搜档网
当前位置:搜档网 › 电化学法制备石墨烯及其导电特性

电化学法制备石墨烯及其导电特性

电化学法制备石墨烯及其导电特性
电化学法制备石墨烯及其导电特性

Vol.33高等学校化学学报No.82012年8月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 1804~1808电化学法制备石墨烯及其导电特性

朱龙秀,李英芝,赵 昕,张清华

(东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海200051)

摘要 采用电化学方法将石墨层电解剥离,得到分散于电解质溶液的结构较为完整的石墨烯.用透射电子显微镜和拉曼光谱分析了石墨烯的形貌和结构,利用四探针法测定了石墨烯导电特性.实验数据和理论拟合结果表明,当100K

关键词 石墨烯;电化学法;电导率

中图分类号 O646 文献标识码 A DOI :10.3969/j.issn.0251?0790.2012.08.031

收稿日期:2011?11?22.

基金项目:国家自然科学基金(批准号:51173024)和教育部博士点基金(批准号:20110075110009)资助.

联系人简介:张清华,男,教授,主要从事高性能纤维和纳米复合材料的研究.E?mail:qhzhang@https://www.sodocs.net/doc/4517438312.html,

2004年Geim 等[1]发现石墨烯(Graphene,又称单层石墨或二维石墨)是一种由sp 2杂化碳原子组成的六角形蜂窝状二维材料.石墨烯具有非常高的比表面积(~2630m 2/g)二电子迁移率[~200000cm 2/(V四s)]二杨氏模量(~1000GPa)和热导性[~5000W /(m四K)],引起了人们的极大兴趣[2,3].其在电学方面的优异性能使其在纳米导电复合材料二纳米电子器件二场效应晶体管二超级电容器及电池等方面具有广泛的应用前景[4,5].因此,高质量高导电性能石墨烯的制备是石墨烯实际应用的关键问题之一.

通过氧化还原法[6~8]可以大批量地制备石墨烯,但是氧化石墨烯(GO)的制备过程会在其表层生

成大量的含氧官能团,破坏了石墨烯的结构,导致导电性能下降[9].液相剥离法[10]因其方法简单成为近几年研究的热点,但石墨的膨胀程度和超声功率与时间等较难控制,对大规模制备石墨烯有较大难度.因此,寻求一种绿色简单且易重复操作的方法是目前石墨烯研究的热点之一.Liu 等[11]以离子液体1?辛基?3?甲基?咪唑六氟磷酸盐等作为电解液,将2根石墨电极分别置于电解槽的阳极和阴极,加10~20V 的稳压直流电源于正负电极,石墨被功能化并逐渐剥离得到石墨烯.Wang 等[12]以聚苯乙烯磺酸钠溶液作为离子电解液,高纯石墨棒作为正负电极,直流电解制得石墨烯.

鉴于离子液体或聚电解质合成较为复杂,副产物的分离较为困难,本文采用廉价的硫酸钠溶液作为电解质,通过电化学方法制备石墨烯,所得石墨烯可以在N ,N ?二甲基甲酰胺(DMF)二N ?甲基吡咯烷酮(NMP)或DMF 和NMP 与水的混合溶剂中稳定分散,制备过程较为绿色环保.对石墨烯的形貌和结构进行了表征,并通过变程跳跃(VRH)模型和热激活(TA)模型拟合研究了石墨烯的导电机理,探讨了石墨烯中载流子的迁移方式.1 实验部分

1.1 试 剂

石墨碳棒,光谱纯,上海碳素厂;无水硫酸钠,A.R.级,上海市四赫维化工有限公司,配成0.6

mg /mL 的水溶液.1.2 石墨烯的电解及提纯

将80mL 硫酸钠水溶液加入到冰水浴的100mL 烧瓶中,再将2个高纯的石墨棒平行插入硫酸钠

溶液中,两电极间距3cm,加10V 直流电压,持续电解5h,得到石墨烯电解液.因电解过程不断放热,通过冰水控制电解液温度为35~40℃.

取静置后的上层石墨烯电解液于超声波清洗器中超声振荡5min,在高速离心机中以转速1000r /min 离心10min,去除离心管底部的沉积物.分别加水和乙醇以转速10000r /min 反复离心30min 以除去石墨烯电解液中的硫酸钠,直至用氯化钡检测洗涤后的石墨烯电解液未发现沉淀.将洗涤后的石墨

烯分散液于60℃干燥4h 即可得到石墨烯,保存备用.

1.3 仪器与表征WY 型直流稳压稳流电源,上海科艺仪器仪表厂.采用日本Hitachi 的H?800型透射电子显微镜进行TEM 表征,取少量石墨烯的DMF 分散液滴加到铜网上,经红外灯烘干后测试.采用英国Renishaw inVia?Reflex 型激光显微拉曼光谱仪进行Raman 分析,记录范围500~3000cm -1,激光波长532nm,制样过程为直接将石墨烯分散液多次重复滴加在1cm×2cm 的载玻片上,烘干.将Keithley 236型电阻仪与Lakeshore 331温控仪联用进行导电性测试,采用四探针法测定不同温度下石墨烯的电阻值,温度范围100~500K.采用美国Veeco 公司的WYKO NT9100型光学轮廓仪测定石墨烯膜的厚度.

2 结果与讨论

2.1 石墨的剥离

石墨是由碳六角对称平面堆积而成的层状结构晶体,各层内碳原子之间以共价键结合,而层与层之间通过范德华力结合,层间作用力随着层间距的增大或层间有效接触面积的减小而减弱.本文电解实验装置示意图见图1(A).

Fig.1 Experimental set?up diagram (A ),scheme of exfoliation of graphite electrodes (B )and

photographs of graphene dispersion (C

)

Fig.2 TEM image of graphene

在恒电压电解过程中电解液的阳离子(Na +,H +)和阴离子(SO 2-4,OH -)分别向阴极和阳极移动.在电场的作用下,离子进入石墨片层间,使得石墨层间距增大,从而减弱了层间作用力.随着电解反

应的进行,阴极石墨电极上的石墨不断地被腐蚀,电极表层有明显的扩张现象,在电极表面有大量有色物质脱落,被剥离的石墨层(石墨薄片和石墨烯)进入电解液中[如模型图1(B)所示].图1(C)为电解时间分别为1和5h 时得到的石墨层分散液照片.由图1(C)可见,经过一定时间的电化学剥离后,部分超薄石墨片层均匀分散于电解液中,而一些尺

寸较大的颗粒沉于试剂瓶底部.

2.2 石墨烯的形貌由石墨烯样品的TEM 图(图2)可以看出,石

墨烯具有很好的透明性,部分存在褶皱起伏的片层

结构,特别是在边缘处易卷曲;同时,石墨烯片层

聚集而产生交叠.这可能是因为石墨烯是严格的二

维原子晶体,具有非常大的表面能,容易产生微观

扭曲,表面由二维向三维转换使得表面能量变小,

体系自由能减小,稳定性增加.5081 No.8 朱龙秀等:电化学法制备石墨烯及其导电特性

2.3 拉曼光谱分析

碳材料的拉曼光谱典型特征谱带是D 峰和G 峰.D 峰(1350cm -1)与无序结构相对应,来源于sp 2杂化原子的呼吸振动模式,其强度决定于结构的无序程度,可用来表征材料的缺陷.G 峰(1580cm -1)与sp 2杂化碳原子在布里渊区中心的E 2g 声子振动有关.无序引起的D 峰与E 2g 振动模引起的G 峰强度

比I D /I G 可用来表征材料的无序性

.Fig.3 Raman spectra of graphite powder (a )

and graphene (b )图3为石墨和电化学方法制备的石墨烯的拉曼

光谱.从图3谱线a 可以看出,在500~1800cm -1

范围内石墨的D 峰非常弱,I D /I G =0.06,仅存在一个位于1580cm -1的尖而强的吸收峰(G 峰),即由

无序结构引起的第二个拉曼峰强度极低,说明石墨

无序结构所占比例非常小,结构较为规整.与石墨

相比,石墨烯的G 峰变宽,峰位出现微弱的红移,

并且出现新的较强的吸收峰(D 峰)(图3谱线b ).

石墨烯的I D /I G =0.51,大于石墨的I D /I G ,与Khan 等[10]报道的结果相近,但比由氧化还原法[3,13]制

备的石墨烯的值(I D /I G >1)要小得多.在前期工作中,采用氧化还原法制备石墨烯,其中GO 和石墨烯的D 峰与G 峰拉曼强度比分别为1.23和1.57[3],说明在制备石墨烯的过程中仅引入了少量的结构缺陷.观察石墨烯与石墨的2D 峰可以发现,石墨烯和石墨的2D 峰存在明显的差异.石墨的2D 峰存在一强一弱2个峰,而石墨烯的2D 带为对称的单峰,且峰位相对石墨存在明显的红移,参考文献[14~

16]可以推测所制备的石墨烯大部分在3~7层之间.2.4 石墨烯的电学性能在适当的电场强度下,石墨烯的电导率(σ)与载流子浓度(n )和迁移率(μ)之间的关系满足σ=nμq ,其中,q 为电荷量.在外加电场作用下,电导率的大小决定了载流子的浓度及迁移率,载流子的浓度及迁移率越大,电导率越大,电阻R 越小.载流子的浓度和迁移率的大小与杂质浓度和温度有关.因此固定样品,电阻随温度而变化.

Fig.4 Normalized resistance of GR vs.temperature (A ),surface topography image (B )and

thickness (C )of GR film

图4(A)为100~500K 范围内石墨烯的温度?电阻(回归电阻)曲线.与Geim 等[17]的实验结果相近,随着温度的上升,石墨烯的回归电阻逐渐减小,特别在低温区域(≤200K)变化非常明显;而在高温区域(≥200K),随着温度的升高,回归电阻减小幅度放缓.图4(B)是采用轮廓仪得到的石墨烯膜的微区形貌图,可以看出,该膜有一定的致密度.图4(C)为石墨烯膜对应的厚度测试曲线,可以得出石墨烯膜的厚度为0.4μm.根据四探针法测电阻率的原理,结合石墨烯膜的厚度及270K 时石墨烯的电阻值(8.43Ω),可以计算出石墨烯在270K 时的电导率约为6.7×104S /m.远高于用氧化还原法(~2×102S /m)[18]和球墨法(~1.2×103S /m)[19]制备的石墨烯的导电率值,接近Coleman 等[10]采用液相剥离法的数据(~1.75×104S /m).结果表明,采用电化学剥离石墨烯的过程中仅产生了少量的缺陷,

所制备的石墨烯可满足石墨烯在纳米电子器件二场效应晶体管二超级电容器及电池等方面的应用要求.6081高等学校化学学报 Vol.33 

2.5 石墨烯的导电机理

VRH 模型是常用于描述碳材料导电机制的模型,它可以描述材料中载流子的传导受处于费米能级附近的定域态之间的电子跳跃控制.以温度(T )为自变量,σ为应变量,该跃迁模型可描述为[19]

σ(T )=σ0exp[-(T 0/T )1/(d +1)]

(1)式中,σ0和T 0是常数,d 是电子变程跃迁的维度.对于二维体系d =2.对式(1)取对数,可以得到:

ln σ=ln σ0-(T 0/T )1/(d +1)(2)ln σ~T -1/(d +1)存在线性关系,对于石墨烯,d =2.以T -1/3为横坐标,ln σ为纵坐标作图,得到直线.当

100K

(3)式中,σ0,ΔE ,k 0为常数,式(3)两边取对数即得:

ln σ=ln σ0-ΔE /(k 0T )(4)以T -1对ln σ作图,得到直线.在200K

(B)所示.Fig.5 Dependence of conductivity on temperature of graphene

(A)Plot of ln σvs.T -1/3at 100 200K based on VRH model;(B)plot of ln σvs.T -1at 200 500K based on TA model.The dashed lines are the linear fitting results.

图5(A)的线性关系表明,低温区域石墨烯中载流子的传导主要服从二维的VRH 模型.由于在低温区域,电子没有足够的能量实现定程跳跃,借助声子从一个定域态隧穿到另一个定域态,实现变程跳跃而导电.图5(B)的线性关系表明,高温区域载流子的传导主要服从TA 模型.主要原因是温度较高时电子可从费米能级以下的能量状态被激发到迁移率边以上的能级而导电.

3 结 论

用电化学方法可以实现石墨层片的剥离,虽产生少量的缺陷,但电导率仍能达到104S /m,远高于化学氧化还原法和球墨法等得到的石墨烯.石墨烯的电阻?温度依赖关系的研究发现,石墨烯中载流子在低温区域主要通过二维变程跳跃实现导电,而在高温区域主要通过热激发跃迁起到导电作用.

参 考 文 献

[1] Novoselov K.S.,Geim A.K.,Morozov S.V.,Jiang D.,Zhang Y.,Dubonos S.V.,Grigorieva I.V.,Firsov A.A..Science[J],

2004,306:666 669[2] Zhao X.,Zhang Q.,Hao Y.,Li Y.,Fang Y.,Chen D..Macromolecules[J],2010,43:9411 9416[3] Zhao X.,Zhang Q.,Chen D..Macromolecules[J],2010,43:2357 2363[4] Han D.,Shan C.,Guo L.,Niu L.,Han D..Chem.Res.Chinese Universities[J],2010,26(2):287 290

[5] CHENG Qian?Yi(承倩怡),ZHOU Ding(周鼎),HAN Bao?Hang(韩宝航).Chem.J.Chinese Universities(高等学校化学学报)[J],2011,32(9):2062 2070

[6] Wang H.,Tian H.,Wang X.,Qiao L.,Wang S.,Wang X.,Zheng W.,Liu Y..Chem.Res.Chinese Universities[J],2011,27(5):857 8617

081 No.8 朱龙秀等:电化学法制备石墨烯及其导电特性

8081高等学校化学学报 Vol.33 

[7] Park S.,An J.,Jung I.,Piner R.D.,An S.J.,Li X.,Velamakanni A.,Ruoff R.S..Nano Lett.[J],2009,9(4):1593 1597

[8] MA Wen?Shi(马文石),ZHOU Jun?Wen(周俊文).Chem.J.Chinese Universities(高等学校化学学报)[J],2010,31(10):1982

1986

[9] XU Dong(徐东),ZHOU Ning?Lin(周宁琳),SHEN Jian(沈健).Chem.J.Chinese Universities(高等学校化学学报)[J],2010,

31(12):2354 2359

[10] Lotya M.,King P.J.,Khan U.,De S.,Coleman J.N..ACS Nano[J],2010,4(6):3155 3162

[11] Liu N.,Luo F.,Wu H.X.,Liu Y.H.,Zhang C.,Chen J..Adv.Funct.Mater.[J],2008,18:1518 1525

[12] Wang G.,Wang B.,Park J.,Wang Y.,Sun B.,Yao J..Carbon[J],2009,47:3242 3246

[13] Stankovich S.,Dikin D.A.,Piner R.D.,Kohlhaas K.A.,Kleinhammes A.,Jia Y.Y.,Wu Y.,Nguyen S.T.,Ruoff R.S..Car?

bon[J],2007,45:1558 1565

[14] Jin Z.,Su Y.,Chen J.,Liu X.,Wu D..Appl.Phys.Lett.[J],2009,95:233110?1 233110?3

[15] Khan U.,O’Neill A.,Lotya M.,De S.,Coleman J.N..Small[J],2010,6(7):864 871

[16] Choi W.,Lahiri I.,Seelaboyina R.,Kang Y.S..Crit.Rev.Solid State Mat.Sci.[J],2010,35:52 71

[17] Blake P.,Brimicombe P.D.,Nair R.R.,Booth T.J.,Jiang D.,Schedin F.,Ponomarenko L.A.,Morozov S.V.,Gleeson H.F.,

Hill E.W.,Geim A.K.,Novoselov K.S..Nano Lett.[J],2008,8(6):1704 1708

[18] Zhao W.F.,Fang M.,Wu F.R.,Wu H.,Wang L.W.,Chen G.H..J.Mater.Chem.[J],2010,20:5817 5819

[19] Shiraishi M.,Ata M..Synth.Metal.[J],2002,128:235 239

[20] Kaiser A.B.,Gómez?navarro C.,Sundaram R.S.,Burghard M.,Kern K..Nano Lett.[J],2009,9(5):1787 1792

Preparation and Conductive Behavior of Graphene by

Electrochemical Method

ZHU Long?Xiu,LI Ying?Zhi,ZHAO Xin,ZHANG Qing?Hua*

(State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials

Science and Engineering,Donghua University,Shanghai201620,China)

Abstract A one?step electrochemical approach was employed to produce graphene dispersion with the perfect structure and excellent conductive property by exfoliation of graphite in electrolyte.Transmission electron mi?croscopy and Raman spectroscopy were used to characterize morphology and structure of the as?prepared gra?phene.Four?probe method was employed to measure the conductivity of the graphene,and the temperature de?pendent conductivity was investigated by model fitting.At low temperature range of100K

Keywords Graphene;Electrochemical method;Conductivity

(Ed.:S,Z)

关于石墨烯电池的调研报告范文

关于石墨烯电池的调研报告 0引言 《世界报》的一则关于西班牙Graphenano 公司同西班牙科尔瓦多大学合作研究出首例石墨烯聚合材料电池的消息,引起了世界各地的转发与评论,该消息称石墨烯聚合材料电池能够提给电动车1000公里的续航能力,而其充电时间不到8分钟。为调查此消息的真实性与石墨烯聚合材料电池的可行性,于是检索、收集了大量的资料,并总结做出了自己的调查结果。 1石墨烯简介 石墨烯(Graphene )是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二維材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因「在二维石墨烯材料的开创性实验」为由,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达K m W ?/5300,高于碳纳米管和金刚石,常温下其电子迁移率超过s V cm ?/215000,又比纳米碳管或硅晶体高,而电阻率只约m ?Ω-810,比铜或银更低,为世上电阻率最小的材料。因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 特斯拉CEO 马斯克近目在接受英国汽车杂志采访时表示,正在研究高性能电池,特斯拉电动车的续行里程很快将能达到800公里,比目前增长近70%。其表示,特斯拉始终致力于打造纯电动汽车,将继续革新电池技术,不考虑造混合动力车。特斯拉Model3电动汽车的续行里程有望达N320公里,售价约为3.5万美元。[]《功能材料信息》 2014年第11卷第4期 56-56页据悉,石墨烯兼具高强度、高导电性、柔韧性等优点,应用于锂电池负极材料后,可大幅度提高其电容量和大倍率充放电性能 ,或成特斯拉电池的理想材料。 特斯拉研究高能电池石墨烯或为理想材料 这项新技术的核心在于,新型多孔石墨烯材料含有巨大的内部表面区域,因此能实现在极短时间内充电。所充电能量与普通锂电池的电能量相当。更重要的是,石墨烯电池电极在经过1万次充放电之后。能量密度并未出现明显损失。 这种多孔石墨烯材料的超级电容,还可以为电动车节省大量的能量"如今,电动车的电能浪费现象仍旧普遍存在" 1新闻方面 首先,我从网上搜索了相关的新闻,包括ZOL 新闻中心科技频道的“石墨烯电池或将引领改革:充电10分钟跑1000公里”说道“这项突破性研究,为人类认知石墨烯等材料特性带来全新发现,并有望为燃料电池和氢相关技术领域带来革命性的进步”;21世纪经济报道的“中国2015年量产石墨烯锂电池或颠覆电动车行业”说道“2014年12月初,西方媒体报

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

电化学法制备石墨烯及其导电特性

Vol.33高等学校化学学报No.82012年8月 CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 1804~1808电化学法制备石墨烯及其导电特性 朱龙秀,李英芝,赵 昕,张清华 (东华大学材料科学与工程学院,纤维材料改性国家重点实验室,上海200051) 摘要 采用电化学方法将石墨层电解剥离,得到分散于电解质溶液的结构较为完整的石墨烯.用透射电子显微镜和拉曼光谱分析了石墨烯的形貌和结构,利用四探针法测定了石墨烯导电特性.实验数据和理论拟合结果表明,当100K

石墨烯修饰电极的电化学性能

https://www.sodocs.net/doc/4517438312.html,锦生炭素 石墨烯修饰电极的电化学性能 石墨烯(Graphene)是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳米管、三维石墨等其他碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。 本论文围绕石墨烯的不同修饰电极条件,结合电化学基础研究,开展了石墨烯及其相关的电化学性能研究。具体内容归纳如下: (1)将石墨烯与具有良好导电性能的聚苯胺(PANI)复合,研究了石墨烯/聚苯胺复合物修饰电极的电化学性能。利用石墨烯与聚苯胺之间电子给体与电子受体的相互作用,实现了聚苯胺在中性甚至强碱性溶液中的电化学活性,并利用红外光谱、拉曼光谱和紫外光谱进行了可能的机理探讨。石墨烯/聚苯胺复合物材料在中性溶液里的电化学活性,在生物传感领域具有可能的应用空间;同时,在不同pH 溶液里的电化学活性也为石墨烯/聚苯胺复合物材料在pH传感中提供了可能的应用空间。 (2)将石墨烯与具有电绝缘性能的凡士林混合,研究了石墨烯/凡士林膜电极的电化学性能。循环伏安测试表明:采用10.0 mg/mL、5.0 mg/mL和1.0 mg/mL的石墨烯/凡士林修饰电极可以依次得到常规尺寸电极、亚微尺寸电极和微尺寸的纳米电极阵列,并且通过简单混合所制备的石墨烯/凡士林膜电极具有良好的电化学活性和稳定性。作为新型碳材料的膜电极,石墨烯/凡士林膜电极在基础电化学研究和应用中具有一定的潜在价值。 (3)将石墨烯组装在具有完全电绝缘性能的硫醇自组装膜电极上,研究了石墨烯/硫醇自组装膜电极的电化学性能。交流阻抗数据表明,随着组装时间的增加,石墨烯/硫醇自组装膜电极的电化学阻抗逐渐降低,表明石墨烯在硫醇自组装膜上是一个可控的组装过程。循环伏安测试还表明,石墨烯的组装时间是120 min和5 min时,可以分别得到常规尺寸和微尺寸纳米电极阵列的石墨烯/硫醇自组装膜电极,而且对抗坏血酸、多巴胺、尿酸具有较好的电催化活性。同时,为了探讨可能的实验机理,我们讨论了电子传递的可能原因以及影响自组装膜电极双电层结构的两个因素。结果表明随着硫醇中碳链长度的增加,电子传递速率逐渐降低,氧化还原峰电位的差值逐渐增大;不同碳材料的电子转移速率呈现为:石墨烯>多孔碳>石墨。这种采用简单而有效的方法制备的石墨烯/硫醇自组装膜电极,在电化学理论研究和实际应用中具有较好的前景。 超级电容器是一种绿色、新型的储能元件,由于其高效、无污染的优良特性,符合“低碳”经济的发展要求,受到了人们的高度重视。超级电容器的核心是电极材料。 新兴的石墨烯二维单层原子碳材料因具有大的比表面积、优异的导电性、高的机械强度,被认为是理想的超级电容器电极材料。化学方法制备的氧化石墨烯具有良好的成膜性,可用于制备“石墨烯纸”并进而应用于无支撑电极。 此外,氧化石墨烯上丰富的含氧官能团可用于锚定金属纳米粒子,形成石墨烯复合材料。本论文围绕石墨烯薄膜制备、修饰和电化学电容性质开展研究工作,发展了石墨烯/碳纳米管复合薄膜的溶液铸造制备方法,提出了水热还原制备石墨烯基复合薄膜的途径,并研究了所制备材料的电容性能,取得了

石墨烯的制备及电化学性能研究

目录 摘要............................................................................................................................ I Abstract ......................................................................................................................... I I 1 引言 (1) 1.1 石墨烯的制备 (2) 1.1.1 机械剥离法 (2) 1.1.2 电化学剥离法 (2) 1.1.3 化学气相沉积法 (3) 1.2 石墨烯电极材料的制备 (5) 1.3 石墨烯电极材料电化学性能测试 (5) 2 实验部分 (6) 2.1 实验试剂 (6) 2.2 实验仪器 (6) 2.3 RHAC和GQDs的制备 (6) 2.4 RHAC-GQDs的制备 (6) 2.5 电极制备和电池组装 (7) 3 结果和讨论 (8) 3.1 分析了RHAC的比表面积和孔隙结构 (8) 3.2 GQDs的拉曼光谱和荧光光谱分析 (8) 3.3 红外光谱分析 (8) 3.4 XRD分析 (8) 3.5 扫描电镜分析 (9) 3.6 循环伏安法测试分析 (9) 3.7 恒流充放电试验分析 (9) 3.8 电化学阻抗分析 (10) 4 结论与展望 (12) 4.1 结论 (12) 4.2 主要创新点 (12) 4.3 展望 (12) 参考文献 (13) 致谢............................................................................................ 错误!未定义书签。

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

hummers法制备石墨烯

主要原材料:石墨粉(粒度小于30μm的粒子。含量大于95%,碳含量%), 浓硫酸(95%—98%),高锰酸钾,硝酸钠,双氧水30%,盐酸,氯化钡,水合肼80% 氧化石墨(GO)的制备 采用Hummers 方法[12]制备氧化石墨。具体的工艺流程:在冰水浴中装配好250 mL 的反应瓶,加入适量的浓硫酸,搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物,再分次加入6 g 高锰酸钾,控制反应温度不超过20℃,搅拌反应一段时间,然后升温到35℃左右,继续搅拌30 min,再缓慢加入一定量的去离子水,续拌20 min 后,并加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。趁热过滤,并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥,保存备用。 石墨烯的制备 将100 mg 氧化石墨分散于100 g 水溶液中,得到棕黄色的悬浮液,再在超声条件下分散1 h,得到稳定的分散液。然后移入四口烧瓶中,升温至80℃,滴加2 mL 的水合肼,在此条件下反应24 h 后过滤,将得到的产物依次用甲醇和水冲洗多次,再在60℃的真空干燥箱中充分干燥,保存备用。 具体实验步骤: 一:氧化石墨烯的制备 1:一只大烧杯250Ml,里面放冰块,提供冰水浴 " 2:用试管量取23mlH2SO4,再用电子天平称取1g石墨,硝酸钠,3g高锰酸钾 3:用镊子企业一直转自放到锥形瓶,之后把浓硫酸轻轻倒入锥形瓶,然后放到电磁搅拌器中。 4:将石墨和硝酸钠混合加入锥形瓶,搅拌反应三分钟,然后将高锰酸钾加入锥形瓶 5:控制温度小于20℃,搅拌反应2个小时 6:升温至35℃,继续搅拌30分钟 7:将水和蒸馏水配置46mL的去离子水(14摄氏度) 8反应到30分钟后,将去离子水加入锥形瓶,然后将温度升高至98℃,持续加热20min,溶液呈棕黄色,冒出红烟 9:取出5g双氧水(30%),加入锥形瓶 10:取下锥形瓶趁热过滤,并用HCL和去离子水洗涤,待剩余固体在滤纸稳定后,用镊子把滤纸取出,再用一块干净的滤纸衬在底部,一块放到60℃的干燥箱中充分干燥。 二:石墨烯的制备 1:干燥后的氧化石墨烯,取出100mg分散于100g水溶液中,得到棕黄色悬浮液 @ 2:把悬浮液放到超声波洗涤箱中,在超声波条件分散1小时 3:取出溶液放到四口烧杯中,升温到80℃,再滴加20ml水合肼,反应24小时过滤 4:得到的产物以此用甲醇和水冲洗 5:得到的固体在60℃干燥箱中充分干燥,保存备用。 三:实验原材料的作用 浓硫酸:强质子酸,进入石墨层间。高锰酸钾:强氧化剂氧化,生成氧化石墨(GO)经过超声剥离得到氧化石墨烯。水合肼:还原剂,出去氧化石墨烯表面的含氧官能团,得到石墨烯。硝酸钠:在强酸环境下,硝酸根具有强氧化性。双氧水:除去氧化中多余的高锰酸钾,氧化成2价锰离子除去。稀盐酸:洗去其中的金属离子,硫酸根离子,氯化钡:检测其中的硫酸

石墨烯修饰电极电化学性能

石墨烯修饰电极的电化学性能 石墨烯(Graphene>是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,是构建零维富勒烯、一维碳纳M管、三维石墨等其他碳质材料的基本单元,具有许多优异而独特的物理、化学和机械性能,在微纳电子器件、光电子器件、新型复合材料以及传感材料等方面有着广泛的应用前景,基于石墨烯的相关研究也成为目前电化学领域的热点研究领域之一。 本论文围绕石墨烯的不同修饰电极条件,结合电化学基础研究,开展了石墨烯及其相关的电化学性能研究。具体内容归纳如下: (1>将石墨烯与具有良好导电性能的聚苯胺(PANI>复合,研究了石墨烯/聚苯胺复合物修饰电极的电化学性能。利用石墨烯与聚苯胺之间电子给体与电子受体的相互作用,实现了聚苯胺在中性甚至强碱性溶液中的电化学活性,并利用红外光谱、拉曼光谱和紫外光谱进行了可能的机理探讨。石墨烯/聚苯胺复合物材料在中性溶液里的电化学活性,在生物传感领域具有可能的应用空间。同时,在不同pH溶液里的电化学活性也为石墨烯/聚苯胺复合物材料在pH传感中提供了可能的应用空间。 (2>将石墨烯与具有电绝缘性能的凡士林混合,研究了石墨烯/凡士林膜电极的电化学性能。循环伏安测试表明:采用10.0 mg/mL、5.0 mg/mL和1.0 mg/mL的石墨烯/凡士林修饰电极可以依次得到常规尺寸电极、亚微尺寸电极和微尺寸的纳M电极阵列,并且通过简单混合所制备的石墨烯/凡士林膜电极具有良好的电化学活性和稳定性。作为新型碳材料的膜电极,石墨烯/凡士林膜电极在基础电化学研究和应用中具有一定的潜在价值。 (3>将石墨烯组装在具有完全电绝缘性能的硫醇自组装膜电极上,研究了石墨烯/硫醇自组装膜电极的电化学性能。交流阻抗数据表明,随着组装时间的增加,石墨烯/硫醇自组装膜电极的电化学阻抗逐渐降低,表明石墨烯在硫醇自组装膜上是一个可控的组装过程。循环伏安测试还表明,石墨烯的组装时间是120 min和5 min时,可以分别得到常规尺寸和微尺寸纳M电极阵列的石墨烯/硫醇自组装膜电极,而且对抗坏血酸、多巴胺、尿酸具有较好的电催化活性。同时,为了探讨可能的实验机理,我们讨论了电子传递的可能原因以及影响自组装膜电极双电层结构的两个因素。结果表明随着硫醇中碳链长度的增加,电子传递速率逐渐降低,氧化还原峰电位的差值逐渐增大。不同碳材料的电子转移速率呈现为:石墨烯>多孔碳>石墨。这种采用简单而有效的方法制备的石墨烯/硫醇自组装膜电极,在电化学理论研究和实际应用中具有较好的前景。 超级电容器是一种绿色、新型的储能元件,因为其高效、无污染的优良特性,符合“低碳”经济的发展要求,受到了人们的高度重视。超级电容器的核心是电极材料。 新兴的石墨烯二维单层原子碳材料因具有大的比表面积、优异的导电性、高的机械强度,被认为是理想的超级电容器电极材料。化学方法制备的氧化石墨烯具有良好的成膜性,可用于制备“石墨烯纸”并进而应用于无支撑电极。 此外,氧化石墨烯上丰富的含氧官能团可用于锚定金属纳M粒子,形成石墨烯复合材料。本论文围绕石墨烯薄膜制备、修饰和电化学电容性质开展研究工作,发展了石墨烯/碳纳M管复合薄膜的溶液铸造制备方法,提出了水热还原制备石墨烯基复合薄膜的途径,并研究了所制备材料的电容性能,取得了以下的研究成果:1.利用氧化石墨烯良好的成膜性,通过溶液铸造方法,制备了氧化石墨烯薄膜和氧化石墨烯/碳纳M管复合薄膜。 然后通过200℃退火,得到了相应的石墨烯薄膜、石墨烯/碳纳M管薄膜。这种薄膜通过石墨烯层间相互作用结合,例如π-π堆积,以及范德华力等,因而能够在各种极性电解液中稳定存在。复合薄膜的比电容在70~110 F/g,并且因为其表面仍然存在着部分含氧官能团的作用,显示了一定的赝电容的特性,表明其作为超级电容器电极的潜质。2.通过抽虑法制备了氧化石墨烯/碳纳M管复合薄膜。在水热条件下,氧化石墨烯被水还原并实现自组装,重新构建成具有π-π堆积的网络状三维结

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

比较三种化学方法制备石墨烯

一、利用液氨作为还原剂,还原氧化石墨。 工艺: 1、将60 g的颗粒状天然石墨,硝酸钠30 g加入l0L的双层玻璃反应釜中冷却至0℃;再将2500 mL浓硫酸缓慢加入反应釜中充分搅拌3 0 min,保持反应体系的温度不高于4℃;然后,将180 g高锰酸钾加入反应釜中并充分搅拌60 min,同时保持反应体系温度不高于8℃,此阶段为低温反应。 2、撤走冷浴,用高温恒温循环泵将反应体系加热至35℃,并充分搅拌3h,得到褐色悬浮液,再缓慢加入90 g高锰酸钾反应12h,保持反应体系的温度不高于

40℃,此阶段为中温反应。 3、撤走高温恒温循环泵,用低温冷却循环泵将反应系统温度控制在5℃以下,将7L去离子水缓慢滴加入褐色悬浮液中,体系温度骤然升高,并伴有大量气体生成,稀释的悬浮液在此温度下搅拌60 min。 4、向悬浮液中加入50 mL的H202(30%),室温下搅拌60 min,得到亮黄色氧化石墨 分散液。 5、将上述分散液静置2 h,分层,去除上清液后,加入一定量的去离子水,过滤,得到黄褐色滤饼。用5000 mL稀盐酸(10%)将滤饼洗涤2次后,再分散于5000 mL 去离子水中,过滤,用大量去离子水洗涤至溶液中无氯离子(可用AgN03溶液检测),且接近中性。然后将剩余固体产物在60 ℃的真空干燥箱中干燥24 h,研磨过筛后得到的氧化石墨。 石墨烯的制备 用低温冷却循环泵在一定温度下将高纯氨在密封容器中液化,加入一定量干燥的氧化石墨用超声细胞粉碎机超声剥离1h,将一定量的金属铿放入液氨中,溶液变成蓝色,继续保持超声30 min溶液变黑,停止冷却自然升温使液氨挥发,向得到的黑色固体中加入乙醇超声分散,过滤用去离子水洗涤至中性,真空60℃干燥12h,得到黑色的石墨烯。在其他实验条件相同的条件下,将铿用金属钠和金属钾代替,得到对应的碱金属还原的石墨烯。 小结:采用液氨作为溶剂超声剥离氧化石墨,利用液氨一碱金属强还原性,碱金属进一步插层剥离氧化石墨同时将其还原。实验结果表明,低温的还原体系有效避免了热还原过程中重新团聚的产生,从透射电镜观察得到的石墨烯片层厚度在2-5 nm,红外和XPS证实大部分含氧基团被去除。 还原剂锂不易存放,石墨烯制备时所使用的试剂腐蚀性强。 二、用抗坏血酸(L-AA)(维生素)作还原剂,还原氧化石墨,所得到的是化学还原氧化石墨(CRG) 工艺: 1.在室温下,将30 μm的颗粒状天然石墨2 g,硝酸钠1g加入250 mL三口瓶中冷却至0 ℃;再将_50 mL浓硫酸缓慢加入三口瓶中充分搅拌30 min,并保持反应体系的温度不高于5 ℃;然后,将0.3 g高锰酸钾加入三口瓶中并充分搅拌30 min,同时保持反应体系温度不高于10 ℃;在1h内,再将7g高锰酸钾分3批加入三口瓶中,保持反应体系温度不高于20 ℃,此阶段为低温反应。 2.撤走冷浴,用水浴将反应体系加热至3 5士3 ℃,并充分搅拌2h,得到褐色悬浮液,此阶段为中温反应。 3.将90 mL水缓慢滴加入褐色悬浮液中,体系温度骤然升高至90 ℃,并伴有大量气体生成,稀释的悬浮液在此温度下反应15 min,此阶段对高温反应。 4.向悬浮液中加入H2O2 (30%, 7 mL)与超纯水(55 mL, 45 ℃)的混合溶液, 并得到亮黄色氧化石墨分散液。

网友对hummers法制备氧化石墨烯的讨论

本人新手,我想增加GO的氧化程度让GO变得更小,不知道应该怎么做,从外面买的GO 是溶液状态的。如果用化学方法的话,该怎么继续氧化?我还是想得到溶液态的GO 这个深度氧化的问题我文章中已经进行了阐述,不知道怎么上传,可以参见Formation of carbon nanoparticles from soluble graphene oxide in an aqueous solution 具体氧化方法也有阐述 加倍高锰酸钾用量试过没? 延长反应时间试过没? 用过硫酸钾和五氧化二磷预氧化试过没? 用磷酸和硫酸试过没? 多看点文献说不定会有更好的方法.. 疯狂大功率长时超声 我试过超声,但是好像损失的物质太多 pH很低的,基本测不出来,酸浓度非常高,团聚的原因有可能是因为那个,之前Nature 上不是有个相关的文章发表么,但是我们还不是很确定,最近试验正在考虑这方面内容~ 这个我曾经看过一篇文献,上面讲氧化石墨烯的氧化程度其实是可以提高的,但是不是那种可以无限提高的,好像是KMnO4的量是石墨量的4倍以后就不能够增加了,C:0的比例在1.5-2.5之间 [交流]氧化石墨制备过程的现象与问题 经过文献整理,及在小木虫上和大家的交流,终于自己摸索着进行了石墨烯制备的前期工作,氧化石墨的制备,过程中存在以下一些现象,不知正确与否,在这里和大家交流交流 1 石墨粉在80℃水浴下,预氧化6h,用蒸馏水稀释后,会有气泡冒出,静置一夜后,次日仍有少量气泡,液面上有一层悬浮物,我想可能是没有氧化的石墨粉吧 2 在加入KMnO4后,会有刺激性气味产生,同时也会有褐色气体出现在烧杯壁上,搅拌停止,感觉烧杯内液体似乎有些发青色,这是正常现象么 3 之后恒压滴入250mL蒸馏水,这一步我是在0℃冰浴条件下进行的,发现并没有大量的热产生,可能是0℃冰浴造成的,这样应该是对石墨膨胀的效果影响很大吧,现在感觉应该是在室温下,恒压滴入蒸馏水就可以了

氮掺杂石墨烯作为锂离子电池负极材料的电化学性能

第7卷第6期 413 中国科技论文CHINA SCIENCEPAPER 2012年6月 氮掺杂石墨烯作为锂离子电池负极材料 的电化学性能 高云雷,赵东林,白利忠,张霁明,孔 莹 (北京化工大学碳纤维及功能高分子教育部重点实验室,北京 100029) 摘 要:以天然石墨为原料,通过氧化、快速热膨胀和超声分散制备石墨烯。将氧化石墨与三聚氰胺在氮气下950 ℃反应合成氮掺杂石墨烯。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)以及红外光谱(FTIR)、X射线能谱(XPS)等测试方法对氮掺杂石墨烯的形貌、结构进行分析。结果表明,该方法合成了薄层状氮掺杂石墨烯。 采用恒流充放电和循环伏安法等手段测试氮掺杂石墨烯、石墨烯和天然石墨作为锂离子电池负极材料的电化学性能,比较研究了三者用作锂离子电池负极材料的电化学性能,结果表明氮掺杂石墨烯负极材料具有优异的电化学能和独特的储锂机制。 关键词:氮掺杂石墨烯;石墨烯;锂离子电池;负极材料;电化学性能 中图分类号:O613.71;O646文献标志码:A 文章编号:2095-2783(2012)06-0413-5 Electrochemical performance of nitrogen-doped graphene as anode material for lithium ion batteries Gao Yunlei,Zhao Donglin,Bai Lizhong,Zhang Jiming,Kong Ying (Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China) Abstract: Graphene sheets (GSs) have been prepared from natural flake graphite by oxidation, rapid expansion and ultrasonic treatment. Graphene oxide (GO) was further annealed at the presence of melamine at 950 ℃ and transferred into nitrogen-doped grapheme (N-GSs). The samples were characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Electrochemical performances of nitrogen-doped graphene, graphene and graphite as anode materials for lithium ion batteries were investigated using galvanostatic charge-discharge and cyclic voltammetry methods. It was found that the prepared N-GSs exhibited a relatively higher cycling stability and larger specific capacity compared with the pristine nature graphite and GSs. Cyclic voltammograms results indicate that the higher cycling stability may be associated with more structural defects during cycling. Key words: nitrogen-doped graphene;graphene;lithium ion batteries;anode material;electrochemical properties 收稿日期:2012-02-28 基金项目:国家自然科学基金资助项目(50672004);国家高技术研究发展计划(863计划)资助项目(2008AA03Z513) 作者简介:高云雷(1986-),男,硕士研究生,主要研究方向:锂离子电池负极材料 通信联系人:赵东林,教授,主要研究方向:新型炭材料及其应用,dlzhao@https://www.sodocs.net/doc/4517438312.html,

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

相关主题