搜档网
当前位置:搜档网 › 导数压轴题之隐零点问题专辑含答案解析纯版

导数压轴题之隐零点问题专辑含答案解析纯版

导数压轴题之隐零点问题专辑含答案解析纯版
导数压轴题之隐零点问题专辑含答案解析纯版

导数压轴题之隐零点问题

导数压轴题之隐零点问题(共13题)

1.已知函数f (x) = (ae x-a - x) e x(a>0, e=

2.718 …e为自然对数的底数),若f (x)>0对于x € R恒成立.

(1)求实数a的值;

(2)证明:f (x)存在唯一极大值点x o,且.「「一

【解答】(1)解:f (x) =e x(ae x- a - x) >0,因为e x>0,所以ae x- a - x> 0恒成立,

即a (e x- 1) >x恒成立,

x=0时,显然成立,

x>0 时,e x- 1 >0,

故只需a> ' 在(0, + %)恒成立,

e x-l

令h (x) = .「,(x>0),

e x-l

:',:l<" ' v 0 ,

h '()==

故h (x)在(0,+ %)递减,

而「| .=【I .. =1,

-*0e -1 e

K

故 a >1,

x v0 时,e x- 1 v0,

故只需a w「在(-%, 0)恒成立,

e -1

令g (x) =——, (x V 0 ),

e K-l

/ 厶、(1-X ) E X、八

g X) = > 0,

d

故h (x)在(-g, 0)递增,

而I ' -i 二■ j ... =1 ,

e x_l s-*[) e K

故 a <1,

综上:a=1 ;

(2)证明:由(1) f (x) =e x(e x- x - 1),

故f (x) =e x (2e x- x - 2),令h (x) =2e x- x - 2 , h' (x) =2e x- 1 ,

所以h (x)在(-g, In丄)单调递减,在(In 1 , + g)单调递增,

H £

h (0) =0 , h (IJ ) =2el n 丄-In 丄-2=l n2 - 1V 0, h (- 2) =2e -2 -(- 厶M bl

2

2)- 2=—>0,

e

??h (- 2) h (I n I )v 0由零点存在定理及h (x)的单调性知,

J

方程h (x) =0在(-2, In ,[)有唯一根,

设为X0且2e x0- X0- 2=0,从而h (x)有两个零点x o和0 ,

所以f (x)在(-g, X0)单调递增,在(X0, 0)单调递减,在(0, + g)单

调递增,

从而f (X )存在唯一的极大值点X0即证,

x0+2

由2e x0—X0 —2=0 得e x0= —, x0^-1,

x n+2 1 i ?■?f (X0) =e x0(e x0- X0 - 1) = ( - X0- 1)=」(-X0)(2+x 0)<_ (-叼+2+") 2二丄

( 4 ) =1,

取等不成立,所以f (X0)V [得证,

又???-2v x o v ln I , f (x)在(—g, x o)单调递增

2

所以f (x o)> f ( —2) =e —2[e —2—(—2) —1]=e - 4+e - 2 >e - 2 >0 得证, 从而

0 v f (x0 )<一成立.

4

2 .已知函数f (x) =ax+xlnx (a € R)

(1)若函数f (x)在区间[e, + g)上为增函数,求a的取值范围;

(2)当a=1且k € Z时,不等式k (x — 1 )v f (x)在x €( 1, + g)上恒成立,求k 的最大值.

【解答】解:(1 )???函数f (x)在区间[e , + g)上为增函数,

??? f 'x)(=a+lnx+1 X)在区间[e , + g)上恒成立,二a>(-lnx - 1) max= - 2 .

■ a X—2.

??a的取值范围是[-2, + g).

(2) a=1 时,f (x) =x+lnx , k € Z 时,不等式k (x 1) v f (x)在x €( 1 ,

+ g)上恒成立,

?'?k v'J min5

令g / 、x+xlnic 血,八x-lnx-2 (x)= .,贝U g ()=. ,

T (x-1 ) Z

令h (x) =x —lnx — 2 (x > 1).

则h ' () =1 —1= '>0 , Ah (x)在(1 , + g)上单增,

X K

??h (3) =1 —ln3 v 0, h (4) =2 —2ln2 >0 ,

存在X0 €( 3 , 4),使h (X0)=0 .

即当1 v x v X0 时h (x)v 0 即g ' x)v 0

x > X0 时h (x) > 0 即g ' x )> 0

g (x )在 (1 , X 0)上单减,在 (x o + x)上单增. 令 h (x o ) =x o - Inx o — 2=0,即 Inx o =x o - 2 ,

k v g (x ) min =x o €( 3 , 4),且 k € Z , ? °k max =3 .

3.

数 f (x ) =alnx - x 2+x , g (x ) = (x - 2) e x - x 2+m (其中 e=2.71828 ??

:)

(1) 当a O 时,讨论函数f (x )的单调性;

(2) 当a= - 1, x €( 0 , 1]时,f (x )>g (x )恒成立,求正整数 m 的最大 值. 【解答】解:(1)函数f (x )定义域是(0 , + x),

(i) 当.1 时,1+8a <0,当 x €( 0 , + x)时 f (x )<0,

■J

函数f (x )的单调递减区间是(0 , + x);

(ii) 当―亠二丁二」;/—,- 2x 2+x+a=0的两根分别是:

U

l-Vl + 8a

4 *」, (4)

当x €( 0 , X 1 )时f (x )v 0 .函数f (x )的单调递减. 当x €( X 1, X 2 )时f (x ) > 0,函数f (x )的单调速递增, 当x €( X 2, + x)时f (x ) v 0,函数f (x )的单调递减; 综上所述,(i )当":三时f (x )的单调递减区间是(0 , + x),

(ii)当宀匸 时,f (x )的单调递增区间是 「匚"’ m 1

'

g (x ) min =g

(x o )

=x o € (3, 4).

Xn(l+lnx c )

单调递减区间是(0,旦匡)和(凹唾,0)

4 4

(2)当a= - 1 , x €(0 , 1]时,f (x)>g (x),即m v ( —x+2 ) e x—Inx+x ,设h (x) = ( —x+2 ) e x—Inx+x , x€( 0, 1]. 「:,???当0 v x <1 时,1 —x X),

设??. 一乂,则???u (x)在(0 , 1)递增,

又tu (x)在区间(0, 1]上的图象是一条不间断的曲线,

且i_L I 1 _ ? ■ _ ■「--,

:.使得u (x o) =0 ,即■- ::

当x €( 0 , x o)时,u (x)v 0 , h' (x) v 0;

当x €(X0, 1)时,u (x)> 0 , h' (x) > 0;

?函数h (x)在(0 , x o]单调递减,在[X0, 1)单调递增,

x 1 9

?J :' I 15 :, = ■- - 1 IP

* 0 A0

在x€( 0 , 1)递减,

x

茗* Q

???当m <3时,不等式m v (-x+2 ) e x—In x+x对任意x €( 0, 1]恒成立,?正整数m的最大值是3.

4. 已知函数f (x) =e x+a—Inx (其中e=2.71828 …,是自然对数的底数).

(I)当a=0时,求函数a=0的图象在(1 , f (1))处的切线方程;

(U)求证:当- “丨-一时,f (x)>e+1 . £

【解答】(I)解:T a=0时’1:亠丄

??f (1) =e , f ' 1( =e —1,

???函数f (x)的图象在(1 , f (1))处的切线方程:y-e= (e - 1) (x - 1), 即(e - 1) x - y+ 仁0 ;

(n)证明■,

设g (x) =f ' x(贝U 一」二

??g (x)是增函数,

??e x+a>e a,「.由?「亠一一…

x

???当x > e-a时,f 'x)(> 0 ;

若0 v x v 1? e x+a v e a+1,由一L - . ' :. \」,

x

???当0v x v min{1 ,e-a-1}时,f 'x)(v 0,

故f 'x O =0仅有一解,记为X0,则当0 v x v X0时,

当x > X0 时,f 'x)(> 0,f (x)递增;

二'":':

而V ' ■:' ■■.,

x 0 x o

记h (x) =lnx+x ,

则?------ '':,

A o x o

-■■ i -一?—a v 1? h (X。) v h (,),

e e e

而h (x(显然是增函数,

? I …■■?,?.■_.:■「- - 1

U E “X。

综上,当-“丨-一时,f (x) >e+1 .

e

本资料分享自千人教师QQ群323031380 5 .已知函数f (x) =axe x-( a+1 ) (2x - 1).f 'x)(v 0,f (x(递减;高中数学资源大全

(1)若a=1,求函数f (x)的图象在点(0, f (0))处的切线方程;

(2)当x >0时,函数f (x)>0恒成立,求实数a的取值范围.

【解答】解:(1 )若a=1,则 f (x) =xe x- 2 (2x - 1),

当x=0 时,f (0) =2,f (x) =xe x+e x- 4,

当x=0 时,f (0) = - 3,

所以所求切线方程为y= - 3x+2 .……(3分)

(2)由条件可得,首先f (1 )>0,得-> ','■ ■ |,

e-1

而f (x) =a (x+1 ) e x- 2 (a+1 ),

令其为h (x),h' (x) =a (x+2 ) e x恒为正数,

所以h (x)即f (x)单调递增,

而f (0) = - 2 - a v 0,f (1) =2ea -2a - 2 X),

所以f (x)存在唯一根X0€( 0,1],

且函数f (x)在(0,X0)上单调递减,在(X0+ %)上单调递增,

所以函数f (x)的最小值为:■1■... ' ' I I?,

只需f (X0)X0即可,

又X0满足- "_ —,

(a+1) (-2X02+ K0+1)

代入上式可得,

x o+i

'?'X0€( 0,1],二一.二-匸 | I . -,

即:f (X0)X0恒成立,所以「1 .……(13分)

e-1

6 .函数f (x) =xe x- ax+b的图象在x=0处的切线方程为:y= - x+1 .

导数压轴题之隐零点问题专辑含答案纯word版

导数压轴题之隐零点问题 导数压轴题之隐零点问题(共13题) 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增,

而==1, 故a≤1, 综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤() 2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

函数导数压轴题隐零点的处理技巧

函数导数压轴题隐零点的处理技巧 些年高考压轴题中,用导数研究函数的单调性、极值、最值及不等式问题成为命题趋势。用导数解决函数综合问题,最终都会归结于函数的单调性的判断,而函数的单调性又与导函数的零点有着密切的联系,可以说函数的零点的求解或估算是函数综合问题的核心。函数的零点是高中数学中的一个极其重要的概念,经常借助于方程、函数的图象等加以解决。根据函数的零点在数值上是否可以准确求出,我们把它分为两类:一类是在数值上可以准确求出的,不妨称之为显性零点;另一类是依据有关理论(如函数零点的存在性定理)或函数的图象,能够判断出零点确实存在,但是无法直接求出,不妨称之为隐性零点。 本专题通过几个具体的例题来体会隐性零点的处理步骤和思想方法。 一、隐性零点问题示例及简要分析: 1.求参数的最值或取值范围 例1(2012年全国I卷)设函数f(x)=e x﹣ax﹣2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值. 解析:(1)(略解)若a≤0,则f′(x)>0,f(x)在R上单调递增; 若a>0,则f(x)的单调减区间是(﹣∞,ln a),增区间是(ln a,+∞). (2)由于a=1,所以(x﹣k)f′(x)+x+1=(x﹣k)(e x﹣1)+x+1. 故当x>0时,(x﹣k)f′(x)+x+1>0等价于k< 1 1 x x e + - +x(x>0)(*), 令g(x)= 1 1 x x e + - +x,则g′(x)= 2 (2) (1) x x x e e x e -- - , 而函数f(x)=e x﹣x﹣2在(0,+∞)上单调递增,①f(1)<0,f(2)>0, 所以f(x)在(0,+∞)存在唯一的零点.故g′(x)在(0,+∞)存在唯一的零点. 设此零点为a,则a∈(1,2).当x∈(0,a)时,g′(x)<0;当x∈(a,+∞)时,g′(x)>0.所以g(x)在(0,+∞)的最小值为g(a). ③所以g(a)=a+1∈(2,3).由于(*)式等价于k<g(a),故整数k的最大值为2. 点评:从第2问解答过程可以看出,处理函数隐性零点三个步骤: ①确定零点的存在范围(本题是由零点的存在性定理及单调性确定); ②根据零点的意义进行代数式的替换; ③结合前两步,确定目标式的范围。

数学高考导数难题导数零点问题导数整理

f '(x) = (x - a)(2ln x ■ 1 - a ),但这时会发现 f' (x) = 0 的解除了 x = a 外还有 2In x ■ 1 - ◎ =0 的 x x 解,显然无法用特殊值猜出。 a 令 h(x) = 21 n x 1 ,注意到 h(1) = 1 -a :: 0 , h(a) = 2In a 0 , x 故f '(x) = 0在(1, a)及(1, 3e )至少还有一个零点, 又h(x)在(0, +^)内单调递增,所以函数h(x) 在(1,3e]内有唯一零点,但此时无法求出此零点怎么办。 我们可以采取设而不求的方法, 记此零点为x 0, 含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用 对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 (1)因式分解求零点 例1讨论函数 f(x) 1 3 1 2 ax -(a )x 2x 1(a ? R)的单调区间 3 2 解析:即求f'(x)的符号问题。由f'(x)二ax 2 -(2a - 1)x 2 = (ax - 1)(x - 2)可以因式分 解析: f'(x) = (x -a)e x ? x 2 -( a ? 1)x ? a = (x -a)(e x ? x -1),只能解出 f '(x)的一个零点为 a , 方法二:猜出特值,证明唯一 对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去 猜出零点,再证明该函数的单调性而验证其唯一性。 1 1 例 4 讨论函数 f (x) =(x - a-1)e x x 3 (a 1)x 2 ax , a ?二 R ,的极值情况 其它的零点就是e x x 0的根,不能解。 例5(2011高考浙江理科)设函数 f (x) = (x - a)21n x,a ? R (I) 若x =e 为y = f (x)的极值点,求实数a (n) 求实数a 的取值范围,使得对任意的 2 (0,3e],恒有 f(x) — 4e 成立(注:e 为自然对数), 方法三:锁定区间,设而不求 对于例5,也可以直接设函数来求, ①当0 ::: x 乞1时,对于任意的实数 a ,恒有f (x)乞0 ::: 4e 2成立②当1 ::: x 乞3e ,由题意,首先 有 f (3e) =(3e - a )2 In(3e)乞4e 2 , 解 3e 2e 乞a 乞3e ---------- n ( , I 3e) 3e 且 h(3e) =2In(3 e) 1 a 3e -2I n(3e) 1 2e I n(3e) 3e = 2(I n3e- 1 3;I )>0 。

专题03 导数与函数零点(精讲篇)-用思维导图突破导数压轴题

用思维导图突破导数压轴题 专题3 导数与函数零点 () f x() f x() f x () f x y h x =()y g x =() 求函数f(x)的零点 :求导判断f(x)的单调性,适当选取区间,确定端点函数值异号 :a=g(x)或h(x)=q(x)判断相应函数单调性、值域,确定零点个数或范围 结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)

()sin (1) f x x ln x =-+() f x '() f x ()f x '(1,) 2 π -() f x 思路点拨 第(1)题:若1 ()cos 1f x x x '=- +在区间(1,)2 π -的极大值点x 0,则在x 0左边,() f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是() f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2 π 上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另 一根介于(2]2 π ,之间. 从图象可以看出当(1,0)x ∈-和 (0,)2 π 时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <. 这就需要考虑f ′(x )在(?1,0)、 (0,π 2]、(π 2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π 2),还有对这两个区间作相应讨论. 第(2)的思维导图: f '(x) -1 y x π2 x 0 2y =ln(1+x ) y =sin x -1y x 0π2 已知f (x )=sin x -ln(1+x ) 结论: f (x )有且仅有2个零点 sinx=ln(1+x)有两个不等实数根 数形结合:一根为0,一根在 当和时, f (x )>0;当 x ∈?2,+∞)时,f (x )<0 当 x ∈?2,+∞)时, f (x )<0 等价转化

导数问题中虚设零点的三大策略分析

导数问题中虚设零点的三大策略 导数在高中数学中可谓“神通广大”,是解决函数单调性、极值、最值、不等式证明等问题的“利器”.因而近几年来与导数有关的数学问题往往成为高考函数压轴题.在面对这些压轴题时,我们经常会碰到导函数具有零点但求解相对比较繁杂甚至无法求解的问题.此时,我们不必正面强求,可以采用将这个零点只设出来而不必求出来,然后谋求一种整体的转换和过渡,再结合其他条件,从而最终获得问题的解决.我们称这种解题方法为“虚设零点”法.下面笔者就一些高考题,来说明导数问题中“虚设零点”法的具体解题方法和策略. 策略1整体代换将超越式化简为普通式 如果f′(x)是超越形式(对字母进行了有限次初等超越运算包括无理数次乘方、指数、对数、三角、反三角等运算的解析式,称为初等超越式,简称超越式),并且f′(x)的零点是存在的,但我们无法求出其零点,这时采用虚设零点法,逐步分析出“零点”所在的范围和满足的关系式,然后分析出相应函数的单调性,最后通过恰当运用函数的极值与零点所满足的“关系”推演出所要求的结果.通过这种形式化的合理代换或推理,谋求一种整体的转换和过渡,从而将超越式化简为普通式,有效破解求解或推理证明中的难点. 例1(2015年全国高考新课标Ⅰ卷文21)设函数f(x)=e2x-alnx. (1)讨论f(x)的导函数f′(x)的零点的个数;

(2)证明:当a>0时,f(x)≥2a+aln2a. 解(1)f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).由f′(x)=0,得2xe2x=a.令g(x)=2xe2x,g′(x)=(4x+2)e2x>0(x>0),从而g(x)在(0,+∞)单调递增,所以g(x)>g(0)=0. 当a>0时,方程g(x)=a有一个根,即f′(x)存在唯一零点; 当a≤0时,方程g(x)=a没有根,即f′(x)没有零点. (2)由(1),可设f′(x)在(0,+∞)的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;

导数压轴题处理专题讲解

导数压轴题处理专题讲解(上) 专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -

专题一 双变量同构式(含拉格朗日中值定理) 例1. 已知(1)讨论的单调性 (2)设,求证:例2. 已知函数,。(1)讨论函数的单调性;w.w.w.k.s.5.u.c.o.m (2)证明:若,则对任意x ,x ,x x ,有 。 例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数; (3)若对任意恒成立,求的取值范围. ()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212 ,0,,4x x f x f x x x ?∈+∞-≥-()2 1(1)ln 2 f x x ax a x = -+-1a >()f x 5a <12∈(0,)+∞1≠21212 ()() 1f x f x x x ->--()ln ,m f x x m R x =+ ∈m e =e ()f x ()'()3 x g x f x = -()() 0, 1f b f a b a b a ->><-m

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

导数中的零点问题(学生版)

专题2.3导数中的零点问题 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。 例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x ==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。所以21a e e =+(注意:有一个根转化为图像只有一个交点即可)二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 注意:如果不是的大题没必要分类讨论,做出符合题意的图像反推即可 例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e 上有两个不同零点,求实数b 的取值范围。

函数与导数压轴题中零点问题

导数压轴题零点问题练习题 一、解答题 1.(2020·省高三考试)设函数()()2 1f x x bx b R =-+∈,()()() ,0,0f x x F x f x x ?>? =? ->??. (1)如果()10f =,求()F x 的解析式; (2)若()f x 为偶函数,且()()g x f x kx =-有零点,数k 的取值围. 【答案】(1)()2221,0 21,0 x x x F x x x x ?-+>=?-+-=?-+-

数学高考导数难题导数零点问题导数

含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用 对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 (1)因式分解求零点 例1 讨论函数)(12)2 1(31)(23R a x x a ax x f ∈+++-=的单调区间 解析:即求)('x f 的符号问题。由)2)(1(2)12()('2--=++-=x ax x a ax x f 可以因式分 方法二:猜出特值,证明唯一 对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 例4 讨论函数ax x a x e a x x f x ++-+ --=23)1(2131)1()(,R a ∈,的极值情况 解析:)1)(()1()()('2-+-=++-+-=x e a x a x a x e a x x f x x ,只能解出)('x f 的一个零点为a ,其它的零点就 是01=-+x e x 的根,不能解。 例5(2011高考浙江理科)设函数R a x a x x f ∈-=,ln )()(2 (Ⅰ)若e x =为)(x f y =的极值点,求实数a (Ⅱ)求实数a 的取值范围,使得对任意的],3,0(e x ∈恒有24)(e x f ≤成立(注:e 为自然对数), 方法三:锁定区间,设而不求 对于例5,也可以直接设函数来求, ①当10≤=a a h , 且(3)2ln(3)12ln(3)13a h e e e e =+- ≥+- =2(ln 30e f 。 故0)('=x f 在),1(a 及(1,3e )至少还有一个零点,又()h x 在(0,+∞)内单调递增,所以函数()h x 在]3,1(e 内有唯一零点,但此时无法求出此零点怎么办。我们可以采取设而不求的方法,记此零点为0x ,则a x <<01。 从而,当0(0,)x x ∈时,'()0f x f ;当0(,)x x a ∈时,'()f x a f ;当(,)x a ∈+∞时,'()0f x f ,即()f x 在0(0,)x 内单调递增,在0,()x a 内单调递减,在(,)a +∞内单调递增。所以要使2()4f x e ≤对](1,3x e ∈恒成立,只要 2200022()()ln 4,(1)(3)(3)ln(3)4,(2)f x x a x e f e e a e e ?=-≤??=-≤??成立。

导数方法与技巧一(隐零点问题)

高三数学一轮复习第二十讲:导数的方法与技巧一(隐零点问题) 1.已知函数 ()()()ln ,f x x h x ax a R ==∈(1)若函数与的图像无公共点,试求实数的取值范围; ()f x ()g x a (2)是否存在实数,使得对任意的,都有函数的图像在的图像m 1,2x ??∈+∞ ??? ()m y f x x =+()x e g x x =的下方?若存在,求出最大整数的值;若不存在,请说明理由. m (参考数据:) ln 20.6931,ln 3 1.3956≈≈≈≈ 2.已知函数,其中,为自然对数的底数. ()()222 x a f x x e x =--a R ∈e (1)函数的图象能否与轴相切?若能求出实数的值;否则,说明理由. ()f x x a (2)若函数在上单调递增,求实数能取到的最大整数值. ()2y f x x =+R a

3.设函数. ()()ln ,21x f x x x g x x e x =-=?--(1)关于的方程在区间上有解,求实数的取值范围; x ()2103 f x x x m =-+[]1,3m (2)证明:当时,. 0x >()()g x f x ≥ 4.已知函数,若恒成立,求实数的取值范围. ()()()2 23,x f x e x a a R =--+∈()0,0x f x ≥≥a

5.已知函数. ()ln 1f x ax x =++(1)讨论函数零点的个数; ()f x (2)对任意的恒成立,求实数的取值范围. ()20,x x f x xe >≤a 6.已知函数. ()2 x f x e x ax =--(1)若函数在R 上单调递增,求实数的取值范围. ()f x a (2)若,证明:当时,. 1a =0x >()2 ln 2ln 2122f x ??>-- ??? (参考数据:) 2.71828,ln 20.69e ≈≈

导数专题零点问题教师版

导数专题零点问题教师版 Modified by JEEP on December 26th, 2020.

导数专题(三)——零点问题 (2013昌平二模理)(18)(本小题满分13分)(零点问题) 已知函数2 1()ln (0).2 f x x a x a = -> (Ⅰ)若2,a =求()f x 在(1,(1))f 处的切线方程; (Ⅱ)求()f x 在区间[1,e]上的最小值; (III )若()f x 在区间(1,e)上恰有两个零点,求a 的取值范围. (18)(本小题满分13分) 解:(I )2,a =212()2ln ,'(),2f x x x f x x x = -=- ()f x 在(1,(1))f 处的切线方程为2230.x y +-=………………………..3分 (Ⅱ)由2'().a x a f x x x x -=-= 由0a >及定义域为(0,)+∞,令'()0,f x x ==得 1,01,a ≤<≤即在(1,e)上,'()0f x >,)(x f 在[1,e]上单调递增, 因此,()f x 在区间[1,e]的最小值为1 (1)2 f = . ②若21e,1e ,a <<<<即在 (上,'()0f x <,)(x f 单调递减;在上, '()0f x >,)(x f 单调递增,因此()f x 在区间[1,e]上的最小值为1 (1ln ).2 f a a = - 2e,e ,a ≥≥即在(1,e)上,'()0f x <,)(x f 在[1,e]上单调递减, 因此,()f x 在区间[1,e]上的最小值为21 (e)e 2 f a =-. 综上,当01a <≤时,min 1()2f x =;当21e a <<时,min 1 ()(1ln )2 f x a a =-; 当2e a ≥时,2min 1 ()e 2 f x a =-. ……………………………….9分 (III) 由(II )可知当01a <≤或2e a ≥时,)(x f 在(1,e)上是单调递增或递减函数,不可能存在两个零点.

(完整版)导数压轴题分类(6)---函数的隐零点问题(含答案)

导数压轴分类(6)---函数的隐零点问题 任务一、完成下面问题,总结隐零点问题的解题方法。 例1. [2013湖北理10] 已知a 为常数,函数)(ln )(ax x x x f -=有两个极值点21x x ,,且21x x <,则( ) A.)(1x f >0,)(2x f >21- B. )(1x f <0,)(2x f <2 1- C. )(1x f >0,)(2x f <21- D . )(1x f <0,)(2x f >21- 例2. [2012全国文21] 设函数2)(--=ax e x f x . (1)求函数)(x f 的单调区间; (2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。 k 的最大值=2 任务二、完成下面问题,体验隐零点问题的解题方法的应用。 2.1 [2015北京海淀二模理18] 设函数2ln 1)(x x x f -=. (Ⅰ)求函数)(x f 的零点及单调区间; (Ⅱ)求证:曲线x x y ln = 存在斜率为6的切线,且切点的纵坐标0y <1- 提示解析:(Ⅰ)函数)(x f 的零点为x e =,单调减区间32(0,)e ;单调增区间32(,)e +∞; (Ⅱ)x x y ln =存在斜率为6的切线即存在点000ln (,)x x x 处导数为6,于是020 1ln 6x x -=,即2001ln 60x x --=,令2()1ln 6f x x x =--为增函数,易判断所以01(,1)2x ∈,所以20000000 ln 1616x x y x x x x -===-为减函数,所以0001 2|231x y y =<=-=-

导数零点问题总结

导数零点问题 导数是研究函数的有力工具,其核心又是由导数值的正、负确定函数的单调性.用导数研究函数f (x )的单调性,往往需要解方程f ′(x )=0. 若该方程不易求解时,如何继续解题呢? [典例] 设f (x )=1+ln x x . (1)若函数f (x )在(a ,a +1)上有极值,求实数a 的取值范围; (2)若关于x 的方程f (x )=x 2-2x +k 有实数解,求实数k 的取值范围. [方法演示] 解:(1)因为f ′(x )=-ln x x 2,当00;当x >1时,f ′(x )<0,所以函数f (x )在(0,1) 上单调递增,在(1,+∞)上单调递减,故函数f (x )的极大值点为x =1,所以a <10,当x >1时,g ′(x )<0,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.所以g (x )max =g (1)=2.当x →0时,g (x )→-∞;当x →+∞时,g (x )→-∞,所以函数g (x )的值域是(-∞,2],所以所求实数k 的取值范围是(-∞,2]. [解题师说] 当所求的导函数解析式中出现ln x 时,常猜x =1;当函数解析式中出现e x 时,常猜x =0或x =ln x . [应用体验] 1.函数f (x )=e x +1 2x 2-(2+ln 2)x 的最小值为________. 答案:2-2ln 2-1 2 ln 22 解析:f ′(x )=e x +x -(2+ln 2).接下来,需求函数f (x )的单调区间,所以需解不等式f ′(x )≥0及f ′(x )≤0,因而需解方程f ′(x )=0.但此方程不易求解,所以我们可以先猜后解. 易知f ′(x )是增函数,所以方程f ′(x )=0至多有一个实数根,且可观察出此实数根就是ln 2,所以函数f (x )在(-∞,ln 2)上是减函数,在(ln 2,+∞)上是增函数,

导数中两种零点问题解决方法

导数中的零点问题解决方法 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。 例1.已知函数(),()ln a f x x g x x x =+ =,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。 解析:22()ln ()22g x x f x e a x ex x x =-?=-+,令2ln ()2x h x x ex x =-+,'21ln ()22x h x x e x -=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ 注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是 如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x = =-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。 所以21a e e =+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间

高考导数压轴题零点问题

导数压轴题之零点问题 1.已知函数f(x)=(ae x﹣a﹣x)e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立. (1)求实数a的值; (2)证明:f(x)存在唯一极大值点x0,且. 【解答】(1)解:f(x)=e x(ae x﹣a﹣x)≥0,因为e x>0,所以ae x﹣a﹣x≥0恒成立, 即a(e x﹣1)≥x恒成立, x=0时,显然成立, x>0时,e x﹣1>0, 故只需a≥在(0,+∞)恒成立, 令h(x)=,(x>0), h′(x)=<0, 故h(x)在(0,+∞)递减, 而==1, 故a≥1, x<0时,e x﹣1<0, 故只需a≤在(﹣∞,0)恒成立, 令g(x)=,(x<0), g′(x)=>0, 故h(x)在(﹣∞,0)递增, 而==1, 故a≤1,

综上:a=1; (2)证明:由(1)f(x)=e x(e x﹣x﹣1), 故f'(x)=e x(2e x﹣x﹣2),令h(x)=2e x﹣x﹣2,h'(x)=2e x﹣1, 所以h(x)在(﹣∞,ln)单调递减,在(ln,+∞)单调递增, h(0)=0,h(ln)=2eln﹣ln﹣2=ln2﹣1<0,h(﹣2)=2e﹣2﹣(﹣2)﹣2=>0, ∵h(﹣2)h(ln)<0由零点存在定理及h(x)的单调性知, 方程h(x)=0在(﹣2,ln)有唯一根, 设为x0且2e x0﹣x0﹣2=0,从而h(x)有两个零点x0和0, 所以f(x)在(﹣∞,x0)单调递增,在(x0,0)单调递减,在(0,+∞)单调递增, 从而f(x)存在唯一的极大值点x0即证, 由2e x0﹣x0﹣2=0得e x0=,x0≠﹣1, ∴f(x0)=e x0(e x0﹣x0﹣1)=(﹣x0﹣1)=(﹣x0)(2+x0)≤()2=, 取等不成立,所以f(x0)<得证, 又∵﹣2<x0<ln,f(x)在(﹣∞,x0)单调递增 所以f(x0)>f(﹣2)=e﹣2[e﹣2﹣(﹣2)﹣1]=e﹣4+e﹣2>e﹣2>0得证, 从而0<f(x0)<成立. 2.已知函数f(x)=ax+xlnx(a∈R) (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x﹣1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值. 【解答】解:(1)∵函数f(x)在区间[e,+∞)上为增函数, ∴f′(x)=a+lnx+1≥0在区间[e,+∞)上恒成立,∴a≥(﹣lnx﹣1)max=﹣2.

高考数学导数与函数零点问题教师版

导数与函数零点问题 函数零点问题是高考中的热点,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论. 例题分类精讲 一、函数零点个数问题 用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值 结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的 对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数. 【例1】若函数f(x)=x3-3x+a 有三个不同的零点,则实数 a 的取值范围是___ . 【答案】(-2,2) 【分析】客观题中函数零点个数问题,可借组图象求解,先根据导函数的符号确定原函数的单调性,由单调性作出函数图象,再确定零点个数. 【解析】由f(x)=x3-3x+a,得f′x)(=3x2-3,由f′(x)=3x2-3=0,得x=±1,f(x)极大值=f(-1)=2+a,f(x)极小值=f(1)=a-2,要使函数f(x)=x3-3x+a有三个不同的零点,则有2+a>0,a-2<0,即- 21; f ′x)(>0 时,0

函数与导数经典例题--高考压轴题(含答案)

函数与导数经典例题-高考压轴 1. 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥ . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

相关主题