搜档网
当前位置:搜档网 › 基于UG的模具编程设计

基于UG的模具编程设计

基于UG的模具编程设计
基于UG的模具编程设计

本设计是一副对典型型腔铣削零件件进行工艺分析、数控编程及完成加工,主要运用所学知识对零件图进行工艺分析、制定工艺路线、确定工艺方案。并运用UG软件进行造型和自动编程,最终完成零件的加工。设计表明:通过对该零件的工艺分析、造型、加工,深入了解了零件制造的全过程,加工完成后零件也达到了加工要求。造型、轨迹及G代码的生成也以最简洁的方式做出,达到了预期要求

摘要 (1)

第一章绪论 (3)

第二章基于UG自动编程的模具零件加工 (6)

3.1模具零件图 (6)

3.2移动坐标系 (6)

3 .3定义新的加工坐标系 (8)

3.4创建程序ABC1 .................................................................. 错误!未定义书签。

3.5创建刀具 (9)

3.6创建工序 (12)

(1)上表面精铣程序 (12)

(2)开粗程序 (18)

(3)精铣程序 (19)

(4)局部精铣程序 (20)

第三章后处理生成程序 (22)

4.1后处理 (22)

4.2生成程序 (23)

第四章总结与展望 (24)

致谢 (25)

参考文献 (26)

绪论

数控技术是用数字信息对机床运动和工作过程进行控制的技术,它是集传统的机械制造技术、计算机技术、现代控制技术、传感检测技术、网络通信技术和光机电技术等于一体的现代制造业的基础技术,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化和智能化起着举足轻重的作用。数控装备则是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透而形成的机电一体化产品。数控技术是制造自动化的基础,是现代制造装备的灵魂核心,是国家工业和国防工业现代化的重要手段,关系到国家战略地位,体现国家综合国力水平,其水平的高低和数控装备拥有量的多少是衡量一个国家工业现代化的重要标志。

1.1数控加工技术的发展趋势

1.1.1继续向开放式、基于PC的第六代方向发展

基于PC所具有的开放性、低成本、高可靠性、软硬件资源丰富等特点,更多的数控系统生产厂家会走上这条道路。至少采用PC机作为它的前端机,来处理人机界面、编程、联网通信等问题,由原有的系统承担数控的任务。PC机所具有的友好的人机界面,将普及到所有的数控系统。远程通讯,远程诊断和维修将更加普遍。

1.1.2向高速化和高精度化发展

这是适应机床向高速和高精度方向发展的需要。

1.1.3向智能化方向发展

随着人工智能在计算机领域的不断渗透和发展,数控系统的智能化程度将不断提高。

(1)应用自适应控制技术

数控系统能在运行过程中检测一些重要信息,并自动调整系统的有关参数达到改进系统运行状态的目的。

(2)引入专家系统指导加工

将熟练工人和专家的经验,加工的一般规律和特殊规律存入系统中,以工艺参数数据库为支撑,建立具有人工智能的专家系统。

(3)引入故障诊断专家系统

在设备故障诊断系统中借助多种数学原理和系统理论,形成了多种不同的诊断方法。

(4)智能化数字伺服驱动装置

可以通过自动识别负载,而自动调整参数,使驱动系统获得最佳的运行状态。

1.2.1 UG软件在行业中的应用

1.2.1 CAD/CAM的发展

随着我国改革开放步伐的进一步加快,中国正逐步成为全球制造业的基地,特别是加入WTO后,作为制造业基础的模具行业近年来得到了迅速发展。模具是工业生产的基础工艺装备,在电子、汽车、电机、电器、仪表、家电和通信等产品中,60%—80%的零部件都依靠模具成型。国民经济的五大支柱产业,即机械、电子、汽车、石化、建筑,都要求模具工业的发展与之相适应。模具是“效益放大器”,模具生产的最终产品的价值,往往是模具自身价值的几十倍、上百倍。模具生产水平的高低,己成为衡量一个国家产品制造水平高低的重要标志,在很大程度上决定着产品的质量、效益和新产品的开发能力。因此,我国要从一个制造业大国发展成为一个制造业强国,必须要振兴和发展我国的模具工业,提高模具工业的整体技术水平。同时,模具工业的发展也日益受到人们的重视和关注,国务院颁布的《关于当前产业政策要点的决定》也把模具列为机械工业改造序列的第一位,生产和基本建设序列的第二位。

随着CAD/CAM软件加工及快速成型等先进制造技术的不断发展,以及这些技术在模具行业中的普及应用,模具设计与制造领域正发生着一场深刻的技术革命,传统的二维设计及模拟量加工方式正逐步被基于产品三维数字化定义的数字化制造方式所取代。在这场技术革命中,逐步掌握三CAD/CAM软件的使用,并用于模具的数字化设

计与制造是其中的关键。我国模具工业发展前景非常广阔。国内外模具及模具加工设备厂商己普遍看好中国市场。随着对模具设计质量与制造要求的不断提高,以及CAD/CAM技术在模具制造业中的大规模推广应用,急需大批熟悉CAD/CAM技术应用的模具设计与制造的技术人才。这是企业最为宝贵的财富,也是企业走向世界、提高产品竞争力最根本的基础。而目前这方面的专业人才非常缺乏。

1.2.2UG概念

UG是目前市场上功能最极致的产品设计工具。它不但拥有現今CAD/CAM软件中功能最强大的Parasolid实体建模核心技术,更提供高效能的曲面建构能力,能夠完成最复杂的造形设计。它不但拥有现今CAD/CAM软体中功能最强大的Parasolid实体建模核心技术,更提供高效能的曲面建构能力,能够完成最复杂的造形设计。UG提供工业标准之人机介面,不但易学易用,更有无限次数的undo功能、方便好用的弹出视窗指令、快速图像操作说明、自订操作功能指令及中文化操作介面等特色,并且拥有一個强固的档案转换工具,能转换各种不同CAD应用软件的图档,以重复使用旧有资料。

Unigraphics(UG)是一套复杂产品设计制造的最佳系统,从概念设计到生产产品,UG广泛的运用在汽机车业、航太业、模具加工及设计业、医疗器材产业等等,近年来更将触角深及消费性市场产业中最复杂的领域—工业设计。运用其功能强大的复合式建模工具,设计者可依工作的需求选择最适合的建模方式;关联性的单一资料库,使大量零件的处理更加稳定。除此之外,组立功能、2D出图功能、模具加工功能及与PDM之间的紧密结合,使得UG在工业界成为一套无可匹敌的高阶CAD/CAM系统

第三章基于UG自动编程的模具零件加工

3.1模具零件图

如图3-1所示,为一个模具零件实体模型,长宽高为170mm*140mm*51mm 的方形零件。

图3-1 模具零件实体模型

3.2移动坐标系

双击编辑,出现下拉列表中选择移动对象命令或者按Ctrl+t,出现对话框并完成对话框如图3.2.1所示。再点击应用,在完成如图3.2.2所示的对话框,单击确定按钮就完成移动坐标系的任务如图3.2.3所示

图3.2.1

图3.2.2 图3.2.3

3.3定义新的加工坐标系

(1)单击“几何视图”图标,操作导航器显示几何视图

(2)单击“创建几何体”图标,弹出相应的对话框,如图2.1设置,确定后弹出“MCS”对话框,如图2.2

图2.1

图2.2

3.4创建程序ABC1

打开零件图,单击开始图标,选择“加工”选项,如图4-1创建程序操作。

图4-1 创建程序

3.5创建刀具

(1)单击插入命令出现如图3.5.1所示,再单击刀具命令出现图3.5.2所示,输入刀具名称D8,单击确定出现如图3.5.3所示再输入刀具直径刀刃刀具号补偿寄存器等,最后单击完成创建刀具D8的操作。出现如图3.5.4所示的刀具

(2)同上操作完成刀具D4R0.5和D4R1.5的建立

图3.5.1所示

图3.5.2所示

图3.5.3所示

图3.5.4所示

3.6创建工序

(1)上表面精铣程序

单击插入命令出现如图3.5.1所示,再单击工序命令出现如图3.6.1所示选择这个图标,输入程序名称为ABC1,单击完成创建工序的操作。出现如图3.6.2所示。

图 3.6.1

3.6.1

单击图标选择零件体,单击图标

选择要切削部位,选择要使用的刀具D8,

选择

切削模式,更改平面直径百分比为50,毛坯距离为3,每刀深度1,

底面余量0。如图

图3.6.2

3.6.2

单击图标进行切削参数的编辑,如图3.6.3所示。改完了后单击

3.6.4

单击进行非切削参数的调整,如图3.6.4与3.6.5所示。改好了后点击

图3.6.4

图3.6.5

3.6.5

单击进行进给率和进给速度的调整,如图3.6.6所示。改好了后单击

3.6.7

找到单击生成程序,如图3.6.8所示

图3.6.8

(2)开粗程序

点击创建工序,选择这个图标,输入程序名称为ABC2单击完成创建工序的操作。出现如图3.7.1

图3.7.1

刀具换为D4R0.5的刀,切削参数和非切削参数和上面基本一致。如图3.7.2所示

生成刀轨,并确认导轨,确定退出。如图

3.7.3所示

(3)精铣程序

点击创建工序,选择这个图标,输入程

序名称为ABC3击

完成创建工序

的操作。

刀具换为D4R0.5的刀,切削参数和非切削参数和上面基本一致。如图3.8.2所示 图

3.8.2

图3.8.1

生成刀轨,并确认导轨,确定退出。如图3.8.3所示

图3.8.3

(4)局部精铣程序

点击创建工序,选择这个图标,输入程序名称为ABC3击完成创建工序的操作。

刀具换为D4R0.5的刀,切削参数和非切削参数和上面基本一致。如图3.8.2所示

塑料模具设计实例

塑料模设计实例 塑料注射模具设计与制造实例是通过设计图1.1所示的防护罩的注射模,全面介绍了从塑料成形工艺分析到确定模具的主要结构,最后绘制出模具的塑料注射模具设计全过程。 设计任务: 产品名称:防护罩 产品材料:ABS(抗冲) 产品数量:较大批量生产 塑料尺寸:如图1.1所示 塑料质量:15克 塑料颜色:红色 塑料要求:塑料外侧表面光滑,下端外沿不允许有浇口痕迹。塑料允许最大脱模斜度0.5° 图1.1 塑件图 一.注射模塑工艺设计 1.材料性能分析 (1)塑料材料特性 ABS塑料(丙乙烯—丁二烯—苯乙烯共聚物)是在聚苯乙烯分子中导入了 丙烯腈、丁二烯等异种单体后成为的改性共聚物,也可称为改性聚苯乙烯,具有 比聚苯乙烯更好的使用和工艺性能。ABS是一种常用的具有良好的综合力学性 能的工程材料。ABS塑料为无定型料,一般不透明。ABS无毒、无味,成型塑 料的表面有较好的光泽。ABS具有良好的机械强度,特别是抗冲击强度高。ABS 还具有一定的耐磨性、耐寒性、耐水性、耐油性、化学稳定性和电性能。ABS 的缺点是耐热性不高,并且耐气候性较差,在紫外线作用下易变硬发脆。 (2)塑料材料成形性能

使用ABS 注射成形塑料制品时,由于其熔体黏度较高,所需的注射成形压力较高,因此塑料对型芯的包紧力较大,故塑料应采用较大的脱模斜度。另外熔体黏度较高,使ABS 制品易产生熔接痕,所以模具设计时应注意减少浇注系统对料流的阻力。ABS 易吸水,成形加工前应进行干燥处理。在正常的成形条件下,ABS 制品的尺寸稳定性较好。 (3)塑料的成形工艺参数确定 查有关手册得到ABS (抗冲)塑料的成形工艺参数: 密 度 1.01~1.04克/mm3 收 缩 率 0.3%~0.8% 预热温度 80°c~85°c ,预热时间2~3h 料筒温度 后段150°c~170°c ,中段165°C~180°c ,前段180°c~200°c 喷嘴温度 170°c~180°c 模具温度 50°c~80°c 注射压力 60~100MPa 注射时间 注射时间20~90s ,保压时间0~5s ,冷却时间20~150s. 2.塑件的结构工艺性分析 (1)塑件的尺寸精度分析 该塑件上未注精度要求的均按照SJ1372中8级精度公差值选取,则其主要尺寸公差标注如下(单位均为mm ): 外形尺寸:26.0040+φ、 1.2050+、12.0045+、94.0025+R 内形尺寸:26.008.36+φ 孔 尺 寸:52.0010+φ 孔心距尺寸:34.015± (2)塑件表面质量分析 该塑件要求外形美观,外表面表面光滑,没有斑点及熔接痕,粗糙度可取Ra0.4μm ,下端外沿不允许有浇口痕迹,允许最大脱模斜度0.5°,而塑件内部没有较高的表面粗糙度要求。 (4)塑件的结构工艺性分析

InventorMold塑料模具设计实战word文档

Inventor Mold塑料模具设计实战 默认分类 2010-05-28 00:36:30 阅读16 评论0 字号:大中小订阅 本文旨在与读者分享Inventor Mold的设计思路。其特点是在一款三维设计软件中完成所有的设计,并且集成模流分享软件Mold Flow 功能,满足塑料模具设计的整体解决方案。 随着塑料模具行业的快速发展、塑料模具制造精度的提高以及模具行业的激烈竞争,使得消费者对塑料模具设计的要求越来越高,必须同时考虑设计精度和设计周期的影响。目前,大部分塑料模具设计都是在三维软件中进行分模设计,在二维中进行排位的设计。这种方式,由于三维软件和二维软件分别独立,缺乏关联,存在着一些弊病,很容易出现设计的错误。另外三维与二维的“拼凑式”设计, 也严重影响了塑料模具设计的精度。 下面以一个实例,来介绍Inventor Mold的设计流程。塑料产品如图1所示。该产品的特点是需要修补孔,要做抽芯机构。 1.新建模具设计 打开Inventor Mold后,新建一塑料模具设计,进入到Inventor Mold塑料模具设计的环境下,在未导入塑料产品之前,其中很多 的指令都处于不可用状态,如图2所示。

2.导入塑胶产品 执行“塑料零件”指令,选择塑件产品,将塑件产品导入到塑料模具设计环境中,如图3所示。此时可看到菜单都已经被激活,如 图4所示。

3.调整出模方向 此步骤是用来调整塑件产品的出模方向,当塑件导入模具设计环境后,会有一个默认的方向,但是默认的方向有可能不是正确的模具出模方向,所以必须进行调整。如图5所示,这里调整出模方向非常重要,因为Inventor Mold自动补孔(自动修补破孔)方式会根据 出模的方向来定。 4.选择材料 材料库是Inventor Mold的一大特色,Inventor Mold基本上含有模具行业常用的材料,共有七千多种塑料材料,且每种材料都有其属性,包括厂商以及牌号,当然还包括收缩率。之所以Inventor Mold含有如此丰富的材料库,那是因为Inventor Mold中含有Mold Flow 的功能,在进行模流分析时,必须先定义具体的材料,才可以进行工艺的设定和模流的分析。 需要特别注意的是,如果没有选定材料,后面的模流分析将不能进行,收缩率也将没有参考值,如图6所示。

塑料模具设计说明书实例

塑料模具设计说明书实 例 标准化管理部编码-[99968T-6889628-J68568-1689N]

塑 料 模 具 设 计 说 明 书 姓名吴高安 班级模具1301

塑料模具设计说明书 目录

1. 塑件的工艺分析 塑件的成型工艺性分析 塑件如图1所示。 图1 塑件图 产品名称:套管 产品材料:ABS 产品数量:较大批量生产 塑件尺寸:如图1所示 塑件重量:25克 塑件颜色:红色 塑件要求:塑件外侧表面光滑,下端外沿不允许有浇口痕迹。塑件允许最大脱模斜度° 塑件材料ABS的使用性能 可参考《简明塑料模具设计手册》P30表1-13综合性能较好,冲击韧度、力学强度较高,尺寸稳定,耐化学性、电气性能良好;易于成形和机械加工,与有机玻璃的熔接性良好,可作双色成形塑件,且表面可镀铬。 适于制作一般机械零件、减摩耐磨零件、传动零件和电信结构零件。 塑件材料ABS的加工特性 可参考《简明塑料模具设计手册》P32表1-14无定型塑料,其品种很多,各品种的机电性能及成形特性也各有差异,应按品种确定成形方法及成形条件。 吸湿性强,含水量应小于%,必须充分干燥,要求表面光泽的塑件应要求长时间预热干燥。 流动性中等,溢边料 mm左右(流动性比聚苯乙烯,AS差,但比聚碳酸酯、聚氯乙烯好)。

比聚苯乙烯加工困难,宜取高料温、模温(对耐热、高抗冲击和中抗冲击型树脂,料温更宜取高)。料温对物性影响较大、料温过高易分解(分解温度为250℃左右,比聚苯乙烯易分解),对要求精度较高塑件,模温宜取50~60℃,要求光泽及耐热型料宜取60~80℃。注射压力应比加工聚苯乙烯稍高,一般用柱塞式注塑机时料温为180~230℃,注射压力为100~140 MPa,螺杆式注塑机则取160~220℃,70~100 MPa为宜。 模具设计时要注意浇注系统,选择好进料口位置、形式。推出力过大或机械加工时塑件表面呈现“白色”痕迹(但在热水中加热可消失)。脱模斜度宜取2℃以上。 塑件的成型工艺参数确定 可参考《简明塑料模具设计手册》P54表1-18查手册得到ABS塑料的成型工艺参数: 适用注射机类型螺杆式 密度~ g/cm3; 收缩率~ % ; 预热温度 80C°~ 85C°,预热时间 2 ~ 3 h ; 料筒温度后段150C°~170C°,中段180C°~200C°,前段160C°~180C°; 喷嘴温度 170C°~ 180C°; 模具温度 50C°~ 80C°; 注射压力 60 ~ 100 MPa ; 成型时间注射时间20 ~ 90s ,保压时间0 ~ 5s ,冷却时间20 ~ 120s 。 2 模具的基本结构及模架选择 模具的基本结构 确定成型方法 塑件采用注射成型法生产。为保证塑件表面质量,使用直浇口成型,因此模具应为单分型面注射模。

模具设计实例教程

目录 一、课程报告 摘要:介绍铸造模、锻模、级进模、汽车覆盖件模和塑料注射模CAD/CAE/CAM技术的发展概况并论述了模具CAD/CAE/CAM技术的最新开发成果和发展趋势。 模具CAD/CAE/CAM是改造传统模具生产方式的关键技术,是一项高科技、高效益的系统工程。它以计算机软件的形式,为企业提供一种有效的辅助工具,使工程技术人员借助于计算机对产品性能、模具结构、成形工艺、数控加工及生产管理进行设计和优化。模具CAD/CAE/CAM技术能显著缩短模具设计与制造周期,降低生产成本和提高产品质量已成为模具界的共识。 与任何新生事物一样,模具CAD/CAE/CAM在近二十年中经历了从简单到复杂,从试点到普及的过程。进入本世纪以来,模具CAD/CAE/CAM技术发展速度更快、应用范围更广,为了使广大模具工作者能进一步加深对该技术的认识,更好发挥模具CAD /CAE/CAM的作用,本文针对模具中应用最广泛、最具有代表性的铸造模、锻模、级进模、汽车覆盖件模和塑料注射模CAD/CAE/CAM的发展状况和趋势作概括性的介绍和分析。1.铸造模CAD/CAE/CAM的发展概况铸造成形过程模拟的探索性工作始于求解铸件的温度场分布。1962年丹麦的Fursund用有限差分法首次对二维形状的铸件进行了凝固过程的传热计算,1965年美

国通用汽车公司Henzel等对汽轮机铸件成功进行了温度场模拟,从此铸件在模具型腔内的传热过程数值分析技术在全世界范围内迅速开展。从上世纪70年代到80年代,美国、英国、法国、日本、丹麦等相继在铸件凝固模拟研究和应用上取得了显著成果,并陆续推出一批商品化模拟软件。进入90年代后,我国的高等院校,如清华大学和华中科技大学在该领域也取得了令人瞩目的成就。单纯的传热过程模拟并不能准确计算出铸件的温度变化和预测铸造中可能产生的缺陷,充模过程对铸件初始温度场分布的影响以及凝固过程中液态金属的流动对铸件缺陷形成的影响都是不可忽视的因素。铸件充模过程的模拟技术始于上世纪8 0年代,它以计算流体力学的理论和方法为基础,经历十余载,从二维简单形状开始,逐步深化和扩展,现已成功实现了三维复杂形状铸件的充模过程模拟,并能将流动和传热过程相耦合。目前国外已有一批商品化的三维铸造过程模拟软件,如日本的SOL IDIA、英国的SOLSTAR、法国的SIMULOR、瑞典的NOVACAST、德国的MAGMA和美国的AFSOLID、PROCAST等。国内也有清华大学的铸造之星、华中科技大学的华铸CAE等。这些铸造模CAE软件已覆盖铸钢、铸铁、铸铝和铸铜等各类铸件,大到数百吨,小至几千克,无论是在消除缩孔和缩松,还是在优化浇冒口设计,改进浮渣夹渣等方面都发挥了显著的作用。伴随着CAE技术在铸造领域的成功应用,铸造工艺及模具结构CAD的研究和应用也在不断深入,国外已陆续推出了一些应用软件,如美国铸造协会的

双色注射模具设计10个实例(经典案例)

这是一款手机护套,如下图 产品分析: 此款为某品牌手机的外圈护套,由二种塑料(PC+TPE)组成。由于要求外形美观光滑,分模线必须做在内侧圆弧切点,所以外模要四面滑开,再看内侧,四周全部是内扣的,必须全方位内抽芯,也就是俗称的“爆炸芯”。 关于“爆炸芯”的模具结构,假如是普通的注塑模具,已经有非常经典的机构,我下面将有详细的介绍。现在问题是双色模具,有二组动模和二组定模,二组动模的所有部件是完全一致的,要在双色注塑机的转盘上进行180度旋转,二种不同的塑料分别射进模腔,注射硬胶(PC)时动模的顶出机构和抽芯机构不动作,再注射软胶(TPE)并开模后,对准软胶料筒的一侧的动模的抽芯机构和顶出机构才开始动作,将完整的双色制品顶出。由于动模旋转后,交换又合模后的浇口必须在同一位置,所以软胶和硬胶的浇口的处理显得令人困惑。

由于模具必须四周都要进行“内外同抽”,内、外滑块怎样排列,轨道设置在哪里?这个问题同样有被逼入墙角的感觉。 且不谈模具滑块机构的复杂性,我们从双色模具的基本原理来考虑,硬胶部分的成型和内外同抽机构是一定要设置在定模一侧的,软胶部分的成型机构也要设置在定模。而且这个部分是由内外同抽的机构组成的凸起插入到动模的凹槽中。转盘旋转180度后,这组凸起刚好插入到另外一个动模的凹槽中。也就是说,二个定模上的由内外同抽滑块组成的凸起的外部形状和尺寸是完全相同的。仅仅是成型软胶和硬胶的型面不同而已。 问题的难点是,这个凸起会分成上下二层,一层向外移动,另一层向内移动,也就是俗称的“内外同抽”,合成的凸起的侧面是一个统一的斜面,但是,传统的滑块必须要有滑动轨道等必要的条件,怎样设置轨道?这便成了本案例的核心问题。 我是这样设置动模部分的凹槽和定模部分凸起的。

注射模具设计实例样稿

第二章 注塑模具设计实例 实例一:单分型面注塑模具设计 一、塑件工艺性分析 该塑件是一塑料瓶盖,如图2一1所示,塑件壁厚属薄壁塑件,生产批量很大,材料为聚乙烯(PE ,在高密度聚乙烯中掺入了部分低密度聚乙烯,改善塑件的柔韧性),成型工艺性很好,可以注射成型。 二、塑成型设备的选择及成型工艺规程的编制 1. 注射机的选用 1)注射量的计算 通过计算或Pro/E 建模分析,塑件质量m 为2.8g ,塑件体积V 1=3.077cm 3流道凝料的质量m 2还是个未知数,可按塑件质量的0.6倍来估算。从上述分析中确定为一模八腔,所以注射量为: m =1.6nm = 1.6 ×8 ×2.8=35. 84g 2)塑件和流道凝料在分型面上的投影面积及所需锁模力的计算 流道凝料(包括浇口)在分型面上的投影面积A 2,在模具设计前是个未知值,根据多型腔模的统计分析,A 2是每个塑件在分型面上的投影面积A 1的0.2倍~0.5倍,因此可用0. 35 nA 1来进行估算,所以 A=nA 1+A 2=nA 1+0. 35nA 1=1.35nA 1=8412. 336mm2 式中 A 1= 24 d = 0. 785 ×31. 52=778. 92mm 2 F m =A p 型=8412. 336 ×30=252370N =252. 37kN 式中型腔压力p 型取30MPa (因是薄壁塑件,浇口又是潜伏式浇口,压力损失大,取大一些)。 3)选择注射机 根据每一生产周期的注射量和锁模力的计算值,可选用SZ 一60/450卧式注射机,见表2一1 2. 注塑成型工艺参数选用 图2—1

三、塑模具结构方案设计 1.型腔数量的确定及型腔的排列 1)型腔数量的确定 该塑件精度要求不高,又是大批大量生产,可以采用一模多腔的形式。考虑到模具制造费用、设备运转费用低一些,初定为一模八腔的模具形式。 2)型腔排列形式的确定

注塑模具设计实例

二、注塑模具设计实例 实例1——电流线圈架的模具设计及制造 塑料制品如图3—219所示,大批量生产,试进行塑件的成型工艺和模具设计,并选择模具的主要加工方法与工艺。 图3— 219 电流线圈架零件图 (一)成型工艺规程的编制 1.塑件的工艺性分析 (1)塑件的原材料分析 (2)塑件的结构和尺寸精度表面质量分析 1)结构分析。从零件图上分析,该零件总体形状为长方形,在宽

度方向的一侧有两个高度为8.5mm ,R5mm 的两个凸耳,在两个高度为12mm 、长、宽分别为17mm 和13.5mm 的凸台上,一个带有的凹槽(对称分布),另一个带有4.lmmXl .2 mm 的凸台对称分布。因此,模具设计时必须设置侧向分型抽芯机构,该零件属于中等复杂程度。 2)尺寸精度分析。该零件重要尺寸如:0 12.01.12-mm 、04.002.01.12++mm 、 14.002.01.15++mm 、012.01.15-mm 等精度为3级(Sj1372—78), 次重要尺寸如:13.5±0.11、0 2.017-mm 、10.5±0.1mm 、02.014-mm 等的尺寸精度为4~5级 (Sj 1372—78)。 由以上分析可见,该零件的尺寸精度中等偏上,对应的模具相关零件的尺寸加工可以保证。 从塑件的壁厚上来看,壁厚最大处为1.3mm ,最小处为0.95mm ,壁厚差为0.35mm ,较均匀,有利于零件的成型。 3)表面质量分析。该零件的表面除要求没有缺陷、毛刺,内部不得有导电杂质外,没有特别的表面质量要求,故比较容易实现。 综上分析可以看出,注射时在工艺参数控制得较好的情况下,零件的成型要求可以得到保证。 (3)计算塑件的体积和质量 计算塑件的质量是为了选用注射机及确定型腔数。经计算塑件的体积为V =4087mm 3; 计算塑件的质量:根据设计手册可查得增强聚丙烯的密度为ρ=1.04g /cm 3。 故塑件的质量为W =V ρ=4.25g

注塑模具设计实例

注塑模具设计实例 实例1――电流线圈架的模具设计及制造 塑料制品如图3— 219所示,大批量生产,试进行塑件的成型工艺 和模具设计,并选择模具的主要加工方法与工艺。 图3— 219 电流线圈架零件图 (一)成型工艺规程的编制 1. 塑件的工艺性分析 (1) 塑件的原材料分析 (2) 塑件的结构和尺寸精度表面质量分析 1)结构分析。从零件图上分析,该零件总体形状为长方形,在宽 度方向的一侧有两个高度为 8 5mm R5mr 的两个凸耳,在两个高度 为12mm 长、宽分别为17mm 和13. 5mn fi 勺凸台上,一个带有的凹槽 (对称分布),另一个带有4. ImmXl . 2 mm 的凸台对称分布。因此, 模具设计时必须设置侧向分型抽芯机 65 13 5±O.I1 13.5±O. II 32 ±01 8-B 4*1 技术農求 I 龍角处允杵RzO 久 2杓冲 视图中41X1.2为 两牛通孔" 件袁面不得莉毛#1,内 部不 得有异电杂flt 4材料:増强 緊丙熄

构,该零件属于中等复杂程度。 2) 尺寸精度分析。该零件重要尺寸如:I2.i0o.i2mm 12.1 o.°l mm 15.1 0.02mm i5.l0o.i2mm等精度为3级(Sj1372 —78),次重要尺寸如:13.5 士0. 11、1700.2mm 10. 5± 0. 1mm 1400.2mn等的尺寸精度为4~5 级(Sj 1372 —78)。 由以上分析可见,该零件的尺寸精度中等偏上,对应的模具相关零件的尺寸加工可以保证。 从塑件的壁厚上来看,壁厚最大处为1. 3mm最小处为0. 95mm 壁厚差为0. 35mm较均匀,有利于零件的成型。 3) 表面质量分析。该零件的表面除要求没有缺陷、毛刺,内部不 得有导电杂质外,没有特别的表面质量要求,故比较容易实现。 综上分析可以看出,注射时在工艺参数控制得较好的情况下,零 件的成型要求可以得到保证。 (3) 计算塑件的体积和质量 计算塑件的质量是为了选用注射机及确定型腔数。经计算塑件的 体积为V= 4087ml3!; 计算塑件的质量:根据设计手册可查得增强聚丙烯的密度为p= 3 1.04g / cm。 故塑件的质量为W= V p= 4.25g 采用一模两件的模具结构,考虑其外形尺寸、注射时所需压力和工厂现有设备等情况,初步选用注射机为XS-Z—60型。 2. 塑件注射工艺参数的确定 查找附录1和参考工厂实际应用的情况,增强聚丙烯的成型工艺参数可

模具设计实例

塑料盖零件模具设计流程 塑料盖零件模具设计流程如下: 1、初始化项目。 (1)打开塑料盖模型文件“gaizi.prt”。 (2)启动UG NX 8.5,选择下拉菜单“开始—>所有应用模块—>注塑模向导”,打开“注塑模向导”工具栏。 (3)载入产品模型。单击“注塑模向导”的“初始化项目”按钮,弹出“初始化项目”对话框。在改对话框中,第1步,选取打开的“gaizi”(只有一个模型时,系统自动选取该模型);第2步,设置项目目录,注意要新建一个文件夹存放系统生成的模具装配文件;第3步,设置材料和收缩率;第4步,设置单位;第5步,单击确定,完成产品模型的加载。此时,激活装配导航器,可见系统已经创建了项目的装配结构。 2、定义模具坐标系。 单击“注塑模向导”的“模具CSYS”按钮,弹出“模具CSYS”对话框。本例中,X-Y平面是产品的最大面,+Z方向为定出方向,不需要变化模具坐标系。虽然不需要变化坐标系,但是还是要在“模具CSYS”对话框单击确定,这样才能完成模具坐标系的设置。

3、定义工件。 单击“注塑模向导”的“工件”按钮,弹出“工件”对话框。选择“工件方法”为“用户定义的块”,其他参数采用默认值,单击确定,生成工件。 4、型腔布局。 单击“注塑模向导”的“型腔布局”按钮,弹出“型腔布局”对话框。第1步,设置布局类型;第2步,设置平衡布局的型腔参数;第3步,设置布局方向;第4步,生成布局;第5步,自动对准中心,将坐标系移动至分型面的中心;第6步,单击“编辑布局”按钮,弹出“插入腔体”对话框,定义圆角类型为1,R为15,单击确定,插入与工件尺寸匹配的腔体。 5、模具分型。 本例模具分型包括:设计区域,创建区域和分型线,创建分型面,创建型芯和型腔。 单击“注塑模向导”的“模具分型工具”按钮,弹出“模具分型工具”工具条。 (1)设计区域。其操作步骤为: 在“模具分型工具”工具条单击“检查区域”按钮,系统弹出“检查区域”

注射模具设计实例样稿

第二章注塑模具设计实例 实例一:单分型面注塑模具设计 一、塑件工艺性分析 该塑件是一塑料瓶盖,如图2一1所示,塑件壁厚属薄壁塑件,生产批量很大,材料为聚乙烯(PE,在高密度聚乙烯中掺入了部分低密度聚乙烯,改善塑件的柔韧性),成型工艺性很好,可以注射成型。 图2—1 二、塑成型设备的选择与成型工艺规程的编制 1.注射机的选用 1)注射量的计算 通过计算或Pro/E建模分析,塑件质量m为2.8g,塑件体积V1=3.077cm3流道凝料的质量m2还是个未知数,可按塑件质量的0.6倍来估算。从上述分析中确定为一模八腔,所以注射量为: m=1.6nm= 1.6 ×8 ×2.8=35. 84g 2)塑件和流道凝料在分型面上的投影面积及所需锁模力的计算 流道凝料(包括浇口)在分型面上的投影面积A2,在模具设计前是个未知值,根据多型腔模的统计分析,A2是每个塑件在分型面上的投影面积A1的0.2倍~0.5倍,因此可用0. 35 nA1来进行估算,所以 A=nA1+A2=nA1+0. 35nA1=1.35nA1=8412. 336mm2 式中 A1= = 0. 785 ×31. 52=778. 92mm2 F m=A p型=8412. 336 ×30=252370N=252. 37kN 式中型腔压力p型取30MPa(因是薄壁塑件,浇口又是潜伏式浇口,压力损失大,取大一些)。 3)选择注射机

根据每一生产周期的注射量和锁模力的计算值,可选用SZ一60/450卧式注射机,见表2一1 2.注塑成型工艺参数选用 三、塑模具结构方案设计 1.型腔数量的确定及型腔的排列 1)型腔数量的确定 该塑件精度要求不高,又是大批大量生产,可以采用一模多腔的形式。考虑到模具制造费用、设备运转费用低一些,初定为一模八腔的模具形式。

注塑模设计案例1

4.2 首饰盒注射模具设计与制造 如图4-2、4-3所示首饰盒塑料件工程图,图4-4为三维结构。塑件材料为ABS,未注壁厚均为1.5mm,颜色为灰色或瓷白,大批量生产。要求塑件不允许有飞边、毛刺、缩孔、气泡、裂纹与划伤等缺陷。试设计并制造注射模具。 图4-2 合盖塑件图4-3 盒体塑件 4.2.1 首饰盒塑件原材料与结构工艺性分析 1.首饰盒原材料性能与使用要求 该塑件所用塑料为ABS,是家用电器及汽车行 业常用的一种热塑性工程塑料,具有优良的综合性 能。 模具设计方面注意事项:需采用较高的料温与 模温;注意选择浇口位置,避免浇口与熔接痕位于 塑料件显眼处;塑料件顶出时表面易顶白或拉白, 因此应合理设计顶出机构;溢边值为0.04mm。 2. 注塑成型工艺条件 1) ABS具有吸湿性,吸水率少高,若存放严密,图4-4 首饰盒塑件三维结构 可不干燥。通常工厂生产前都有干燥。干燥温度T=80-85°C,干燥时间2-4小时。成型收缩率在0.3%~0.8%之间,通常取平均收缩率0.5%。 2)注塑工艺条件 ①熔化温度 170-200℃,建议温度185℃;②模具温度 50-80℃(模具温度将影响

塑件表面粗糙度,温度较低则导致塑件表面质量差);③注射压力取50-100MPa;④注射速度宜中高速度。 (3)注意点对于电镀产品,表面质量要好,不允许有顶出痕迹。壁厚不能太薄,厚壁有利于电镀。 3. 首饰盒结构工艺性分析 1)塑件尺寸精度分析 该塑件属于日用品,零件较小,外形不复杂,精度要求不高,配合部位精度为MT4,其他尺寸精度为MT6。注射成型尺寸精度容易保证。 2)塑件表面质量分析 该塑件要求外形美观,表面粗糙度0.1μm,要求较高。另外求塑件不允许有飞边、毛刺、缩孔、气泡裂纹与划伤等缺陷。壁厚为1.5mm,容易注射成型,ABS成型性能较好,塑件外观质量容易保证。 3)塑件结构工艺性分析 由塑件图纸可知,零件为盒形体,结构简单,尺寸精度一般,壁厚均匀且符合最小厚度要求,采用注射成型工艺方案最佳。 4.2.2 注射成型设备选择与成型工艺编制 1. 模具型腔的选择 该塑件尺寸较小,复杂程度一般,但表面质量要求较高,两个塑件外形相似,质量接近,采用一模两腔的模具结构较合理,即一次生产可注射盒体和盒盖两个塑料件。 2. 塑件体积和质量计算 由三维软件可计算塑件体积为:V=V1+V2= cm3 流道体积V′= cm3 查ABS塑料密度ρ=1.04g/cm3,塑件质量m=(V+ V′)ρ=( + )×1.04= g 3. 注射机初步选择 根据塑件外形尺寸,估算模架尺寸。ABS塑料适合螺杆式注射机,查塑料注射成型工艺参数表,注射压力在P=50~100Mpa之间。 注射机锁模力:F机≥P模·A面 浇注系统和塑件在分型面上的投影面积 A面≈π(D1/2)2 +π(D1/2)2+π(D3/2)2+6×35=3.14×(24.92+29.52+32)+210 =4707.7+210=4917.7mm2=4.92×10-3m2 查本书表7-21,得模具内型腔压强P模=30×106Pa F机≥P模·A面=20×106×4.92×10-3=98400N=98.4KN 查本书表8-12,XS-Z-60注射机锁模力和注射量均能保证。初选螺杆式注射机型号XS-Z-60。 3. 编制注射成型工艺

相关主题