搜档网
当前位置:搜档网 › 智能计算-模拟退火算法(matlab实现)

智能计算-模拟退火算法(matlab实现)

智能计算-模拟退火算法(matlab实现)
智能计算-模拟退火算法(matlab实现)

模拟退火算法

摘要:阐述了模拟退火算法的基本原理及实现过程,运用MATLAB语言实现了该算法。并将其运用到解决旅行商问题的优化之中。数值仿真的结果表明了该方法能够对函数进行全局寻优,有效克服了基于导数的优化算法容易陷入局部最优的问题。该方法既可以增加对MATLAB 语言的了解又可以加深对模拟退火过程的认识,并达到以此来设计智能系统的目的。

关键词:模拟退火算法,全局寻优,搜索策略

simulatedannealing algorithm

Abstract:This paper describes the basic principles and processes simulatedannealing algorithm, using MATLAB language implementation of the algorithm. And use it to solve the traveling salesman problem among optimization. Simulation results show that the method can be a function of global optimization, effectively overcome the derivative-based optimization algorithm is easy to fall into local optimum. This method not only can increase the MATLAB language can deepen understanding and awareness of the simulated annealing process, and in order to achieve the purpose of the design of intelligent systems. Keywords:simulatedannealing algorithm,Global optimization,strategy

目录

一、简介 (1)

二、原理 (2)

三、实现过程 (3)

四、改进的地方 (4)

五、实验结果 (4)

六、结论 (6)

一、简介

许多实际优化问题的目标函数都是非凸的,存在许多局部最优解,但是,有效地求出一般非凸目标函数的全局最优解至今仍是一个难题。特别是随着优化问题规模的增大,局部最优解的数目将会迅速增加,这无疑使寻找大规模复杂系统优化问题的全局最优解变得更加困难。求解全局优化问题的方法可分为两类:一类是确定性方法,另一类是随机性方法。前者基于确定性的搜索策略,在目标函数满足特定的限制条件下可以对求得全局最优解提供确定性的保证,这类方法一般适用于求解满足特定要求的一些特殊问题。后者在搜索策略中引入了适当的随机因素,对目标函数一般不需要特殊的限制条件,具有比较广泛的适用性,由于采用随机搜索策略,这类方法只能在概率的意义上为求得全局最优解提供保证。

模拟退火算法是20世纪80年代初期发展起来的一种求解大规模组合优化问题的随机性方法。它以优化问题的求解与物理系统退火过程的相似性为基础,利用Metropolis算法并适当地控制温度的下降过程实现模拟退火,从而达到求解全局优化问题的目的。

模拟退火(简称SA)是一种通用概率算法,用来在一个大的搜寻空间内找寻命题的最优解。

“模拟退火”算法是源于对热力学中退火过程的模拟,在某一给定初温下,通过缓慢下降温度参数,使算法能够在多项式时间内给出一个近似最优解。退火与冶金学上的‘退火’相似,而与冶金学的淬火有很大区别,前者是温度缓慢下降,后者是温度迅速下降。

旅行商问题是指旅行商必须轮流到N个城市去旅游,每个城市仅去一次,最后返回原出发城市,任务是为旅行商找到一条满足上述条件的最短路径。

这里使用模拟退火解旅行商问题,因为这个问题本身是一个NP 难问题,所以也就求不到最优解,不过应该可以求得一个比较好的解,然后再手工优化。

二、原理

“模拟退火”的原理也和金属退火的原理近似:我们将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。

模拟退火算法可以分解为解空间、目标函数和初始解三部分。

算法步骤:

模拟退火算法新解的产生和接受可分为如下四个步骤:

(1)由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。

(2)计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。

(3)判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropolis准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/kT)接受S′作为新的当前解S。

(4)当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。

模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l 收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。

三、实现过程

1、随机初始化城市坐标,计算初始路线总长度。

2、随机置换两个不同的城市的坐标,产生随机扰动,计算路线总长度。每次记录下总长度和上次进行比较,比上次小则更新,否则不更新。

3、比较新老距离的差值,如何新路径好于老路径,则接受新解,否则继续保持老路径,然后继续第二步,直到达到迭代温度。

四、改进的地方

1、多次改变迭代次数,找到最优解;

2、在每次计算总路线长度时,随时和上次总路线长度进行比较,如果小时则对路线进行置换,否则继续保持上次记录值。最后找到最优值。

五、实验结果

1、初始旅行路线图

求得的初始路径

>>1114.5127

2、最终求得的路线图

3、每次迭代求得的旅行距离:

求得的最短路径

>>321.2309

六、结论

利用MATLAB语言实现的模拟退火程序,能够找到系统的最优解,仿真结果证明了该方法的有效性,每次都与上次路径进行比较,并记录,进行替换,最后得到最佳路径。采用该方法既可使大家熟悉MATLAB 语言,又可以加深对模拟退火算法的认识和理解。

部分代码截图

1、Main函数

2、计算路线总长度,每个城市只计算和下家城市之间的距离

3、随机置换两个不同的城市的坐标,产生随机扰动

4、连线各城市,画路线图

模拟退火算法(MATLAB实现)

实验用例: 用模拟退火算法解决如下10个城市的TSP 问题,该问题最优解为691.2 opt f 。 表1 10个城市的坐标 城市 X 坐标 Y 坐标 城市 X 坐标 Y 坐标 3 0.4000 0.4439 8 0.8732 0.6536 编程实现 用MATLAB 实现模拟退火算法时,共编制了5个m 文件,分别如下 1、swap.m function [ newpath , position ] = swap( oldpath , number ) % 对 oldpath 进 行 互 换 操 作 % number 为 产 生 的 新 路 径 的 个 数 % position 为 对 应 newpath 互 换 的 位 置 m = length( oldpath ) ; % 城 市 的 个 数 newpath = zeros( number , m ) ; position = sort( randi( m , number , 2 ) , 2 ); % 随 机 产 生 交 换 的 位 置 for i = 1 : number newpath( i , : ) = oldpath ; % 交 换 路 径 中 选 中 的 城 市 newpath( i , position( i , 1 ) ) = oldpath( position( i , 2 ) ) ; newpath( i , position( i , 2 ) ) = oldpath( position( i , 1 ) ) ; end 2、pathfare.m function [ objval ] = pathfare( fare , path ) % 计 算 路 径 path 的 代 价 objval % path 为 1 到 n 的 排 列 ,代 表 城 市 的 访 问 顺 序 ; % fare 为 代 价 矩 阵 , 且 为 方 阵 。 [ m , n ] = size( path ) ; objval = zeros( 1 , m ) ; for i = 1 : m for j = 2 : n objval( i ) = objval( i ) + fare( path( i , j - 1 ) , path( i , j ) ) ; end objval( i ) = objval( i ) + fare( path( i , n ) , path( i , 1 ) ) ; end

《应用计算方法教程》matlab作业二

6-1 试验目的计算特征值,实现算法 试验容:随机产生一个10阶整数矩阵,各数均在-5和5之间。 (1) 用MATLAB 函数“eig ”求矩阵全部特征值。 (2) 用幂法求A 的主特征值及对应的特征向量。 (3) 用基本QR 算法求全部特征值(可用MATLAB 函数“qr ”实现矩阵的QR 分解)。 原理 幂法:设矩阵A 的特征值为12n ||>||||λλλ≥???≥并设A 有完全的特征向量系12,,,n χχχ???(它们线性无关),则对任意一个非零向量0n V R ∈所构造的向量序列1k k V AV -=有11()lim ()k j k k j V V λ→∞ -=, 其中()k j V 表示向量的第j 个分量。 为避免逐次迭代向量k V 不为零的分量变得很大(1||1λ>时)或很小(1||1λ<时),将每一步的k V 按其模最大的元素进行归一化。具体过程如下: 选择初始向量0V ,令1max(),,,1k k k k k k k V m V U V AU k m +===≥,当k 充分大时1111,max()max() k k U V χλχ+≈ ≈。 QR 法求全部特征值: 111 11222 111 ,1,2,3,k k k k k A A Q R R Q A Q R k R Q A Q R +++==????==??=???? ??????==?? 由于此题的矩阵是10阶的,上述算法计算时间过长,考虑采用改进算法——移位加速。迭 代格式如下: 1 k k k k k k k k A q I Q R A R Q q I +-=?? =+? 计算k A 右下角的二阶矩阵() () 1,1 1,() (),1 ,k k n n n n k k n n n n a a a a ----?? ? ??? 的特征值()()1,k k n n λλ-,当()()1,k k n n λλ-为实数时,选k q 为()()1,k k n n λλ-中最接近(),k n n a 的。 程序

计算方法_全主元消去法_matlab程序

%求四阶线性方程组的MA TLAB程序 clear Ab=[0.001 2 1 5 1; 3 - 4 0.1 -2 2; 2 -1 2 0.01 3; 1.1 6 2.3 9 4];%增广矩阵 num=[1 2 3 4];%未知量x的对应序号 for i=1:3 A=abs(Ab(i:4,i:4));%系数矩阵取绝对值 [r,c]=find(A==max(A(:))); r=r+i-1;%最大值对应行号 c=c+i-1;%最大值对应列号 q=Ab(r,:),Ab(r,:)=Ab(i,:),Ab(i,:)=q;%行变换 w=Ab(:,c),Ab(:,c)=Ab(:,i),Ab(:,i)=w;%列变换 n=num(i),num(i)=num(c),num(c)=n;%列变换引起未知量x次序变化for j=i:3 Ab(j+1,:)=-Ab(j+1,i)*Ab(i,:)/Ab(i,i)+Ab(j+1,:);%消去过程 end end %最后得到系数矩阵为上三角矩阵 %回代算法求解上三角形方程组 x(4)=Ab(4,5)/Ab(4,4); x(3)=(Ab(3,5)-Ab(3,4)*x(4))/Ab(3,3); x(2)=(Ab(2,5)-Ab(2,3)*x(3)-Ab(2,4)*x(4))/Ab(2,2); x(1)=(Ab(1,5)-Ab(1,2)*x(2)-Ab(1,3)*x(3)-Ab(1,4)*x(4))/Ab(1,1); for s=1:4 fprintf('未知量x%g =%g\n',num(s),x(s)) end %验证如下 %A=[0.001 2 1 5 1; 3 -4 0.1 -2 2;2 -1 2 0.01 3; 1.1 6 2.3 9 4]; %b=[1 2 3 4]'; %x=A\b; %x1= 1.0308 %x2= 0.3144 %x3= 0.6267 %x4= -0.0513

模拟退火算法Matlab源程序

MCM战备历程3(模拟退火算法Matlab源程序)For glory 2007-02-03 11:20:04| 分类:数学建模 | 标签:学习|字号订阅 %模拟退火算法程序 T_max=input('please input the start temprature'); T_min=input('please input the end temprature'); iter_max=input('please input the most interp steps on the fit temp'); s_max=input('please input the most steady steps ont the fit temp'); T=T_max; load d:\address.txt; order1=randperm(size(address,1))';%生成初始解。 plot(address(order1,1),address(order1,2),'*r-') totaldis1=distance(address,order1); while T>=T_min iter_num=1; s_num=1; plot(T,totaldis1) hold on while iter_numR) order1=order2; totaldis1=totaldis2; else s_num=s_num+1;

模拟退火算法原理及matlab源代码

模拟退火算法模拟退火算法是一种通用的随机搜索算法,是局部搜索算法的扩展。它的思想是再1953 年由metropolis 提出来的,到1983 年由kirkpatrick 等人成功地应用在组合优化问题中。 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis 准则,粒子在温度T 时趋于平衡的概率为e- △ E/(kT),其中E为温度T时的内能,AE为其改变量,k 为Boltzmann 常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f ,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解-计算目标函数差T接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooli ng Schedule)控制,包括控制参数的初值t 及其衰减因子△ t、每个t值时的迭代次数L和停止条件S。 模拟退火算法新解的产生和接受可分为如下四个步骤:第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若厶t‘ <0 则接受S'作为新的当前解S,否则以概率exp(- △ t‘ /T) 接受S'作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。 可在此基础上开始下一轮试验。而当新解被判定为舍弃时,

模拟退火算法(C++版)

/* * 使用模拟退火算法(SA)求解TSP问题(以中国TSP问题为例) * 参考自《Matlab 智能算法30个案例分析》 * 模拟退火的原理这里略去,可以参考上书或者相关论文 * update: 16/12/11 * author:lyrichu * email:919987476@https://www.sodocs.net/doc/4617399230.html, */ #include #include #include #include #include #define T0 50000.0 // 初始温度 #define T_end (1e-8) #define q 0.98 // 退火系数 #define L 1000 // 每个温度时的迭代次数,即链长 #define N 27 // 城市数量 int city_list[N]; // 用于存放一个解 double city_pos[N][2] = {{41,94},{37,84},{53,67},{25,62},{7,64},{2,99},{68,58},{71,44},{54,62}, {83,69},{64,60},{18,54},{22,60},{83,46},{91,38},{25,38},{24,42},{58,69},{71,71}, {74,78},{87,76}, {18,40},{13,40},{82,7},{62,32},{58,35},{45,21}}; // 中国27个城市坐标 //41 94;37 84;53 67;25 62;7 64;2 99;68 58;71 44;54 62;83 69;64 60; 18 54;22 60; //83 46;91 38;25 38;24 42;58 69;71 71;74 78;87 76;18 40;13 40;82 7; 62 32;58 35;45 21

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

(整理)matlab16常用计算方法.

常用计算方法 1.超越方程的求解 一超越方程为 x (2ln x – 3) -100 = 0 求超越方程的解。 [算法]方法一:用迭代算法。将方程改为 01002ln()3 x x =- 其中x 0是一个初始值,由此计算终值x 。取最大误差为e = 10-4,当| x - x 0| > e 时,就用x 的值换成x 0的值,重新进行计算;否则| x - x 0| < e 为止。 [程序]P1_1abs.m 如下。 %超越方程的迭代算法 clear %清除变量 x0=30; %初始值 xx=[]; %空向量 while 1 %无限循环 x=100/(2*log(x0)-3); %迭代运算 xx=[xx,x]; %连接结果 if length(xx)>1000,break ,end %如果项数太多则退出循环(暗示发散) if abs(x0-x)<1e-4,break ,end %当精度足够高时退出循环 x0=x; %替换初值 end %结束循环 figure %创建图形窗口 plot(xx,'.-','LineWidth',2,'MarkerSize',12)%画迭代线'.-'表示每个点用.来表示,再用线连接 grid on %加网格 fs=16; %字体大小 title('超越方程的迭代折线','fontsize',fs)%标题 xlabel('\itn','fontsize',fs) %x 标签 ylabel('\itx','fontsize',fs) %y 标签 text(length(xx),xx(end),num2str(xx(end)),'fontsize',fs)%显示结果 [图示]用下标作为自变量画迭代的折线。如P0_20_1图所示,当最大误差为10-4时,需要迭代19次才能达到精度,超越方程的解为27.539。 [算法]方法二:用求零函数和求解函数。将方程改为函数 100()2ln()3f x x x =-- MATLAB 求零函数为fzero ,fzero 函数的格式之一是 x = fzero(f,x0) 其中,f 表示求解的函数文件,x0是估计值。fzero 函数的格式之二是 x = fzero(f,[x1,x2])

模拟退火算法算法的简介及程序

模拟退火算法 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。 模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。 模拟退火的基本思想: (1)初始化:初始温度T(充分大),初始解状态S(是算法迭代的起 点),每个T值的迭代次数L (2) 对k=1,……,L做第(3)至第6步: (3) 产生新解S′ (4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)

接受S′作为新的当前解. (6) 如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7) T逐渐减少,且T->0,然后转第2步。 算法对应动态演示图: 模拟退火算法新解的产生和接受可分为如下四个步骤: 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则: 若Δt′<0则接受S′作为新的当前解S,否则以概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则

matlab用于计算方法的源程序

1、Newdon迭代法求解非线性方程 function [x k t]=NewdonToEquation(f,df,x0,eps) %牛顿迭代法解线性方程 %[x k t]=NewdonToEquation(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:原函数,定义为内联函数 ?:函数的倒数,定义为内联函数 %x0:初始值 %eps:误差限 % %应用举例: %f=inline('x^3+4*x^2-10'); ?=inline('3*x^2+8*x'); %x=NewdonToEquation(f,df,1,0.5e-6) %[x k]=NewdonToEquation(f,df,1,0.5e-6) %[x k t]=NewdonToEquation(f,df,1,0.5e-6) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquation(f,df,1) if nargin==3 eps="0".5e-6; end tic; k=0; while 1 x="x0-f"(x0)./df(x0); k="k"+1; if abs(x-x0) < eps || k >30 break; end x0=x; end t=toc; if k >= 30 disp('迭代次数太多。'); x="0"; t="0"; end

2、Newdon迭代法求解非线性方程组 function y="NewdonF"(x) %牛顿迭代法解非线性方程组的测试函数 %定义是必须定义为列向量 y(1,1)=x(1).^2-10*x(1)+x(2).^2+8; y(2,1)=x(1).*x(2).^2+x(1)-10*x(2)+8; return; function y="NewdonDF"(x) %牛顿迭代法解非线性方程组的测试函数的导数 y(1,1)=2*x(1)-10; y(1,2)=2*x(2); y(2,1)=x(2).^+1; y(2,2)=2*x(1).*x(2)-10; return; 以上两个函数仅供下面程序的测试 function [x k t]=NewdonToEquations(f,df,x0,eps) %牛顿迭代法解非线性方程组 %[x k t]=NewdonToEquations(f,df,x0,eps) %x:近似解 %k:迭代次数 %t:运算时间 %f:方程组(事先定义) ?:方程组的导数(事先定义) %x0:初始值 %eps:误差限 % %说明:由于虚参f和df的类型都是函数,使用前需要事先在当前目录下采用函数M文件定义% 另外在使用此函数求解非线性方程组时,需要在函数名前加符号“@”,如下所示 % %应用举例: %x0=[0,0];eps=0.5e-6; %x=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps) %函数的最后一个参数也可以不写。默认情况下,eps=0.5e-6 %[x k t]=NewdonToEquations(@NewdonF,@NewdonDF,x0,eps)

模拟退火算法及其Matlab实现

模拟退火算法及其Matlab 实现 模拟退火算法(Simulated Annealing algorithm ,简称SA )是柯克帕垂克(S. Kirkpatrick )于1982年受热力学中的固体退火过程与组合优化问题求解之间的某种“相似性”所启发而提出的,用于求解大规模组合优化问题的一种具有全局搜索 功能的随机性近似算法。与求解线性规划的单纯形法、Karmarkar 投影尺度法,求 解非线性规划的最速下降法、Newton 法、共轭梯度法,求解整数规划的分支定界法、割平面法等经典的优化算法相比,模拟退火算法在很大程度上不受制于优化问 题的具体形式和结构,具有很强的适应性和鲁棒性,因而也具有广泛的应用价值。 模拟退火算法源于对固体退火过程的模拟;采用Metropolis 接受准则;并用 一组称为冷却进度表的参数来控制算法进程,使得算法在多项式时间里给出一个近 似最优解。固体退火过程的物理现象和统计性质是模拟退火算法的物理背 景;Metropolis 接受准则使算法能够跳离局部最优的“陷阱”,是模拟退火算法能 够获得整体最优解的关键;而冷却进度表的合理选择是算法应用的关键。 1 物理退火过程 物理中的固体退火是先将固体加热至熔化,再徐徐冷却,使之凝固成规整晶体 的热力学过程。在加热固体时,固体粒子的热运动不断增加,随着温度的升高,粒子 与其平衡位置的偏离越来越大,当温度升至溶解温度后,固体的规则性被彻底破坏, 固体溶解为液体,粒子排列从较有序的结晶态转变为无序的液态,这个过程称为溶解。溶解过程的目的是消除系统中原先可能存在的非均匀状态,使随后进行的冷却 过程以某一平衡态为始点。溶解过程与系统的熵增过程相联系,系统能量也随温度 的升高而增大。 冷却时,液体粒子的热运动渐渐减弱,随着温度的徐徐降低,粒子运动渐趋有 序。当温度降至结晶温度后,粒子运动变为围绕晶体格点的微小振动,液体凝固成固体的晶态,这个过程称为退火。退火过程之所以必须“徐徐”进行,是为了使系统在每一温度下都达到平衡态,最终达到固体的基态(图1-1)。退火过程中系统的熵值

模拟退火算法和禁忌搜索算法的matlab源程序

%%% 模拟退火算法源程序 % 此题以中国31省会城市的最短旅行路径为例: % clear;clc; function [MinD,BestPath]=MainAneal(pn) % CityPosition存储的为每个城市的二维坐标x和y; CityPosition=[1304 2312;3639 1315;4177 2244;3712 1399;3488 1535;3326 1556;3238 1229;... 4196 1044;4312 790;4386 570;3007 1970;2562 1756;2788 1491;2381 1676;... 1332 695;3715 1678;3918 2179;4061 2370;3780 2212;3676 2578;4029 2838;... 4263 2931;3429 1908;3507 2376;3394 2643;3439 3201;2935 3240;3140 3550;... 2545 2357;2778 2826;2370 2975]; figure(1); plot(CityPosition(:,1),CityPosition(:,2),'o') m=size(CityPosition,1);%城市的数目 % D = sqrt((CityPosition(:,ones(1,m)) - CityPosition(:,ones(1,m))').^2 + ... (CityPosition(:,2*ones(1,m)) - CityPosition(:,2*ones(1,m))').^2); path=zeros(pn,m); for i=1:pn path(i,:)=randperm(m); end iter_max=100;%i m_max=5;% Len1=zeros(1,pn);Len2=zeros(1,pn);path2=zeros(pn,m); t=zeros(1,pn); T=1e5; tau=1e-5; N=1; while T>=tau iter_num=1; m_num=1; while m_num

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

模拟退火算法求解TSP问题Matlab源码

function [f,T]=TSPSA(d,t0,tf) %TSP问题(货郎担问题,旅行商问题)的模拟退火算法通用malab源程序% f目标最优值,T最优路线,d距离矩阵,t0初始温度,tf结束温度 [m,n]=size(d); L=100*n; t=t0; pi0=1:n; min_f=0; for k=1:n-1 min_f=min_f+d(pi0(k),pi0(k+1)); end min_f=min_f+d(pi0(n),pi0(1)); p_min=pi0; while t>tf for k=1:L; kk=rand; [d_f,pi_1]=exchange_2(pi0,d); r_r=rand; if d_f<0 pi0=pi_1; elseif exp(d_f/t)>r_r pi0=pi_1; else pi0=pi0; end end f_temp=0; for k=1:n-1 f_temp=f_temp+d(pi0(k),pi0(k+1)); end f_temp=f_temp+d(pi0(n),pi0(1)); if min_f>f_temp min_f=f_temp; p_min=pi0; end t=0.87*t; end f=min_f; T=p_min; %aiwa要调用的子程序,用于产生新解 function [d_f,pi_r]=exchange_2(pi0,d) [m,n]=size(d); clear m; u=rand;

u=u*(n-2); u=round(u); if u<2 u=2; end if u>n-2 u=n-2; end v=rand; v=v*(n-u+1); v=round(v); if v<1 v=1; end v=u+v; if v>n v=n; end pi_1(u)=pi0(v); pi_1(v)=pi0(u); if u>1 for k=1:u-1 pi_1(k)=pi0(k); end end if v>(u+1) for k=1:v-u-1 pi_1(u+k)=pi0(v-k); end end if v

用MATLAB实现结构可靠度计算.

用MATLAB实现结构可靠度计算 口徐华…朝泽刚‘u刘勇‘21 。 (【l】中国地质大学(武汉工程学院湖北?武汉430074; 12】河海大学土木工程学院江苏?南京210098 摘要:Matlab提供了各种矩阵的运算和操作,其中包含结构可靠度计算中常用的各种数值计算方法工具箱,本文从基本原理和相关算例分析两方面,阐述利用Matlab,编制了计算结构可靠度Matlab程.序,使得Matlab-语言在可靠度计算中得到应用。 关键词:结构可靠度Matlab软件最优化法 中图分类号:TP39文献标识码:A文章编号:1007-3973(200902-095-Ol 1结构可靠度的计算方法 当川概率描述结构的可靠性时,计算结构可靠度就是计算结构在规定时问内、规定条件F结构能够完成预定功能的概率。 从简单到复杂或精确稃度的不同,先后提出的可靠度计算方法有一次二阶矩方法、二次二阶矩方法、蒙特卡洛方法以及其他方法。一次■阶矩方法又分为。I-心点法和验算点法,其中验算点法足H前可靠度分析最常川的方法。 2最优化方法计算可靠度指标数学模型 由结构111n个任意分布的独立随机变量一,x:…以表示的结构极限状态方程为:Z=g(■.托…t=0,采用R-F将非正念变量当罱正态化,得到等效正态分布的均值o:和标准差虹及可靠度指标B,由可靠度指标B的几何意义知。o;辟

开始时验算点未知,把6看成极限状态曲面上点P(■,爿:---37,的函数,通过优化求解,找到B最小值。求解可靠皮指标aJ以归结为以下约束优化模型: rain睁喜t华,2 s.,.Z=g(工i,x2’,…,工:=0 如极限状态方栉巾某个变最(X。可用其他变量表示,则上述模型jfIJ‘转化为无约束优化模型: 。。B!:手f生丛r+阻:坚:坠:盐尘}二剐 t∞oY?’【叫,J 3用MATLAB实现结构可靠度计算 3.1Matlab简介 Matlab是++种功能强、效率高、便.丁.进行科学和工程计算的交互式软件包,汇集了人量数学、统计、科学和工程所需的函数,MATI.AB具有编程简甲直观、用户界mf友善、开放性强等特点。将MATLAB用于蒙特卡罗法的一个显著优点是它拥有功能强大的随机数发生器指令。 3.2算例 3.2.I例:已知非线形极限状态方程z=g(t r'H=567f r-0.5H2=0’f、r服从正态分布。IIf=0.6,o r=0.0786;la|_ 2.18,o r_0.0654;H服从对数正态分布。u H= 3218,O。 =0.984。f、r、H相互独立,求可靠度指标B及验算点(,,r’,H‘。 解:先将H当量正念化:h=ln H服从正态分布,且 ,‘-““了:等专虿’=,。49?口二-、『五ir面_。。3

计算方法上机实验报告-MATLAB

《计算方法》实验报告 指导教师: 学院: 班级: 团队成员:

一、题目 例2.7应用Newton 迭代法求方程210x x --=在1x =附近的数值解 k x ,并使其满足8110k k x x ---< 原理: 在方程()0f x =解的隔离区间[],a b 上选取合适的迭代初值0x ,过曲线()y f x =的点()() 00x f x ,引切线 ()()()1000:'l y f x f x x x =+- 其与x 轴相交于点:()() 0100 'f x x x f x =-,进一步,过曲线()y f x =的 点()()11x f x , 引切线 ()()()2111: 'l y f x f x x x =+- 其与x 轴相交于点:() () 1211 'f x x x f x =- 如此循环往复,可得一列逼近方程()0f x =精确解*x 的点 01k x x x ,,,,,其一般表达式为: ()() 111 'k k k k f x x x f x ---=- 该公式所表述的求解方法称为Newton 迭代法或切线法。

程序: function y=f(x)%定义原函数 y=x^3-x-1; end function y1=f1(x0)%求导函数在x0点的值 syms x; t=diff(f(x),x); y1=subs(t,x,x0); end function newton_iteration(x0,tol)%输入初始迭代点x0及精度tol x1=x0-f(x0)/f1(x0);k=1;%调用f函数和f1函数 while abs(x1-x0)>=tol x0=x1;x1=x0-f(x0)/f1(x0);k=k+1; end fprintf('满足精度要求的数值为x(%d)=%1.16g\n',k,x1); fprintf('迭代次数为k=%d\n',k); end 结果:

M模拟退火最短距离问题 Matlab代码 亲测完美运行

模拟退火算法 基于模拟退火算法的TSP问题求解具体步骤如下: 1)随机产生一个初始解path(作为当前最优路径),计算目标函数值pathfare(fare,path)=e0,并设置初始温度t0,内循环终止方差istd,外循环终止方差ostd降温系数lam,温度更新函数tk=lam*tk-1,并令k=1,输入各城市坐标coord,计算城市间的距离fare。 2)根据控制参数更新函数来控制温度的下降过程,给定最大循环步数iLK,设置循环计数器的初始值in=1。 3)对当前的最优路径作随机变动,产生一个新路径newpath,计算新路径的目标函数值pathfare(fare,newpath)=e1和目标函数值的增量e1-e04)根据Metropolis准则,如果增量(e1-e0)<0,则接受新产生的路径newpath作为当前最优路径;如果(e1-e0)>=0,则以公式(1)来决定新路径newpath是否代替path。rand()随机产生一个在[0,1]之间的随机数。exp[-(e1-e0)/t]>rand() 4)如果目标函数值小于istd,则直接跳出内循环。 5)如果in

1. distance.m function [fare]=distance(coord) %coord为各城市的坐标 %fare为城市间的距离矩阵 [~,m]=size(coord);%m为城市的个数 fare=zeros(m); for i=1:m%外层为行 for j=1:m%内层为列 fare(i,j)=(sum((coord(:,i)-coord(:,j)).^2))^0.5; fare(j,i)=fare(i,j);%距离矩阵对称 end end 2. myplot.m function []=myplot(path,coord,pathfar) %做出路径的图形 %path为要做图的路径,coord为各个城市的坐标 %pathfar为路径path对应的费用 len=length(path); clf; hold on;

计算方法及其MATLAB实现第二章作业

作者:夏云木子 1、 >> syms re(x) re(y) re(z) >> input('计算相对误差:'),re(x)=10/1991,re(y)=0.0001/1.991,re(y)=0.0000001/0.0001991 所以可知re(y)最小,即y精度最高 2、 >> format short,A=sqrt(2) >> format short e,B=sqrt(2) >> format short g,C=sqrt(2)

>> format long,D=sqrt(2) >> format long e,E=sqrt(2) >> format long g,F=sqrt(2) >> format bank,H=sqrt(2) >> format hex,I=sqrt(2) >> format +,J=sqrt(2) >> format,K=sqrt(2)

3、 >> syms A >> A=[sqrt(3) exp(7);sin(5) log(4)];vpa(pi*A,6) 4、1/6251-1/6252=1/6251*6252 5、(1)1/(1+3x)-(1-x)/(1+x)=x*(3*x-1)/[(1+3*x)*(1+x)] (2) sqrt(x+1/x)-sqrt(x-1/x)=2/x/[sqrt(x-1/x)+sqrt(x+1/x)] (3) log10(x1)-log(x2)=log10(x1/x2) (4) [1-cos(2*x)]/x =x^2/factorial(2)-x^4/factorial(4)+x^6/factorial(6)-…

数值计算方法matlab程序

function [x0,k]=bisect1(fun1,a,b,ep) if nargin<4 ep=1e-5; end fa=feval(fun1,a); fb=feval(fun1,b); if fa*fb>0 x0=[fa,fb]; k=0; return; end k=1; while abs(b-a)/2>ep x=(a+b)/2; fx=feval(fun1,x); if fx*fa<0 b=x; fb=fx; else a=x; fa=fx;

end end x0=(a+b)/2; >> fun1=inline('x^3-x-1'); >> [x0,k]=bisect1(fun1,1.3,1.4,1e-4) x0 = 1.3247 k = 7 >> 简单迭代法 function [x0,k]=iterate1(fun1,x0,ep,N) if nargin<4 N=500; end if nargin<3 ep=1e-5; end x=x0; x0=x+2*ep;

while abs(x-x0)>ep & k> fun1=inline('(x+1)^(1/3)'); >> [x0,k]=iterate1(fun1,1.5) x0 = 1.3247 k = 7 >> fun1=inline('x^3-1'); >> [x0,k]=iterate1(fun1,1.5) x0 = Inf k =

相关主题