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半

导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。

工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。

(2)超声波式卡门旋涡式空气流量计

超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通过压电元件转换成电量。

超声波式卡门旋涡式空气流量计的工作原理与光学式卡门旋涡空气流量计的工作原理大致相同,只是光学元件换成了声学元件。

在日常生活中,常常会遇到这样的现象,即当顺着风向喊话人时,对方很容易听到;而逆着风向喊人时,对方就不容易听到。这是因为前者的空气流动方向与声波的前进方向相同,声波被加速的结果,而后者是声波受阻而减速的结果。在超声波式流量传感器中,同样存在着这种现象。

工作原理是:在旋涡发生器下游管路两侧相对安装超声波发射探头和超声波接收探头,超声波发射探头不断向超声波接收探头发出一定频率(一般为40KHZ)的超声波,当超声波通过进气气流到达超声波接收器时,由于受到气流移动速度及压力变化的影响,因此接收到的超声波信号的相位(时间间隔)以及相位差(时间间隔之差)就会发生变化,集成控制电路根据相位或相位差的变化情况计量出涡流的频率。涡流频率信号输入ECU后,ECU就可以计算出进气量。

2、热线式空气流量计

构成:我们来看书上的结构图,它的基本构成包括感知空气流量的白金热线、根据进气温度进行修正的温度补偿电阻(冷线)、控制热线电流的控制电路以及壳体等。根据白金热线在壳体内安装部位的不同,可分为安装在空气主通道内的主流测量方式和安装在空气旁通道内的旁通道测量方式。

热线式空气流量计是利用空气流过热金属线时的冷却效应工作的。将一根铂丝热线置于进气空气流中,当恒定电流通过铂丝使其加热后,如果流过铂丝周围的空气增加,金属丝温度就会降低。如果要使铂丝的温度保持恒定,就应根据空气量调节热线的电流,空气流量越大,需要的电流越大。下面的图是主流测量方式的热线式空气流量计的工作原理图。其中RH为是直径为0.03-0.05的细铂丝(热线),RK是作为温度补偿的冷线电阻。RA和RA是精密线桥电阻。四个电阻共同组成一个惠斯登电桥。在实际工作中,代表空气流量的加热电流是通过电桥中的RA转换成电压输出的。当空气以恒定流量流过时,电源电压使热线保持在一定温度,此时电桥保持平衡。当有空气流动时,由于RH的热量被空气吸收而变冷,其电阻值发生变化,电桥失去平衡。此时,放大器即增加通过铂丝的电流,

直到恢复原来的温度和电阻值,使电桥重新平衡。由于电量的增加,RA的电压增加,这样就在RA上得到了代表空气流量的新的电压输出。

进气温度的任何变化都会使电桥失去平衡。为此,在靠近热线的空气流中,设有一个补偿电阻丝(冷线)。冷线补偿电阻的温度起一个参照值的作用。在工作中,放大器会使热线温度高出进气温度100度。热线式空气流量计长期使用,会使热线上积累杂质。为此,在热线式流量计上采用了烧尽措施解决这个难题。每当发动机熄火时,ECU自动接通空气流量计壳体内的电子电路,热线被自动加热,使其温度在1S内升高了1000度。由于烧尽温度必须是非常精确的,因此,在发动机熄火后4S后,该电路才被接通。

这种空气流量计由于没有运动部件,因此工作可靠,而且响应特性较好;缺点是在空气流速分布不均匀时误差较大。

3、热膜式空气流量计

热线式空气流量计虽然可以提供精确的进气空气流量,但造价太高,主要用于高级轿车,为了满足精度高,结构简单,造价又便宜的要求,德国博世公司厚膜工艺,开发出了热膜式空气流量计。热膜式空气流量计的工作原理与热线式空气流量计类似,都是用惠斯登电桥工作的。所不同的是热膜式空气流量计不用铂金作为热线,而是将热线电阻、补偿电阻和线桥电阻用厚膜工艺集中在一块陶瓷片上。这种空气流量计已大量使用于各种电控汽油喷射系统中。

三、压力传感器

功用:把压力信号转变为电压信号。

应用范围:它在汽车上主要有两个方面的应用。一是用于气压的检测,包括进气真空度、大气压力、气缸内的气压及轮胎气压等;二是用于用于油压的检测,包括变速箱油压、制动阀油压及悬挂油压等。

1、电容式压力传感器

首先我们来了解一下电容器。电容器的容量与组成的电容的两极板间的电介质及其相对有效面积成正比,而与两极板间的距离成反比,即C=ε A/d,其中ε为电介质的介电常数,A为两金属电极板间相对有效面积,d为两金属电极板间距离。由这个关系式可以看出,当其中两个参数不变,而另一个参数作为变量时,电容量就会随着变化的参数而变化。电容压力传感器由置于空腔内的两个动片(弹性金属膜片)、两个定片(弹性膜片上下凹玻璃上的金属涂层)、输出端子和壳体等组成。其动片与两个定片之间形成了两个串联的电容。当进气压力作用于弹性膜片时,弹性膜片产生位移,势必与一个定片距离减小,而与另一个定片距离加大(可以通过一张纸来示范)。我们可以从公式中看出,两金属电极板间距离是影响电容量的重要因素之一,距离增大,则电容量减少,距离减少,则电容量增大。这种由一个被测量量引起两个传感元件参数等量、相反变化的结构,称为差动结构。如果弹性膜片置于被侧压力与大气压之间(弹性膜片上部空腔通

大气),测得的是表压力;如果弹性膜片置于被侧压力与真空之间(弹性膜片上部空腔通真空),测得的是绝对压力。

与电容式传感器配合使用的测量电路有很多种,下面我们来以电桥电路为例说明电容差动式传感器测量电路的工作原理,如图,由于电容是交流参数,所以电桥通过变压器用交流激励。变压器的两个线圈与两个电容组成电桥,当无进气压力时,电桥处于平衡状态,两电容值相等并且为C0,当有压力作用时,其中一个电容值为C0+△C,另一个电容值为C0-△C,(△C为外部压力作用时引起的电容值的变化量),则电桥失去平衡,电容值高的地方电压也高,两个电容之间产生了电压差,由此电桥产生代表进气压力的电压输出U。

2、差动变压器进气压力传感器

差动压力传感器是一种开磁互感式电感传感器。由于具有两个接成差动结构的二次线圈,所以又称为差动变速器。

当差动变压器的一次线圈由交变电源激励时,其二次线圈就会产生感应电动势。由于二次线圈作差动连接,所以总的输出是两线圈感应电动势之差。当铁心不动时,其总输出量为零;当铁心移动时,输出电动势与铁心位移呈线性变化。

差动变压器进气压力传感器的检测与转换过程是:先将压力的变化转换成变压器铁心的位移,然后通过差动变速器再将铁心位移转换为电信号输出。这种压力传感器主要有真空膜盒(波纹管)、差动变速器等组成。当气压变化时,波纹管变形,带动差速变压器的铁心移动,由于铁心的位移,差动变压器的输出端即有电压产生,将此电压经过处理后送至ECU输入端。如果按照电压的高低来确定喷射时间并使喷油器工作的话,就可以确定基本喷油量。

3、半导体应变式进气压力传感器

半导体压力进气传感器是利用应变效应工作的。

所谓应变效应,就是指当导体、半导体在外力作用下产生应变时,其电阻值发生变化的现象。

电阻应变片是一种片状电阻传感器,它是利用半导体材料当在其轴向施加一定载荷产生应力时,它的电阻率会发生变化的所谓压阻效应原理工作的。

由电阻应变片构成的进气压力传感器主要由半导体应变片、真空室、混合集成电路板等组成。半导体应变片是在一个膜片上用半导体工艺制做的四个等值电阻,并且连接成电桥电阻。半导体电阻电桥应变片放置在一个真空室内,在进气压力的作用下,应变片产生变形,电阻值发生变化,电桥失去平衡,从而将进气压力的变化转换成电阻电桥输出电压的变化。

四、气门位置传感器

节气门位置传感器安装在节气门体上,它将节气门开度转换成电压信号输出,以便计算机控制喷油量。

节气门位置传感器有开关量输出和线性输出两种类型。

(1)、开关式节气门位置传感器

这种节气门位置传感器实质上是一种转换开关,又称为节气门开关。这种节气门位置传感器包括动触点、怠速触点、满负荷触点。利用怠速触点和满负荷触点可以检测发动机的怠速状态及重负荷状态。一般将动触点称为TL触点,怠速触点称为IDL触点,满负荷触点称为PSW触点。从结构图可以看出,在与节气门联动的连杆的作用下,凸轮可以旋转,动触点可以沿凸轮的槽运动。这种节气门位置传感器结构比较简单,但其输出是非连续的。

在节气门全关闭时,电压从TL端子加到IDL端子上,再回到电子控制器上。通过这样的途径传递信号时,电子控制器明白节气门现在是全关闭状态。当踏下加速踏板,节气门处于某一开度以上时,电压从TL端子经过PSW端子再传递给电子控制器。电子控制器明白了,现在节气门打开了一定的角度。

下面我将怠速信号与负荷信号对喷油量的影响加以说明。当有IDL信号输出并且发动机转速超过规定转速时,则中断供油,以防止催化剂过热及节省燃油。当IDL信号从有输出转换到无输出时,电子控制器判断出节气门从全关闭状态换至打开状态,当然也就判断出车辆处于起步或再加速状态,所以就会根据发动机的暖机状态进行加速加浓,增大喷油量,以供给加速所需要的较浓混合气。

当有PSW信号输入到电子控制器中时,则发挥输出加浓功能,增大喷油量。在重负荷行车时,若没有PSW信号输出的话,就会没有输出加浓作用,发动机输出的力量就要稍微低一些。

(2)线性节气门位置传感器

线性节气门位置传感器装在节气门上,它可以连续检测节气门的开度。它主要由与节气门联动的电位器、怠速触点等组成。电位计的动触点(即节气门开度输出触点)随节气门开度在电阻膜上滑动,从而在该触点上(TTA 端子)得到与节气门开度成正比例的线性电压输出。如图。当节气门全闭时,另外一个与节气门联动的动触点与IDL触点接通,传感器输出怠速信号。节气门位置输出的线性电压信号经过A/D转换后输送给计算机。

五、氧传感器

在使用三元催化进化装置的汽油喷射发动机中,一般都在排气管中安排氧传感器,用以检测排气中氧的含量,从而间接地判断进入气缸内混合气的浓度,以便对实际空燃比进行闭环控制。当排气中氧的含量过高时,说明混合气过稀,氧传感器即输出一个电信号给ECU,让其指令喷油器增加喷油量;当排气中氧的含量过低时,说明混合气过浓,氧传感器立刻将此信息传递给ECU,让其指令喷油

器减少喷油量。目前在汽车上使用的氧传感器主要有二氧化钛氧传感器和二氧化锆氧传感器两种类型的传感器。

工作原理:氧传感器装在发动机的排气管里,用来测量排气中氧的含量。它是按照大气与排气中氧浓度之差而产生电动势的一种电池。如图,在陶瓷电解质的内、外两面分别涂有白金以形成电极。当它插入排气管中时,其外表面接触废气,内表面则通大气。在约300度以上的温度时,陶瓷电解质可变为氧离子的传导体。当混合气较稀,也就是过量空气系数α〉1时,排气中含氧必然多,陶瓷电解质的内外表面的氧浓度差小,只产生小的电压;而当混合气较浓,也就是过量空气系数α〈1时,排气中氧含量较少,同时伴有大量的未完全燃烧物如CO、碳氢化合物等,这些成分都可能在催化剂的作用下与氧发生反应,消耗排气中残余的氧,使陶瓷电解质外表面的氧浓度趋向于零,这样就使得电解质内外的氧浓度差突然增大,传感器输出电压也突然增大了,其数值趋向于1V。

六、温度传感器

作用:用来测量冷却水温度、进气温度和排气温度。

种类:温度传感器的种类很多,如热敏电阻式、半导体式和热电偶式等。

所谓热敏电阻,是指这种电阻对温度敏感,当作用在这种电阻上的温度变化时,其阻值会随温度的变化而变化。其中,随温度升高的叫做正温度型热敏电阻,相反随温度升高阻值减少的,叫做负温度系数型热敏电阻。

热敏电阻温度传感器的测量电路比较简单,只要把传感器与一个精密电阻串联接到一个稳定的电源上,就能够用串联电阻的分压输出反映温度的变化。

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

汽车传感器类型及其工作原理

汽车传感器类型及其工作原理 汽车技术的发展,使得越来越多的元器件用到整个汽车系统的控制上面。 最常用的就是使用传感器来检测各种需要检测或者对汽车行驶、控制需要参考 的重要参数,并将这些信号转化成电信号等待再次处理。下面,小编来和大家 分享一些汽车传感器类型,并针对这些不同性能的传感器它的工作原理,来告 诉大家它在汽车中是用在什么地方,具体是怎么操作的,并且它在整个系统中 有什么样的作用。常用的汽车传感器类型、工作原理和使用方式(1) 里程表传感器在差速器或者半轴上面的传感器,来感觉转动的圈数,一般 用霍尔,光电两个方式来检测信号,其目的利用里程表记数可有效的分析判断 汽车的行驶速度和里程,因为半轴和车轮的角速度相等,已知轮胎的半径,直 接通过历程参数来计算。在传动轴上设计两个轴承,大大减轻了运行中的力距,减少了摩擦力,增强了使用寿命;由原来的动态检测信号改为齿轮运转式检测信号;由原来直插式垂直变速箱改为倒角式接口变速箱。里程表传感器插头一般是在变速箱上,有的打开发动机盖可以看到,有的要在地沟操作。 (2) 机油压力传感器是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。常用的有硅压阻式和硅电 容式,两者都是在硅片上生成的微机械电子传感器。一般情况上,我们通过机 油压力传感器来检测汽车的机油向内的汽油还有多少,并将检测到的信号转换 成我们可以理解的信号,提醒我们还有多少汽油,或者还可以走多远,甚至是 提醒汽车需要加汽油了。(3) 水温传感器它的内部是一个半导体热敏电阻,温度愈低,电阻愈大;反之电阻愈小,安装在发动机缸体或缸盖的水套上,与冷却水直接接触。从而侧得发动机冷却水的温度。电控单元根据这一变化测 得发动机冷却水的温度,温度愈低,电阻愈大;反之电阻愈小。电控单元根据这

汽车维修技师论文

汽车维修技师论文: 标题:汽车氧传感器波形信号分析 ---氧传感器原理分析与故障判断 关键词:氧传感器、原理、波形、发动机故障 概述: 随着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷”加三元催化器的发动机正成为普遍配臵。这种发动机采用了混合气成分的闭环控制和三元催化反应装臵的联合使用技术,是汽油机有效的排气净化方法。在这一系统中,氧传感器是进行闭环反馈控制的主要元件之一,必不可少。正常工作时,氧传感器随时测定发动机排气管中的氧含量(浓度),以检测发动机燃烧状况。因此.当发动机出现燃烧故障时,必然引起氧传感器电压信号的变化,这就为通过观察氧传感器的信号波形判断发动机某些故障提供可能。 1.氧传感器的一般作用 要使三元催化转化器全面净化CO、HC和NOx这三种有害气体,必须保证混合气浓度始终保持在理论空燃比(14.7)附近的狭小范围内。一旦混合气浓度偏离了这个狭小范围,则三元催化转化器净化能力便急剧下降。保证混合气浓度在理论空燃比附近,“电喷”系统和氧传感器的配合是很好的解

决方案。 氧传感器检测排气中的氧浓度,并随时向微机控制装臵反馈信号。微机则根据反馈来的信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之.如信号反映混合气较稀,则延长喷油时间。这样使混合气的空燃比始终保持在理论空燃比附近。这就是燃料闭环控制或称燃料反馈控制。 2.氧传感器的正常波形 常用的汽车氧传感器有氧化锆式和氧化钛式两种。以氧化锆式为例,正常情况下当闭环控制时,氧传感器的电压信号大约在0至1V之间波动,平均值约450mv。当混合气浓度稍浓于理论空燃比时。氧传感器产生约800mV的高电压信号;当混合气浓度稍稀于理论空燃比时,氧传感器产生接近100mY的低电压信号。当然,不同类型的氧传感器其实际波形并不完全相同。朱军老师曾总结说:“一般亚洲和欧洲车

汽车传感器论文浅谈传感器技术在汽车领域的应用

浅谈传感器技术在汽车领域的应 用 院系信息工程系 专业 年级 学生姓名 指导教师

目录 1 摘要 1.1 汽车传感器举足轻重 1.2 国内传感器生产水平低 1.3 汽车上的主要传感器 1.4 汽车传感器的发展趋势 2 传感器类型 2.1里程表传感器 2.2安全气囊传感器 2.3 速度传感器 3 基本原理和发展 致谢 参考文献

1 摘要汽车传感器发展综述 在20世纪60年代,汽车上仅有机油压力传感器、油量传感器和水温传感器,它们与仪表或指示灯连接。 进入70年代后,为了治理排放,又增加了一些传感器来帮助控制汽车的动力系统,因为同期出现的催化转换器、电子点火和燃油喷射装置需要这些传感器来维持一定的空燃比以控制排放。80年代,防抱死制动装置和气囊提高了汽车安全性。 今天,传感器有用来测定各种流体温度和压力(如进气温度、气道压力、冷却水温和燃油喷射压力等)的传感器;有用来确定各部分速度和位置的传感器(如车速、节气门开度、凸轮轴、曲轴、变速器的角度和速度、排气再循环阀(EGR)的位置等);还有用于测量发动机负荷、爆震、断火及废气中含氧量的传感器;确定座椅位置的传感器;在防抱死制动系统和悬架控制装置中测定车轮转速、路面高差和轮胎气压的传感器;保护前排乘员的气囊,不仅需要较多的碰撞传感器和加速度传感器。面对制造商提供的侧量、顶置式气囊以及更精巧的侧置头部气囊,还要增加传感器。随着研究人员用防撞传感器(测距雷达或其他测距传感器)来判断和控制汽车的侧向加速度、每个车轮的瞬时速度及所需的转矩,使制动系统成为汽车稳定性控制系统的一个组成部分。 老式的油压传感器和水温传感器是彼此独立的,由于有着明确的最大值或最小值的限定,其中一些传感器的实际作用就相当于开关。随着传感器向电子化和数字化方向发展,它们的输出值

霍尔齿轮转速传感器的工作原理和优点

霍尔齿轮转速传感器的工作原理和优点 作者: 发布时间:2009-11-25 来源: 关键字:霍尔转速传感器 霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。 霍尔转速传感器的工作原理 霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。 霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。 霍尔转速传感器的测量方法 霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质的运动状态。 霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。 霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。 霍尔转速传感器的应用优势 霍尔转速传感器的应用优势主要有三个,一是霍尔转速传感器的输出信号不会受到转速值的影响,二是霍尔转速传感器的频率相应高,三是霍尔转速传感器对电磁波的抗干扰能力强,因此霍尔转速传感器多应用在控制系统的转速检测中。 同时,霍尔转速传感器的稳定性好,抗外界干扰能力强,如抗错误的干扰信号等,因此不易因环境的因素而产生误差。霍尔转速传感器的测量频率范围宽,

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

汽车常见传感器工作原理及检测

汽车常见传感器工作原理及检测 各种汽车传感器的作用 目录 1、进气压力传感器:..................................................................... ............................................2 2、空气流量传感器:..................................................................... ............................................2 3、节气门位置传感器:..................................................................... ........................................2 4、曲轴角度传感器:..................................................................... ............................................3 5、凸轮轴位置传感器(又称气缸识别传感器)..................................................................... 3 6、氧传感器:..................................................................... ........................................................3 7、发动机转速传感器...................................................................... ...........................................4 8、进气温度传感器:..................................................................... ............................................5 9、水温传感

轮速传感器的原理与检修

轮速传感器的原理与检修 现代汽车的ABS系统中都设置有电磁感应式的轮速传感器,它可以安装在主减速器或变速器中,轮速传感器的组成和工作原理如图所示。它是由永久磁铁、磁极、线圈和齿圈组成。齿圈5在磁场中旋转时,齿圈齿顶和电极之间的间隙就以一定的速度变化,则使磁路中的磁阻发生变化。其结果是使磁通量周期地增减,在线圈1的两端产生正比于磁通量增减速度的感应电压,并将该交流电压信号输送给电子控制器。 轮速传感器的种类及其检测: 1.电磁感应式车速传感器: 电磁感应式车速传感器安装在自动变速器输出轴附近的壳体上,用于检测自动变速器输出轴的转速。电控单元ECU根据车速传感器的信号计算车速,作为换挡控制的依据。车速传感器由永久磁铁和电磁感应线圈组成,它被固定安装在白动变速器输出轴附近的壳体上,输出轴上的停车锁定齿轮为感应转子,当输出轴转动时,停车锁定齿轮的凸齿,不断地靠近或离开车速传感器,使线圈内的磁通量发生变化,从而产生交流电,车速越高,输出轴转速也越高,感应电压脉冲频率也越高,电控组件根据感应电压脉冲的大小计算汽车行驶的速度。用万用表测导通,阻值还有有没有电压信号。 2.霍尔式轮速传感器; 在汽车应用中是十分特殊的,这主要是由于变速器周围空间位置冲突霍尔效应传感器是固体传感器,它们主要应用在曲轴转角和凸轮轴位置上,用于开关点火和燃油喷射电路触发,它还应用在其它需要控制转动部件的位置和速度控制电脑电路中。霍尔效应传感器或开关,由一个几乎完全闭合的包含永久磁铁和磁极部分的磁路组成,一个软磁铁叶片转子穿过磁铁和磁极间的气隙,在叶片转子上的窗口允许磁场不受影响的穿过并到达霍尔效应传感器,而没有窗口的部分则中断磁场,因此,叶片转子窗口的作用是开关磁场,使霍尔效应象开关一样地打开或关闭,这就是一些汽车厂商将霍尔效应传感器和其它类似电子设备称为霍尔开关的原因,该组件实际上是一个开关设备,而它的关键功能部件是霍尔效应传感器。测试步骤将驱动轮顶起模拟行使状态,也可以将汽车示波测试线加长进行行驶的测试。波形结果当车轮开始转动时,霍尔效应传感器开始产生一连串的信号,脉冲的个数将随着车速增加而增加,与图例相像,这是大约30英里/小时时记录的,车速传感器的脉冲信号频率将随车速的增加而增加,但位置的占空比在任何速度下保持恒定不变。车速传感器越高,在示波器上的波形脉冲也就越多。确认从一个脉冲到另一个脉冲的幅度,频率和形状是一致的,这就是说幅度够大通常等于传感器的供电电压,两脉冲间隔一致,形状一致,且与预期的相同。确定波形的频率与车速同步,并且占空比决无变化,还要观察如下内容:观察波形的一致性,检查波形顶部和底部尖角。观察幅度的一致性:波形高度应相等,因为给传感器的供电电压是不变的。有些实例表明波形底部或顶部有缺口或不规则。这里关键是波形的稳定性不变,若波形对地电位过高,则说明电阻过大或传感器接地不良。观察由行驶性能问题的产生和故障码出现而诱发的波形异常,这样可以确定与顾客反映的故障或行驶性能故障产生的根本原因直接有关信号问题。虽然霍尔效应传感器一般设计能在高至150℃温度下运行,但它们的工作仍然会受到温度的影响,许多霍尔效应传感器在一定的温度下(冷或热)会失效。如果示波器显示波形不正常,检查被干扰的线或连接不良

a.i.tek转速表及转速传感器工作原理m_tachtrol3

4!#(42/,?

4!",% /& #/.4%.43 &/2%7/2$ ).42/$5#4)/. -!4(%-!4)#!, &5.#4)/.3 3INGLE #HANNEL /PERATION $UAL #HANNEL /PERATION "I $LRECTLONAL /PERATION /540543 4(%/29 /& /0%2!4)/. (/7 4/ /0%2!4% 4(% 4!#(42/,? 4!#(/-%4%2 &).$).' 4(% 3#!,).' &!#4/23 &INDING THE 3CALING &ACTOR &OR #OMMON !PPLICATIONS 3INGLE #HANNEL AND "I $LRECTLONAL $UAL #HANNEL &INDING 4HE 3CALING &ACTOR &OR /THER !PPLICATIONS 3%,%#4).' 4(% -!4(%-!4)#!, &5.#4)/.3 $%&).).' 4(% "%(!6)/2 /& 4(% /540543 $ISPLAY !UTORANGLNG !NALOG /UTPUT :ERO 3CALE &ULL3COLE 3ETPOLNTS 3ETPOINT 4YPES 3ETPOINT "EHAVIOR ,ATCHLNG !UTO 2ESET 3AMPLE 3ET 5PS 3INGLE #HANNEL /PERATIONS $UAL #HANNEL /PERATION %.4%2).' 4(% #/.34!.43 #ONTROL &EATURES 4URNING /N 4HE 0OWER %NTERING 4HE 3CALING &ACTORS %NTERING 4HE &UNCTION #ONSTANT %NTERING #ONSTANTS 7HICH $EFINE /UTPUT "EHAVIOR $ISPLAY /UTPUT !NALOG /UTPUT 3ETPOINT /UTPUT 3ETPOINT /UTPUT 34/2).' 4(% #/.34!.43 3%,%#4).' 4(% ).054 /04)/.3

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

汽车用传感器试题库

精品文档)5个×6一、名词解释(、逆压电效应:指当在某些电介质的极化方向施加电场时,电介质就会在一定方向上产生机械变形或机应压力,电场撤去时,1电介质变形随之消失的现象。内部极化,同时在它的两个表面上会产生极性相反的电荷,外力正压电效应:某些电介质在沿着一定方向受到外力而变形时,去掉后,又恢复到不带电状态,外力方向改变,电荷极性随之改变的现象。2、传感器的迟滞:指传感器在输入量增大和输入量减小行程间,输入-输出特性曲线不一致的程度。3、传感器灵敏度:指传感器在稳态下,输出量变化值与输入量变化值的比值,K=dy/dx。分辨力:指传感器能检测到输入量最小变化量的能力。线性度:指传感器输入量与输出量之间的静态特性曲线偏离直线的程度。传感器量程:传感器能够测量的上限值与下限值的差称为量程。传感器的准确度:准确度常用最大引用误差来定义。4、内光电效应:指在光线的作用下使物体的电阻率发生改变的光电效应。外光电效应:指在光线的作用下使电子逸出物体表面的光电效应。5、压阻效应:在一块半导体的某一轴向施加一定的应力时,其电阻率产生变化的现象。流过霍尔元件时,在垂直于电流I6、霍耳效应:把霍尔元件至于磁感应强度为B的磁场中,磁场方向垂直于霍尔元件,当有电流和磁场的方向上产生感应电动势的现象。、差动电桥:菱形的四条边各接一个测量温度或应变力的电阻传感器,相邻桥臂传感器应变方向应相反,相对桥臂传感器应变7 方向应相同,组成一个电桥电路,用以消除电桥的相对非线性误差。称对称电桥:由四个测量温度或应变力的电阻传感器组成互相对称的电桥电路,四个电阻达到某一关系时,电桥的输出为零,电桥平衡,否则就有电压或电流输出。组成这种物体的材料吸收了光子能E的光子轰击,、光电效应:当用光照射在某一物体上时,可以看做是物体受到一连串能量为8 量而发生相应电效应的现象。、热电效应:闭合回路中存在电动势并且有电流产生,电流的强弱与两个结点的温度有关。9、压电效应:某些电介质,沿着一定方向对其施加外力而使它变形时,内部极化,相应地会在它的表面产生符号相反的电荷,10外力去掉后,又重新恢复不带电状态的现象。11、应变效应:导体或半导体材料在外力作用下产生机械形变,其电阻发生变化的现象。12、电涡流效应:电涡流的产生必然要消耗一部分能量,从而使产生磁场的线圈阻抗发生变化。、磁阻效应:由载流子在磁场中受到洛伦兹力而产生的致使某些金属或半导体的电阻值变化的现象。13 塞贝克效应:回路中产生的电势使热能转变为电能的一种现象。两种不同导电材料构成的闭合回路中,当两个接点温度不同,14、、莫尔条纹:两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果,当人眼无法分辨这两条线或两个物体时,只能15 看到干涉的花纹,这种光学现象就是莫尔条纹。16、感应同步器:利用电磁原理将线位移和角位移转换成电信号的一种装置。17爆震:混合气处在压缩过程中,火花塞还没有跳火时,高压混合气就达到了自燃温度,并开始猛烈燃烧的不正常燃烧现象。、点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度。18 、占空比:高电平在一个周期之内所占的时间比率。19 、传感器:能感受规定的被测量件并按照一定的规律转换成可用信号的器件或装置。20 21、转换元件 、敏感元件:指传感器中能直接感受被测量的变化,并转换为易于转换的非电量的元件。2223、热敏电阻:用半导体材料制成的敏感元件,大多为负温度系数,即阻值随温度增加而降低。 24、测量:是以确定被测量值为目的的一系列操作。 直接测量:指在使用仪表或传感器进行测量时,不需要经过任何运算就能直接从仪表或传感器上得出测量结果的方法。间接测量:指用直接测量法测得与被测量有确切函数关系的一些物理量,然后通过计算求得被测量的方法。 25、检测:是利用传感器,将生产科研需要的电量和非电量信息转化成为易于测量、传输、显示和处理的电信号的过程。 26、测量方法:指针对不同测量任务进行具体分析以找出切实可行的办法。 27、测量误差:被测量的测量值与真值之间的差异。 绝对误差:指被测量的测量值与被测量的真值之间的差值。 精品文档. 精品文档 满度相对误差:绝对误差与仪器满量程的百分比。 标称相对误差:绝对误差与被测量的测量值的百分比。 系统误差:在形同条件下,多次重复测量同一被测量时,其测量误差的大小和符号保持不变,或在条件改变时,误差按某一确定的规律变化。

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

几种重要的汽车传感器原理

几种重要的汽车传感器原理 一、传感器概述 传感器的概念:指能感受规定的物理量,并按照一定规律转换成可用输信号的器件或装置。简单的说,传感器即使把非电量转换成电量的装置。 汽车传感器的工作条件极为恶劣,因此,传感器能否精确可靠地工作至关重要。在该领域中,理论研究及材料应用发展迅速,半导体和金属膜技术研究及材料应用技术发展迅速,半导体和金属膜技术、陶瓷烧结技术等得到迅猛发展。智能化、集成化和数字化将是传感器的未来发展趋势。 传感器通常由敏感元件、转换元件及测量电路组成。敏感元件是指能直接感受被测量的部分。转换元件是指能将非电量转换成电量的部分。有些敏感元件可以直接输入电量。测量电路是指将转换元件输入的电量经过处理,以便进行显示、记录和控制的部分。测量电路中较多的使用电桥电路。比如后面要讲到的热线式空气流量计。 传感器的种类比较多,像我们一般碰到的传感器一般有: 温度传感器(冷却水温度传感器THW,进气温度传感器THA); 流量传感器(空气流量传感器,燃油流量传感器); 进气压力传感器MAP 节气门位置传感器TPS 发动机转速传感器 车速传感器SPD 曲轴位置传感器(点火正时传感器) 氧传感器 爆震传感器(KNK) 二、空气流量传感器 为了形成符合要求的混合气,使空燃比达到最佳值,我们就必须对发动机进气空气流量进行精确控制。下面我们来介绍一下几种常用的空气流量传感器。 1、卡门旋涡式空气流量计

涡流式空气流量传感器是利用超声波或光电信号,通过检测旋涡频率来测量空气流量的一种传感器。 众所周知,当野外架空的电线被风吹时,就会发出“嗡、嗡”的声音,且风速越高声音频率越高,这是气体流过电线后形成旋涡(即涡流)所致。液体、气体等流体均会产生这种现象。 同样,如果我们在进气道中放置一个涡流发生器,比如说一个柱状物,在空气流过时,在涡流发生器后部将会不断产生如图所示的两列旋转方向相反,并交替出现的旋涡。这个旋涡就称为卡门旋涡。 卡门旋涡式空气流量计就是利用这种这种旋涡形成的原理,测量气体流速,并通过流速的测量直接反映空气流量。 对于一台具体的卡门旋涡式空气流量计,有如下关系式:qv=kf , qv为体积流量,f为单列旋涡产生的频率,k为比例常数,它与管道直径,柱状物直径等有关。由这个关系式可知,体积流量与卡门涡流传感器的输出频率成正比。利用这个原理,我们只要检测卡门旋涡的频率f,就可以求出空气流量。 根据旋涡频率的检测方式的不同,汽车用涡流式空气流量传感器分为超声波检测式和光学式检测式两种。例如,中国大陆进口的丰田凌志LS400型轿车和台湾进口的皇冠3.0型轿车采用了光电检测涡流式空气流量器;日本三菱吉普车、中国长风猎豹吉普车和韩国现代轿车采用了超声波检测涡流式空气流量传感器。 (1)光学式卡门旋涡空气流量计 现代物理学光的粒子说认为,光是一种具有能量的粒子流,当物体受到光照射时,由于吸收了光子能量而产生的效应,称为光电效应。光敏晶体管是一种半 导体器件,它的特点就是受到光的照射时,它们都会产生内光电效应的光生伏特现象,从而产生电流。 工作原理:在产生卡门旋涡的过程中,旋涡发生器两侧的空气压力会发生变化,通过导孔作用在金属箔上,从而使其振动,发光二极管的光照在振动的金属箔上时,光敏晶体管接收到的金属箔上的反射光是被旋涡调制的光,再由光敏晶体管输出调制过的频率信号,这种频率信号就代表了空气的流量信号。 (2)超声波式卡门旋涡式空气流量计 超声波是指频率高于20HZ,人耳听不到的机械波。它的特性就是方向性好,穿透力强,遇到杂质或物体分界面会产生显著的反射,譬如自然界里的蝙蝠,鲸鱼等动物都是通过超声波来进行方位定向的。利用这种物理特性,我们可以把一些非电量转换成声学参数,通过压电元件转换成电量。

汽车传感器故障检修及其维修技术研究分析

龙源期刊网 https://www.sodocs.net/doc/426041425.html, 汽车传感器故障检修及其维修技术研究分析作者:朱培勇 来源:《科学与财富》2017年第12期 摘要:汽车传感器大多处于汽车的暴露部位,容易受到恶劣环境的影响,而在汽车正常 使用过程中也必然会出现磨损现象,所以汽车传感器系统发生故障的几率比较大,因此如何发现汽车传感器隐藏的问题并解决问题就显得尤为重要。本研究分析了汽车传感器发生故障的原因,有可能是信号传输故障,有可能是电路故障,还有可能是炭的积累过多,针对这几点问题,也重点介绍了几种检测和维修方法。 关键词:传感器;故障;积炭现象 前言:传感器是一类能够感受外界变化的物理量并按照一定规律转换成可用信号输出的器件或装置,在汽车的应用上十分广泛。汽车传感器的类型多种多样,它们能够实时检测和采集汽车各个部位的工作情况,并把所得到的信息数据反馈给计算机,计算机根据参数做出最恰当的选择来帮助人类更安全地驾驶汽车。汽车传感器大多处于汽车的暴露部位,容易受到恶劣环境的影响,所以出现的问题也较多,而本研究将重点分析汽车传感器发生故障的原因和检测方法。 1.简析传感器发生故障的原因 1.1信号传输故障 出现信号传输故障,可能是汽车传感器本身被损坏,所以感应不到外界情况,无法传输信息。汽车传感器大多处于汽车的暴露部位,容易受到恶劣环境的影响,例如:极端天气、碰撞、电磁干扰等。也有可能是传感器的感应装置失灵,传输错误信息,还有可能是在转换成电信号的过程中出了问题,物理量与电信号之间的转换规律错误,导致计算机识别电信号时呈现错误信息。 1.2电路故障 汽车的传感器有很多种,其中涉及到的方面也更广泛,因此当汽车计算机不呈现信息或呈现错误信息时,我们不应该只考虑传感器本身的问题,还应该将与之有关联的电路考虑在内。出现电路故障,有可能是电路本身被损坏,或因外力受损,或长时间未更换而老化,无法起到传输电流的作用,也有可能是电路某段被短路,电流未能经过,所以信息传递停滞。 1.3出现积炭现象 汽油是一种混合烃类物质,因其特殊的化学成分,在储存、运输的过程中,容易与空气发生氧化反应,生成胶状物质,或是汽油本身的质量不好,其中胶状物质含量高。这些胶状物质

磁电转速传感器的工作原理和特点

磁电转速传感器的工作原理和特点 发布时间:2011-06-16 来源:本站原创作者:无忧备件网 磁电式转速传感器是利用磁电感应来测量物体转速的,属于非接触式转速测量仪表。磁电式转速传感器可用于表面有缝隙的物体转速测量,有很好的抗干扰性能,多用于发动机等设备的转速监控,在工业生产中有较多应用。 磁电式转速传感器的工作原理 磁电式转速传感器是以磁电感应为基本原理来实现转速测量的。磁电式转速传感器由铁芯、磁钢、感应线圈等部件组成的,测量对象转动时,转速传感器的线圈会产生磁力线,齿轮转动会切割磁力线,磁路由于磁阻变化,在感应线圈内产生电动势。 磁电式转速传感器的感应电势产生的电压大小,和被测对象转速有关,被测物体的转速越快输出的电压也就越大,也就是说输出电压和转速成正比。但是在被测物体的转速超过磁电式转速传感器的测量范围时,磁路损耗会过大,使得输出电势饱甚至是锐减。 磁电式转速传感器的特点 磁电式转速传感器的工作方式决定了它有很强的抗干扰性,能够在烟雾、油气、水汽等环境中工作。磁电式转速传感器输出的信号强,测量范围广,齿轮、曲轴、轮辐等部件,及表面有缝隙的转动体都可测量。 磁电式转速传感器的工作维护成本较低,运行过程无需供电,完全是靠磁电感应来实现测量,同时磁电式转速传感器的运转也不需要机械动作,无需润滑。磁电式转速传感器的结构紧凑、体积小巧、安装使用方便,可以和各种二次仪表搭配使用。 现在的柴油机正在经历以柴油机电控化为核心的第3 次技术飞跃。ECU 技术是柴油机电控化的核心技术之一,它采集发动机的相位、转速( n )、燃油压力、油门位置、温度等信号,通过一定的算法得出泵油和喷油的参数,并驱动相应的执行器工作。在ECU 中,曲轴和凸轮轴相位传感器信号是整个发动机工作时序的基础,其作用相当于芯片中的时钟。发动机的n 、喷油相位以及判缸信号等都是通过这两个传感器计算处理得出的。因此,设计一种抗干扰能力强,可靠性高的曲轴和凸轮轴传感器信号处理模块对整个柴油机电控单元来说至关重要。 常用的发动机曲轴和凸轮轴相位传感器有霍尔式传感器和磁电式传感器两种。磁电式传感器具有成本低、结构简单、耐腐蚀、耐冲击、可靠性高和稳定性好等优点,故本研究采用两个磁电式传感器分别测量6 缸发动机的曲轴和凸轮

相关主题