搜档网
当前位置:搜档网 › LBG算法实现语音信号的矢量量化

LBG算法实现语音信号的矢量量化

LBG算法实现语音信号的矢量量化
LBG算法实现语音信号的矢量量化

语音信号的矢量量化

一.实验内容:采用LBG 算法实现语音信号的矢量量化

二.实验原理:基本LBG 算法的基本框架为:

1.已知码书尺寸M ,给定设计的失真阈值即停止门限)10(<<εε,给定一个出示码书)0(M Y 。已知一

个训练序列]1,...,1,0,[-=m j X j 。先取n=0(n 为迭代次数),并设出示平均失真∞→-)1(D 。

2.用给定的码本M Y ,求出平均失真最小条件下的所以区域边界),...,2,1(M i S i =。即根据最佳划分准则把训练序列划分为M 个胞腔。应该用训练序列i j S X ∈,使))(,(),(M j i j Y Y Y X d Y X d ∈<,从而得出最佳区域边界)(n i S 。然后,计算在该区域下训练序列的平均失真∑-=∈=1

0)(),(min 1m j Y r j n M

Y X d m D 。在这一步中要累计最小失真并在最后计算平均失真。 3.计算相对平均失真(即与第n-1次迭代的失真相对而言),如果它小于阈值,即

ε≤--)()

()1(n n n D

D D ,则认为满足设计要求,此时停止计算,并且M Y 就是所设计的码书,)(n i S 就是所设计的区域边界。如果平均失真的条件不满足则进行第四步。

4.按前面给出的最佳码书设计方法,计算这时划分的各胞腔的形心,由这M 个新形心构成(n+1)次迭代的新形心)1(+n M Y 。置n=n+1,返回到第2步再进行计算,直到满足失真测度公式,得到所要求的码书为止。

三.结果分析:

在本实验中采用语音参数的矢量量化,即将语音信号经过分析,得到各种参数,然后再将这些按桢或按段分析所得的数组构成矢量,进行矢量量化。其中输入的语音文件波形如图一所示。

图1 声音波形

输入信号的语音参数为20个MPCC 参数,码本尺寸为16,最后得到的码字为r ,r 是一个1620?的矩阵,在MA TLAB7.0里用工作空间的画图功能可得到下面的图。

图2 实验数据

四.实验程序

[s,fs]=wavread('s1.wav');

%数据准备

m = 100;

n = 256;

l = length(s);

nbFrame = floor((l - n) / m) + 1;

for i = 1:n

for j = 1:nbFrame

M(i, j) = s(((j - 1) * m) + i);

end

end

h = hamming(n);

M2 = diag(h) * M;

for i = 1:nbFrame

frame(:,i) = fft(M2(:, i));

end

t = n / 2;

tmax = l / fs;

m = melfb(20, n, fs);

n2 = 1 + floor(n / 2);

z = m * abs(frame(1:n2, :)).^2;

v = dct(log(z));

%LBG算法

k=16;

e = .01;

r = mean(v, 2);

dpr = 10000;

for i = 1:log2(k)

r = [r*(1+e), r*(1-e)];

while (1 == 1)

z = disteu(v, r);

[m,ind] = min(z, [], 2);

t = 0;

for j = 1:2^i

r(:, j) = mean(v(:, find(ind == j)), 2);

x = disteu(v(:, find(ind == j)), r(:, j));

for q = 1:length(x)

t = t + x(q);

end

end

if (((dpr - t)/t) < e)

break;

else

dpr = t;

end

end

end

%失真测度

function d = disteu(x, y)

[M, N] = size(x);

[M2, P] = size(y);

if (M ~= M2)

error('Matrix dimensions do not match.') end

d = zeros(N, P);

if (N < P)

copies = zeros(1,P);

for n = 1:N

d(n,:) = sum((x(:, n+copies) - y) .^2, 1);

end

else

copies = zeros(1,N);

for p = 1:P

d(:,p) = sum((x - y(:, p+copies)) .^2, 1)';

end

end

d = d.^0.5;

%滤波器

function m = melfb(p, n, fs)

f0 = 700 / fs;

fn2 = floor(n/2);

lr = log(1 + 0.5/f0) / (p+1);

bl = n * (f0 * (exp([0 1 p p+1] * lr) - 1)); b1 = floor(bl(1)) + 1;

b2 = ceil(bl(2));

b3 = floor(bl(3));

b4 = min(fn2, ceil(bl(4))) - 1;

pf = log(1 + (b1:b4)/n/f0) / lr;

fp = floor(pf);

pm = pf - fp;

r = [fp(b2:b4) 1+fp(1:b3)];

c = [b2:b4 1:b3] + 1;

v = 2 * [1-pm(b2:b4) pm(1:b3)];

m = sparse(r, c, v, p, 1+fn2);

语音信号分析与处理2011

数字信号处理实验二:语音信号分析与处理 学号 姓名 注:1)此次实验作为《数字信号处理》课程实验成绩的重要依据,请同学们认真、独立完成,不得抄袭。 2)请在授课教师规定的时间内完成; 3)完成作业后,请以word 格式保存,文件名为:学号+姓名 4)请通读全文,依据第2及第3 两部分内容,认真填写第4部分所需的实验数据,并给出程序内容。 1. 实验目的 (1) 学会MATLAB 的使用,掌握MATLAB 的程序设计方法 (2) 掌握在windows 环境下语音信号采集的方法 (3) 掌握MATLAB 设计FIR 和IIR 滤波器的方法及应用 (4) 学会用MATLAB 对语音信号的分析与处理方法 2. 实验内容 录制一段自己的语音信号,对录制的语音信号进行采样,画出采样后语音信号的时域波形和频谱图,确定语音信号的频带范围;使用MATLAB 产生白噪声信号模拟语音信号在处理过程中的加性噪声并与语音信号进行叠加,画出受污染语音信号的时域波形和频谱图;采用双线性法设计出IIR 滤波器和窗函数法设计出FIR 滤波器,画出滤波器的频响特性图;用自己设计的这两种滤波器分别对受污染的语音信号进行滤波,画出滤波后语音信号的时域波形和频谱图;对滤波前后的语音信号进行时域波形和频谱图的对比,分析信号的变化;回放语音信号,感觉与原始语音的不同。 3. 实验步骤 1)语音信号的采集与回放 利用windows 下的录音机或其他软件录制一段自己的语音(规定:语音内容为自己的名字,以wav 格式保存,如wql.wav ),时间控制在2秒之内,利用MATLAB 提供的函数wavread 对语音信号进行采样,提供sound 函数对语音信号进行回放。 [y,fs,nbits]=wavread(file), 采样值放在向量y 中,fs 表示采样频率nbits 表示采样位数。Wavread 的更多用法请使用help 命令自行查询。 2)语音信号的频谱分析 利用fft 函数对信号进行频谱分析 3)受白噪声干扰的语音信号的产生与频谱分析 ①白噪声的产生: N1=sqrt (方差值)×randn(语音数据长度,2)(其中2表示2列,是由于双声道的原因) 然后根据语音信号的频谱范围让白噪声信号通过一个带通滤波器得到一个带限的白噪声信号 N2; 带通滤波器的冲激响应为: h B (n )= ))((sin ))((sin 1122απ ωπωαπωπω---n c n c c c c c

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论.............................................................................................................. 错误!未定义书签。 1.1课题背景及意义................................................................................. 错误!未定义书签。 1.2国内外研究现状................................................................................. 错误!未定义书签。 1.3本课题的研究内容和方法................................................................. 错误!未定义书签。 1.3.1 研究内容................................................................................ 错误!未定义书签。 1.3.2 开发环境................................................................................ 错误!未定义书签。 2 语音信号处理的总体方案............................................................................ 错误!未定义书签。 2.1 系统基本概述.................................................................................... 错误!未定义书签。 2.2 系统基本要求与目的........................................................................ 错误!未定义书签。 2.3 系统框架及实现................................................................................ 错误!未定义书签。 2.3.1 语音信号的采样.................................................................... 错误!未定义书签。 2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。 2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。 2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。 2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。 2.4系统设计流程图................................................................................. 错误!未定义书签。 3 语音信号处理基本知识................................................................................ 错误!未定义书签。 3.1语音的录入与打开............................................................................. 错误!未定义书签。 3.2采样位数和采样频率......................................................................... 错误!未定义书签。 3.3时域信号的FFT分析......................................................................... 错误!未定义书签。 3.4切比雪夫滤波器................................................................................. 错误!未定义书签。 3.5数字滤波器设计原理......................................................................... 错误!未定义书签。 4 语音信号实例处理设计................................................................................ 错误!未定义书签。 4.1语音信号的采集................................................................................. 错误!未定义书签。

语音增强算法的研究与实现

语音增强算法的研究与实现 目录 目 录 ..................................................................... ............................................................ I 河西学院本科生毕业论文(设计)诚信声 明 ................................... 错误~未定义书签。I 河西学院本科生毕业论文(设计)任务 书 ...................................... 错误~未定义书签。II 河西学院本科毕业论文(设计)开题报 告 ..................................... 错误~未定义书签。IV 摘 要 ..................................................................... .................................................................. I Abstract ........................................................... ....................................................................... I 1 引 言 ..................................................................... .. (1) 2 语音增强算法概 述 ..................................................................... (1)

语音识别方法及发展趋势分析

语音识别改进方法及难点分析 ——《模式识别》结课小论文 学院:化工与环境学院 学号:2120151177 姓名:杜妮

摘要:随着计算机技术的不断发展,人工智能程度也越来越高,作为人工智能的一部分——模式识别也在模型和算法上愈发成熟。本文根据近105年文献,分析最新声音识别的方法和应用。 关键字:模式识别声音识别方法应用 随着人工智能的迅速发展,语音识别的技术越来越成为国内外研究机构的焦点。人们致力于能使机器能够听懂人类的话语指令,并希望通过语音实现对机器的控制。语音识别的研究发展将在不远的将来极大地方便人们的生活。 语音识别大致的流程包括:特征提取、声学模型训练、语音模型训练以及识别搜索算法。作为一项人机交互的关键技术,语音识别在过去的几十年里取得了飞速的发展,人们在研究和探索过程中针对语音识别的各部流程进行了各种各样的尝试和改造,以期发现更好的方法来完成语音识别流程中的各步骤,以此来促进在不同环境下语音识别的效率和准确率。本文通过查阅近10年国内外文献,分析目前语音识别流程中的技术进展和趋势,并在文章最后给出几项语音识别在日常生活中的应用案例,从而分析语音识别之后的市场走势和实际利用价值。 一、语音识别的改进方法 (一)特征提取模块改进 特征提取就是从语音信号中提取出语音的特征序列。提取的语音特征应该能完全、准确地表达语音信号,特征提取的目的是提取语音信号中能代表语音特征的信息,减少语音识别时所要处理的数据量。语音信号的特征分析是语音信号处理的前提和基础,只有分析出可以代表语音信号本质特征的参数,才能对这些参数进行高效的语音通信,语音合成,和语音识别等处理,并且语音合成的好坏,语音识别率的高低,也都取决于语音特征提取的准确性和鲁棒性。目前,针对特定应用的中小词汇量、特定人的语音识别技术发展已较为成熟,已经能够满足通常应用的要求,并逐步投入了实用。而非特定人、大词汇量、连续语音识别仍是

基于DTW算法的语音识别系统实现

基于DTW算法的语音识别系统实现 作者:吴晓平, 崔光照, 路康 作者单位:郑州轻工业学院信息与控制工程系,河南省,郑州市,450002 刊名: 电子工程师 英文刊名:ELECTRONIC ENGINEER 年,卷(期):2004,30(7) 被引用次数:13次 参考文献(5条) 1.祝晓阳;卢中宁;崔光照数字信号处理芯片TMS320VC5402的语音接口设计[期刊论文]-郑州轻工业学院学报(自然科学版) 2002(02) 2.陈志鑫;郭华伟基于TMS320C54xDSP的实时语音识别系统[期刊论文]-半导体技术 2001(04) 3.张勇C/C++语言硬件程序设计 2003 4.楼顺天基于MATLAB的系统分析与设计 2000 5.赵力语音信号处理 2003 引证文献(13条) 1.石太佳.王晓君基于LPMCC的语音识别系统实现[期刊论文]-电声技术 2010(1) 2.舒鹏飞.颜卫.徐魁基于ADSP的语音识别系统[期刊论文]-科协论坛(下半月) 2009(7) 3.吕涛.刘百芬.燕贤青一种基于定点DSP的语音识别算法实现[期刊论文]-华东交通大学学报 2008(6) 4.张钢.朱铮涛.何淑贤应用DTW的语音(声纹)鉴别技术研究[期刊论文]-中国测试技术 2007(2) 5.白志强.唐永哲基于动态时间规整的飞控系统故障诊断[期刊论文]-计算机仿真 2007(1) 6.王佑民.江城.吴丰博用FPGA实现基于内容的音频检索系统[期刊论文]-中国制造业信息化 2007(17) 7.何燕玲.马建国声控机器人的特定人孤立词汉语识别系统设计[期刊论文]-西南科技大学学报(自然科学版)2006(1) 8.杨占军.杨英杰.王强基于DSP的语音识别系统的设计与实现[期刊论文]-东北电力大学学报(自然科学版)2006(2) 9.王振浩.杜凌艳.李国庆.高树永动态时间规整算法诊断高压断路器故障[期刊论文]-高电压技术 2006(10) 10.高丙朋基于DSP的小词汇量语音识别系统[学位论文]硕士 2006 11.贺翠英说话人识别研究及DSP实现[学位论文]硕士 2006 12.白志强飞行控制系统故障检测研究与仿真软件开发[学位论文]硕士 2006 13.田强基于Sphinx汉语语音评价系统探讨[学位论文]硕士 2005 本文链接:https://www.sodocs.net/doc/446695842.html,/Periodical_dzgcs200407007.aspx

基于麦克风阵列的语音增强算法概述

- 29 - 基于麦克风阵列的语音增强算法概述 丁 猛 (海军医学研究所,上海 200433) 【摘 要】麦克风阵列语音增强技术是将阵列信号处理与语音信号处理相结合,利用语音信号的空间相位信息对语音信号进行增强的一种技术。文章介绍了各种基于麦克风阵列的语音增强基本算法,概述了各算法的基本原理,并总结了各算法的特点及其所适用的声学环境特性。 【关键词】麦克风阵列;阵列信号处理;语音增强 【中图分类号】TN911.7 【文献标识码】A 【文章编号】1008-1151(2011)03-0029-02 (一)引言 在日常生活和工作中,语音通信是人与人之间互相传递信息沟通不可缺少的方式。近年来,虽然数据通信得到了迅速发展,但是语音通信仍然是现阶段的主流,并在通信行业中占主导地位。在语音通信中,语音信号不可避免地会受到来自周围环境和传输媒介的外部噪声、通信设备的内部噪声及其他讲话者的干扰。这些干扰共同作用,最终使听者获得的语音不是纯净的原始语音,而是被噪声污染过的带噪声语音,严重影响了双方之间的交流。 应用阵列信号处理技术的麦克风阵列能够充分利用语音信号的空时信息,具有灵活的波束控制、较高的空间分辨率、高的信号增益与较强的抗干扰能力等特点,逐渐成为强噪声环境中语音增强的研究热点。美国、德国、法国、意大利、日本、香港等国家和地区许多科学家都在开展这方面的研究工作,并且已经应用到一些实际的麦克风阵列系统中,这些应用包括视频会议、语音识别、车载声控系统、大型场所的记录会议和助听装置等。 文章将介绍各种麦克风阵列语音增强算法的基本原理,并总结各个算法的特点及存在的局限性。 (二)常见麦克风阵列语音增强方法 1.基于固定波束形成的麦克风阵列语音增强 固定波束形成技术是最简单最成熟的一种波束形成技术。1985年美国学者Flanagan 提出采用延时-相加(Delay-and-Sum)波束形成方法进行麦克风阵列语音增强,该方法通过对各路麦克风接收到的信号添加合适的延时补偿,使得各路输出信号在某一方向上保持同步,并在该方向的入射信号获得最大增益。此方法易于实现,但要想获取较高的噪声抑制能力则需要增加麦克风数目,然而对非相干噪声没有抑制能力,环境适应性差,因此实际中很少单独使用。后来出现的微分麦克风阵列(Differential Microphone Arrays)、超方向麦克风阵列(Superairective Microphone Arrays )和固定频率波束形成(Frequency-Invariant Beamformers) 技术也属于固定波束形成。 2.基于自适应波束形成器的麦克风阵列语音增强 自适应波束形成是现在广泛使用的一类麦克风阵列语音增强方法。最早出现的自适应波束形成算法是1972年由Frost 提出的线性约束最小方差(Linearly Constrained Minimum Variance,LCMV)自适应波束形成器。其基本思想是在某方向有用信号的增益一定的前提下,使阵列输出信号的功率最小。在线性约束最小方差自适应波束形成器的基础上,1982年Griffiths 和Jim 提出了广义旁瓣消除器(Generalized Sidelobe Canceller, GSC),成为了许多算法的基本框架(图1)。 图1 广义旁瓣消除器的基本结构 广义旁瓣消除器是麦克风阵列语音增强应用最广泛的技术,即带噪声的语音信号同时通过自适应通道和非自适应通道,自适应通道中的阻塞矩阵将有用信号滤除后产生仅包含多通道噪声参考信号,自适应滤波器根据这个参考信号得到噪声估计,最后由这个被估计的噪声抵消非自适应通道中的噪声分量,从而得到有用的纯净语音信号。 如果噪声源的数目比麦克风数目少,自适应波束法能得到很好的性能。但是随着干扰数目的增加和混响的增强,自适应滤波器的降噪性能会逐渐降低。 3.基于后置滤波的麦克风阵列语音增强 1988年Zelinski 将维纳滤波器应用在麦克风阵列延时—相加波束形成的输出端,进一步提高了语音信号的降噪效果,提出了基于后置滤波的麦克风阵列语音增强方法(图2)。基于后置滤波的方法在对非相干噪声抑制方面,不仅具有良好的效果,还能够在一定程度上适应时变的声学环境。它的基本原理是:假设各麦克风接收到的目标信号相同,接收到的噪声信号独立同分布,信号和噪声不相关,根据噪声特性, 【收稿日期】2010-12-30 【作者简介】丁猛(1983-),男,海军医学研究所研究实习员。

基本语音增强方法

基本语音增强方法概述 摘要:语音增强是当今语音处理的一个非常重要的领域,本文主要介绍当今比较普遍的几种基于人耳掩蔽阈值的语音增强方法:谱减法,维纳滤波法,子空间方法等,并对它们的优缺点作简要论述。 关键词:语音增强、人耳掩蔽、谱减法、维纳滤波、子空间 现今时代的主流步伐将我们带向自动化方向,语音识别在这一背景下显得尤为重要。目前已经开发出好几款语音识别软件,但是如何较为精确地实现人耳的掩蔽效应下的语音增强,仍是大家着重解决的问题。它的首要目标就是在接收端尽可能从带噪语音信号中提取纯净的语音信号,改善其质量。目前已经出现了谱减法等一系列较为普遍的方法。本文将对这几种方法进行简要介绍。 一、语音的特性 语音信号是一种非平稳、时变的随机过程,其产生过程与发声器官的运动紧密相关。而发声器官的状态变化速度比声音振动的速度要缓慢得多,因此语音信号可以认为是短时平稳的。在一段短时间内其特性基本保持不变即相对稳定,从而可以应用平稳随机过程的分析方法来处理语音信号,并可以在语音增强中利用短时频谱的平稳特性。 人耳在嘈杂的环境中,仍然能够清晰地听到自己想听的内容,一个较弱的声音(被掩蔽音)的听觉感受被另一个较强的声音(掩蔽音)影响的现象称为人耳的“掩蔽效应”。被掩蔽音单独存在时的听阈分贝值,或者说在安静环境中能被人耳听到的纯音的最小值称为绝对闻阈。在进行机器语音识别的时候,由于干扰信号和目标信号的强度差别不大,导致机器无法识别。这时语音增强就显得特别重要了。 二、时域方法 此类方法主要依赖于语音生成模型(例如AR模型)的使用,需要提取模型参数(如基音周期、LPC系数等),经常使用迭代方法。这种方法的最大缺点就是如果实际噪声或语音与模型有较大的差别,或者由于某些原因使得提取语音参数较困难,则这方法较容易失败。这类方法常用到一些滤波器,如梳状滤波器、维纳滤波器、卡尔曼滤波器等。 (1)经典的维纳滤波法是根据Winer-Hopf 积分方程求出纯语音和混合音

语音识别字符分割算法_原创.

5.设计方法 5.1概述 5.2硬件系统的设计 语音信号预处理 (1)预加重 预加重的目的是提升高频部分,使信号的频谱变得平坦,保持在低频到高频的整个频带中,能用同样的信噪比求频谱,以便于频谱分析或声道参数分析。在计算机里用具有6dB/频程升高频特性的预加重数字滤波器来实现,一般是一阶的FIR数字滤波器: 为预加重系数,值接近于l,在0.9和1之间,典型值为0.94。 预加重的DSPBuilder实现: 为了便于实现,将上式中的一阶FIR预加重滤波器用差分方程表示为: 其中,为原始语音信号序列,N为语音长度,上面的公式显示其在时域 上的特性。又因为0.94接近于15/16,所以将上面的式子变为 除以16可以用右移4位来实现,这样就将除法运算化简为移位运算,降低了计算复杂度。在后面的模块设计中,也乘以或者除以一些这样的数,这些数为2的幂次,都可以用移位来实现。 预加重的硬件实现框图如下: 预加重实现框图 DSP Builder中的图形建模为:

预加重滤波器的DSPBuilder结构图 (2)分帧 语音信号是一种典型的非平稳信号,其特性随时间变化,其在很短的时间内是平稳的,大概为1小20ms,其频谱特性和物理特征可近似的看做不变,这样就可以采用平稳过程的分析处理方法来处理。 分帧的DSP Builder实现: 语音信号在10到20ms之间短时平稳(这样可以保证每帧内包含1一7个基音周期),也就是说选取的帧长必须介于10到20ms之间,此外,在MFCC特征提取时要进行FFT变换,FFT点数一般为2的幂次,所以本文中选择一帧长度为16ms,帧移为1/2帧长,这样一帧就包含了16KHz*16ms=256个点,既满足短时平稳,又满足FFT变换的要求。 由于采集的语音是静态的,语音长度已知,很容易计算出语音的帧数,但是在硬件上或实时系统中,语音长度是无法估计的,而且还要考虑存储空间的大小和处理速度,采用软件实现时的静态分帧方法是行不通的,可以利用硬件本身的特点进行实时的动态分帧。 为了使帧与帧之间平滑过渡,保持连续语音流的自相关性和过渡性,采用交叠分帧的算法。帧移取1/2帧长,即128个数据点当作一个数据块。FIFO1大小为一帧语音长度,分成两个数据块,预加重后的数据写入这个FIFO。为了实现帧移交叠,在FIFO1读数据时,同时再用FIFO2保存起来,当FIFO的一块数据读完以后,紧接着从FIF22读出这一块的副本。写入的一块数据,相当于被重复读出2次,所以FIFO1的读时钟频率设计为写时钟频率的2倍,而FIFOZ的读写时钟频率和FIFO1的读时钟频率相同。分帧以后的数据在图中按时间标号为1、2、2、3.··…,1、2为第一帧,2、3为第二帧,以此类推。

语音信号矢量量化设计及实现算法的matlab仿真设计说明42页

引言 21世纪是信息的社会,各种科技领域的信息大爆炸。数字信号的数据量通常很巨大,对存储器的存储容量,通信信道的带宽及计算机的处理速度带来压力,因此必须对其进行量化压缩来紧缩数据存储容量,较快地传输各种信号 ,并使发信机功率降低。 矢量量化(VQ)是一种极其重要的信号压缩方法,其在语音信号处理中占有十分重要的地位,广泛应用于语音编码,语音识别,语音合成等领域。在许多重要的课题中,VQ都起着非常重要的作用。采用矢量量化技术对信号波形或参数进行压缩处理,可以获得非常高的效益。VQ不仅可以压缩表示语音参数所需的数码率,而且在减少运算量方面也是非常高效的,它还能直接用于构成语音识别和说话人识别系统。 语音数字通信的两个关键部分是语音质量和传输数码率。但这两者是矛盾的:要获得较高的语音质量,就必须使用较高的传输码率;相反,为了实现高效地压缩传输数码率,就很难得到良好的语音质量。但是矢量量化却是一种既能得到高效压缩的数码率,又能保证语音质量的方法。 量化可以分为两大类:一类是标量量化,一类是矢量量化VQ。 标量量化是把抽样后的信号值逐个进行量化,而矢量量化是先将k个抽样值组成k 维空间中的一个矢量,然后将此矢量进行量化,它可以极大的降低数码率,优于标量量化。 各种数据都可以用矢量表示,直接对矢量进行量化,可以方便的对数据进行压缩。矢量量化属于不可逆压缩方法,具备比特率低,解码简单,失真较小的优点。 矢量量化的发展大致可以分为两各阶段: 第一阶段约为1956至1977年。1956年steinhaus第一次系统的阐述了最佳矢量量化的问题。1957年,在loyd的“PCM中的最小平方化”一文中给出了如何划分量化区间和如何求量化值问题的结论。约于此同时MAX也得出同样的结果。虽然他们谈论的都是标量量化问题,但他们的算法对后面的矢量量化的发展有着深刻的影响。1964年,NEWMAN研究了正六边形原理。1977年,berger的‘率失真理论’一书出版。总体来说,这一阶段的工作多是理论性的,但它为第二阶段的发展奠定了一定的基础。 第二阶段约为1978年至今。1978年,buzo第一个提出实际的矢量量化器。他提出的量化系统组成分为两步:第一步将语音信号做线性预测分析,求出预测系数,第二

对语音信号进行分析及处理资料

一、设计目的 1.进一步巩固数字信号处理的基本概念、理论、分析方法和实现方法;使自身对信号的采集、处理、传输、显示和存储等有一个系统的掌握和理解; 2.增强应用Matlab语言编写数字信号处理的应用程序及分析、解决实际问题的能力; 3.培养自我学习的能力和对相关课程的兴趣; 二、设计过程 1、语音信号的采集 采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。 采样位数可以理解为声卡处理声音的解析度。这个数值越大,解析度就越高,录制和回放的声音就越真实 采样定理又称奈奎斯特定理,在进行模拟/数字信号的转换过程中,当采样频率fs不小于信号中最高频率fm的2倍时,采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍。 利用Windows下的录音机,录制了一段发出的声音,内容是“数字信号”,时间在3 s内。接着在D盘保存为WAV格式,然后在Matlab软件平台下.利用函数wavread对语音信号进行采样,并记录下了采样频率和采样点数,在这里我们还通过函数sound引入听到采样后自己所录的一段声音。 [x1,fs,bits]=wavread('E:\数字信号.wav'); %读取语音信号的数据,赋给变量x1,返回频率fs 44100Hz,比特率为16 。 2 、语音信号的频谱分析 (1)首先画出语音信号的时域波形; 程序段: x=x1(60001:1:120000); %截取原始信号60000个采样点

plot(x) %做截取原始信号的时域图形 title('原始语音采样后时域信号'); xlabel('时间轴 n'); ylabel('幅值 A'); (2)然后用函数fft 对语音号进行快速傅里叶变换,得到信号的频谱特性; y1=fft(x,6000); %对信号做N=6000点FFT 变换 figure(2) subplot(2,1,1),plot(k,abs(y1)); title('|X(k)|'); ylabel('幅度谱'); subplot(2,1,2),plot(k,angle(y1)); title('arg|X(k)|'); ylabel('相位谱'); (3)产生高斯白噪声,并且对噪声进行一定的衰减,然后把噪声加到信号中,再次对信号进行频谱特性分析,从而加深对频谱特性的理解; d=randn(1,60000); %产生高斯白噪声 d=d/100; %对噪声进行衰减 x2=x+d; %加入高斯白噪声 3、设计数字滤波器 (1)IIR 低通滤波器性能指标通带截止频Hz f c 1000=,阻带截止频率 Hz f st 1200=,通带最大衰减dB 11=δ,阻带最小衰减dB 1002=δ。 (2)FIR 低通滤波器性能指标通带截止频率Hz f c 1000=,阻带截止频率 Hz f st 1200=, 通带衰减1δ≤1dB ,阻带衰减 2δ≥ 100dB 。 (3)IIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 30=,通带最大衰减dB A P 1=。 (4)(4)FIR 高通滤波器的设计指标,Hz f z 1000=,Hz f p 2000=,阻带最小衰减dB A s 50=,通带最大衰减dB A P 1=。 (5)用自己设计的各滤波器分别对采集的信号进行滤波,在Matlab 中,FIR 滤波器利用函数fftfilt 对信号进行滤波,IIR 滤波器利用函数filter 对信号进行滤波。比较滤波前后语音信号的波形及频谱,在一个窗口同时画出滤波前后

(完整)《语音信号处理》期末试题总结,推荐文档

2011-2013学年 《语音信号处理》期末考试试题 适用班级:时量:120分钟闭卷记分: 考生班级:姓名:学号: 注:答案全部写在答题纸上,写在试卷上无效! 一、填空题:(每空2分) 1、矢量量化系统主要由编码器和译码器组成,其中编码器主要是由搜索算法和码书构成。P101 2、基于物理声学的共振峰理论,可以建立起三种实用的共振峰模型:级联型、并联型和混合型。P18 3、语音编码按传统的分类方法可以分为波形编码、参数编码和混合编码。P137 4、对语音信号进行压缩编码的基本依据是语音信号的冗余度和人的听觉感知机理。 P137-138 5、汉语音节一般由声母、韵母和声调三部分组成。P10 6、人的听觉系统有两个重要特性,一个是耳蜗对于声信号的时频分析特性;另一个是人耳听觉的掩蔽效应。P22 7、句法的最小单位是词,词法的最小单位是音节,音节可以由音素构成。P9 8、复倒谱分析中避免相位卷绕的算法,常用的有微分法和最小相位信号法。P62 9、语音信号处理也可以简称为语音处理,它是利用数字信号处理技术对语音信号进行处理的一门学科,包括语音编码、语音合成、语音识别、说话人识别和语音增强等五大分支。P3 10、语音信号处理也可以简称为语音处理,它是以数字信号处理和语音学为基础而形成的一个综合新的学科,包括发音语音学、声学语音学、听觉语音学和心理学等四大分支。P2,6 11、语音的四大要素:音质、音调、音强和音长。P9 12、人类发音过程有三类不同的激励方式,因而能产生三类不同的声音,即浊音、清音、和爆破音。P8 13、元音的一个重要声学特性是共振峰,它是区别不同元音的重要参数,它一般包括共振峰频率的位置和频带宽度。 14、语音信号的倒谱分析就是求取语音倒谱特征参数的过程,它可以通过同态信号处理来实现。P56 二、判断题:(每小题2分)√× 1、预测编码就是利用对误差信号进行编码来降低量化所需的比特数,从而使编码速率大幅降低。(×)P143 2、以线性预测分析-合成技术为基础的参数编码,一般都是根据语音信号的基音周期和清/浊音标志信息来决定要采用的激励信号源。(×)P181 3、自适应量化PCM就是一种量化器的特性,能自适应地随着输入信号的短时能量的变化而调整的编码方法。(×)P142 4、线性预测法正是基于全极点模型假定,采用时域均方误差最小准则来估计模型参数的。(×)P72 5、波形编码是依赖模型假定的语音编码方法。(×)P137 6、掩蔽效应是使一个声音A能感知的阀值因另一个声音B的出现而提高的现象,这时A叫

语音识别综述

山西大学研究生学位课程论文(2014 ---- 2015 学年第 2 学期) 学院(中心、所):计算机与信息技术学院 专业名称:计算机应用技术 课程名称:自然语言处理技术 论文题目:语音识别综述 授课教师(职称): 研究生姓名: 年级: 学号: 成绩: 评阅日期: 山西大学研究生学院 2015年 6 月2日

语音识别综述 摘要随着大数据、云时代的到来,我们正朝着智能化和自动化的信息社会迈进,作为人机交互的关键技术,语音识别在五十多年来不仅在学术领域有了很大的发展,在实际生活中也得到了越来越多的应用。本文主要介绍了语音识别技术的发展历程,国内外研究现状,具体阐述语音识别的概念,基本原理、方法,以及目前使用的关键技术HMM、神经网络等,具体实际应用,以及当前面临的困境与未来的研究趋势。 关键词语音识别;隐马尔科夫模型;神经网络;中文信息处理 1.引言 语言是人类相互交流最常用、有效的和方便的通信方式,自从计算机诞生以来,让计算机能听懂人类的语言一直是我们的梦想,随着大数据、云时代的到来,信息社会正朝着智能化和自动化推进,我们越来越迫切希望能够摆脱键盘等硬件的束缚,取而代之的是更加易用的、自然的、人性化的语音输入。语音识别是以语音为研究对象,通过对语音信号处理和模式识别让机器自动识别和理解人类口述的语言。 2.语音识别技术的发展历史及现状 2.1语音识别发展历史 语音识别的研究工作起源与上世纪50年代,当时AT&T Bell实验室实现了第一个可识别十个英文数字的语音识别系统——Audry系统。1959年,J.W.Rorgie和C.D.Forgie采用数字计算机识别英文元音及孤立字,开始了计算机语音识别的研究工作。 60年代,计算机应用推动了语音识别的发展。这时期的重要成果是提出了动态规划(DP)和线性预测分析技术(LP),其中后者较好的解决了语音信号产生模型的问题,对后来语音识别的发展产生了深远的影响。 70年代,LP技术得到了进一步的发展,动态时间归正技术(DTW)基本成熟,特别是矢量量化(VQ)和隐马尔科夫(HMM)理论的提出,并且实现了基于线性预测倒谱和DTW技术的特定人孤立语音识别系统。 80年代,实验室语音识别研究产生了巨大的突破,一方面各种连接词语音识别算法被开发,比如多级动态规划语音识别算法;另一方面语音识别算法从模板匹配技术转向基于统计模型技术,研究从微观转向宏观,从统计的角度来建立最佳的语音识别系统。隐马尔科夫模型(HMM)就是其典型代表,能够很好的描述语音信号的时变性和平稳性,使大词汇量连

(完整版)语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

LBG算法实现语音信号的矢量量化

语音信号的矢量量化 一.实验内容:采用LBG 算法实现语音信号的矢量量化 二.实验原理:基本LBG 算法的基本框架为: 1.已知码书尺寸M ,给定设计的失真阈值即停止门限)10(<<εε,给定一个出示码书)0(M Y 。已知一 个训练序列]1,...,1,0,[-=m j X j 。先取n=0(n 为迭代次数),并设出示平均失真∞→-)1(D 。 2.用给定的码本M Y ,求出平均失真最小条件下的所以区域边界),...,2,1(M i S i =。即根据最佳划分准则把训练序列划分为M 个胞腔。应该用训练序列i j S X ∈,使))(,(),(M j i j Y Y Y X d Y X d ∈<,从而得出最佳区域边界)(n i S 。然后,计算在该区域下训练序列的平均失真∑-=∈=1 0)(),(min 1m j Y r j n M Y X d m D 。在这一步中要累计最小失真并在最后计算平均失真。 3.计算相对平均失真(即与第n-1次迭代的失真相对而言),如果它小于阈值,即 ε≤--)() ()1(n n n D D D ,则认为满足设计要求,此时停止计算,并且M Y 就是所设计的码书,)(n i S 就是所设计的区域边界。如果平均失真的条件不满足则进行第四步。 4.按前面给出的最佳码书设计方法,计算这时划分的各胞腔的形心,由这M 个新形心构成(n+1)次迭代的新形心)1(+n M Y 。置n=n+1,返回到第2步再进行计算,直到满足失真测度公式,得到所要求的码书为止。 三.结果分析: 在本实验中采用语音参数的矢量量化,即将语音信号经过分析,得到各种参数,然后再将这些按桢或按段分析所得的数组构成矢量,进行矢量量化。其中输入的语音文件波形如图一所示。 图1 声音波形 输入信号的语音参数为20个MPCC 参数,码本尺寸为16,最后得到的码字为r ,r 是一个1620?的矩阵,在MA TLAB7.0里用工作空间的画图功能可得到下面的图。

基于DTW算法的语音识别原理与实现

广州大学机械与电气工程学院 数字语音信号处理 基于DTW算法的语音识别原理与实现 院系: 机电学院电子与通信工程 姓名: 张翔 学号: 2111307030 指导老师: 王杰 完成日期: 2014-06-11

基于DTW算法的语音识别原理与实现 [摘要]以一个能识别数字0~9的语音识别系统的实现过程为例,阐述了基于DTW算法的特定人孤立词语音识别的基本原理和关键技术。其中包括对语音端点检测方法、特征参数计算方法和DTW算法实现的详细讨论,最后给出了在Matlab下的编程方法和实验结果,结果显示该算法可以很好的显示特定人所报出的电话号码。 [关键字]语音识别;端点检测;MFCC系数;DTW算法 Principle and Realization of Speech Recognition Based on DTW Algorithm Abstract With an example of the realization of a 0~9 identifiable speech recognition system, the paper described the basic principles and key technologies of isolated word speech recognition based on DTW algorithm, including method of endpoint detection, calculation of characteristic parameters, and implementation of DTW algorithm. Programming method under Matlab and experimental results are given at the end of the paper.,and the results show that the algorithm can well display the phone number of the person reported. Keyword speech recognition; endpoint detection; MFCC parameter; DTW algorithm 一、引言 自计算机诞生以来,通过语音与计算机交互一直是人类的梦想,随着计算机软硬件和信息技术的飞速发展,人们对语音识别功能的需求也更加明显和迫切。语音识别技术就是让机器通过识别和理解过程把人类的语音信号转变为相应的文本或命令的技术,属于多维模式识别和智能计算机接口的范畴。传统的键盘、鼠标等输入设备的存在大大妨碍了系统的小型化,而成熟的语音识别技术可以辅助甚至取代这些设备。在PDA、智能手机、智能家电、工业现场、智能机器人等方面语音识别技术都有着广阔的前景。 语音识别技术起源于20世纪50年代,以贝尔实验室的Audry系统为标志。先后取得了线性预测分析(LP)、动态时间归整(DTW)、矢量量化(VQ)、隐马尔可夫模型(HMM)等一系列关键技术的突破和以IBM的ViaVoice、Microsoft的V oiceExpress为代表的一批显著成果。国内的语音识别起步较晚,1987年开始执行国家863计划后语音识别技术才得到广泛关注。具有代表性的研究单位为清华大学电子工程系与中科院自动化研究所模式识别国家重点实验室,中科院声学所等。其中中科院自动化所研制的非特定人连续语音听写系统和汉语语音人机对话系统,其准确率和系统响应率均可达90%以上。 常见的语音识别方法有动态时间归整技术(DTW)、矢量量化技术(VQ)、隐马尔可夫模型(HMM)、基于段长分布的非齐次隐马尔可夫模型(DDBHMM)和人工神经元网络(ANN)。

语音增强算法的分类

语音增强算法的分类 现实环境中的噪声多种多样,特性各异,很难找到一种通用的语音增强算法适用于各种噪声的消除;同时语音增强算法与语音信号数字处理理论、人的听觉系统和语音学等学科紧密相关,这也促使人们必须根据不同的噪声源来选择不同的对策。以上原因使语音增强技术研究呈现百花齐放的局面。几十年来,许许多多的学者在这方面进行了不懈的努力,总结出了许多有效的方法。 根据信号输入的通道数,可将这些方法分为单通道的语音增强算法与多通道的语音增强算法。单通道的语音系统在现实生活中较常见,手机、耳麦等都属于单通道语音系统。这种情况下,语音与噪声同时存在于一个通道中,语音信号与噪声信号必须从同一个带噪语音中获得。这种系统一般要求信号中的噪声比较平稳,以便在无声段对噪声进行估计,再依据估计得到的噪声参数对有声段进行处理,得到增强语音。而多通道的语音系统中语音增强的一种算法是,利用各个通道的语音信号之间存在的某些相关性,对带噪语音信号进行处理,得到增强的语音。比如,在自适应噪声抵消法中采用了两个话筒作为输入,其中一个采集带噪的语音信号,另外一个采集噪声,从噪声通道所采集的噪声直接当作带噪语音中的噪声,并将它从带噪语音中减去即可。另一种多通道的语音增强算法是采用阵列信号,这种方法采用多个以一定方式排列的采集设备接收信号。由于不同的独立信号源与各个采集设备之间的距离不同,最后在各个接收设备中的合成信号也不同,再根据这些信号将各个独立信号分离出来。 按照所依据原理的不同,我们可以将语音增强分为以下几类: (1)参数方法 此类方法主要依赖于语音生成模型(例如AR模型)的使用,需要提取模型参数(如基音周期、LPC系数等),经常使用迭代方法。这种方法的最大缺点就是如果实际噪声或语音与模型有较大的差别,或者由于某些原因使得提取语音参数较困难,则这方法较容易失败。这类方法常用到一些滤波器,如梳状滤波器、维纳滤波器、卡尔曼滤波器等。 (2)非参数方法 非参数方法不需要从带噪语音信号中估计语音模型参数,这就使得此类方法相对于参数方法而言应用较广。但由于没有利用可能的语言统计信息,故结果一般不是最优的。同时,我们知道,语音信号是非平稳的随机过程,但语音信号特性的缓慢变化使得在较短的时间(比如10~30ms)内,可以视其为平稳的,如果能从带噪语音的短时谱中估计出“纯净”语音的短时谱,即可达到语音增强的目的。由于人耳对语音的感知主要是通过语音信号中各频谱分量的幅度来获得的,而对各分量的相位并不敏感,因此,这类方法的重点是将估计的对象放在语音信号的短时谱幅度上。非参数方法主要包括谱减法、自适应滤波法等。 (3)统计方法 统计方法比较充分地利用了语音和噪声的统计特性,如语音信号可视不同情况和需要采用高斯模型、拉普拉斯模型以及伽玛模型等。此类方法一般是在建立了模型库后,经历一个训练过程来获得初始统计参数,并且在后续的工作过程中要根据实际的数据实时的更新这些统计参数,以使模型能更好的符合实际情况,它与语音系统的联系非常密切。这类方法里面主要包括最小均方误差估计(MMSE,Minimum Mean Square Error)、对数谱估计的最小均方误差(MMSE-LSA,Minimum Mean-Square Error Log-SpectralAmplitude)、听觉掩蔽效应(Masking Effect)等。 (4)多通道方法 多通道方法利用了更多的信息,包括空间信息,可以更好地滤除噪声、分离语音,但对硬件设备要求高,算法一般较复杂。噪声抵消法、延迟一相加波束形成器(delay-sum beamformer)、

相关主题