搜档网
当前位置:搜档网 › 高频开关磁芯与功率关系表

高频开关磁芯与功率关系表

高频开关磁芯与功率关系表
高频开关磁芯与功率关系表

高频开关变压器系列

拓扑磁芯功率速查表

几种常用铁氧磁心在正激变换器托扑的最大输出功率速查表 各频率下的最大输出功率 磁心型号Ae,cm2 Ab,cm2 AeAb,cm420kHz 24kHz 48kHz 72kHz 96kHz 150kHz 200kHz 250kHz 300kHz 体积Cm3 EE Cores,Ferroxcube-Philips 814E250 0.202 0.171 0.035 1.1 1.3 2.7 4.0 5.3 8.3 11.1 13.8 16.6 0.57 813E187 0.225 0.329 0.074 2.4 2.8 5.7 8.5 11.4 17.8 23.7 29.6 35.5 0.89 813E343 0.412 0.359 0.148 4.7 5.7 11.4 17.0 22.7 35.5 47.3 59.2 71.0 1.64 812E250 0.395 0.581 0.229 7.3 8.8 17.6 26.4 35.3 55.1 73.4 91.8 110.2 1.93 782E272 0.577 0.968 0.559 17.9 21.4 42.9 64.3 85.8 134.0 178.7 223.4 268.1 3.79 E375 0.810 1.149 0.931 29.8 35.7 71.5 107.2 143.0 223.4 297.8 372.3 446.7 5.64 E21 1.490 1.213 1.807 57.8 69.4 138.8 208.2 227.6 433.8 578.4 722.9 867.5 11.5 783E608 1.810 1.781 3.224 103.2 123.8 247.6 371.4 495.1 773.7 1031.6 1289.4 1547.3 17.80 783E776 2.330 1.810 4.217 135.0 161.9 323.9 458.8 647.8 1012.2 1349.5 1686.9 2024.3 22.9 E625 2.340 1.370 3.206 102.6 123.1 246.2 369.3 492.4 769.4 1025.9 1282.3 1538.8 20.80 E55 3.530 2.800 9.884 316.3 379.5 759.1 1138.6 1518.2 2372.2 3162.9 3953.6 4744.3 43.50 E75 3.380 2.160 7.301 233.6 280.4 560.7 841.1 1121.4 1752.2 2336.3 2920.3 3504.4 36.00 EC Cores, ,Ferroxcube-Philips Ec35 0.843 0.968 0.816 26.1 31.3 62.9 94.0 125.3 195.8 261.1 326.4 391.7 6.53 Ec41 1.210 1.350 1.643 52.3 62.7 125.5 188.2 250.9 392.0 522.7 653.4 784.1 10.80 Ec52 1.800 2.130 3.834 122.7 147.2 294.5 441.7 588.9 920.2 1226.9 1533.6 1840.3 18.80 Ec70 2.790 4.770 13.208 425.9 511.0 1022.1 1533.1 2044.2 3194.0 4258.7 5323.3 6388.0 40.10 ETD Cores,Ferroxcube-philips ETD29 0.760 0.903 0.686 22.0 26.4 52.7 79.1 105.4 164.7 219.6 274.5 329.4 5.50 ETD34 0.971 1.220 1.185 37.9 45.5 91.0 136.5 182.0 284.3 379.1 473.8 568.6 7.64 ETD39 1.250 1.740 2.175 69.6 83.5 167.0 250.6 334.1 522.0 696..0 870.0 1044.0 11.50 ETD44 1.740 2.130 3.706 118.6 142.3 284.6 427.0 569.3 889.5 1186.0 1482.5 1779.0 18.00 ETD49 2.110 2.710 5.718 183.0 219.6 439.2 658.7 878.3 1372.3 1829.8 2287.2 2744.7 24.20 Pot Cores,Ferroxcube-philips 704 0.070 0.022 0.002 0.0 0.1 0.1 0.2 0.2 0.4 0.5 0.6 0.7 0.07 905 0.101 0.034 0.003 0.1 0.1 0.3 0.4 0.5 0.8 1.1 1.4 1.6 0.13

铁氧体磁芯功率与频率的关系表

表10-15正激变换器拓扑最大可能输出功率 输出功率(W) 磁芯A e(cm2) A w(cm2) A e A w(cm4) 20kHz 24kHz 48kHz 72kHz 96kHz 150kHz 200kHz 250kHz 300kHz 体积(cm3) E型磁芯 Philips 814E250 0.202 0.171 0.035 1.1 1.3 2.7 4.0 5.3 8.3 11.1 13.8 16.6 0.57 813E187 0.225 0.329 0.074 2.4 2.8 5.7 8.5 11.4 17.8 23.7 29.6 35.5 0.89 813E343 0.412 0.359 0.148 4.7 5.7 11.4 17.0 22.7 35.5 47.3 59.2 71.0 1.64 812E250 0.395 0.581 0.229 7.3 8.8 17.6 26.4 35.3 55.1 73.4 91.8 110.2 1.93 782E272 0.577 0.968 0.559 17.9 21.4 42.9 64.3 85.8 134.0 178.7 223.4 268.1 3.79 E375 0.810 1.149 0.931 29.8 35.7 71.5 107.2 143.0 223.4 297.8 372.3 446.7 5.64 E21 1.490 1.213 1.807 57.8 69.4 138.8 208.2 277.6 433.8 578.4 722.9 867.5 11.50 783E608 1.810 1.781 3.224 103.2 123.8 247.6 371.4 495.1 733.7 1031.6 1289.4 1547.3 17.80 783E776 2.330 1.810 4.217 135.0 161.9 323.9 485.8 647.8 1012.2 1349.5 1686.9 2024.3 22.90 E625 2.340 1.370 3.206 102.6 123.1 246.2 369.3 492.4 769.4 1025.9 1282.3 1538.8 20.80 E55 3.530 2.800 9.884 316.3 379.5 759.1 1138.6 1518.2 2372.2 3162.9 3953.6 4744.3 43.50 E75 3.380 2.160 7.301 233.6 280.4 560.7 841.1 1121.4 1752.2 2336.3 2920.3 3504.4 36.00 EC型磁芯 Philips EC35 0.843 0.968 0.816 26.1 31.3 62.7 94.0 125.3 195.8 261.1 326.4 391.7 6.53 EC41 1.210 1.350 1.634 52.3 62.7 125.5 188.2 250.9 392.0 522.7 653.4 784.1 10.80 EC52 1.800 2.130 3.834 122.7 147.2 294.5 441.7 588.9 920.2 1226.9 1533.6 1840.3 18.80 EC70 2.790 4.770 13.308 425.9 511.0 1022.1 1533.1 2044.2 3194.0 4258.7 5323.3 6388.0 41.10 ETD型磁芯 Philips ETD29 0.760 0.903 0.686 22.0 26.4 52.7 79.1 105.4 164.7 219.6 274.5 329.4 5.50 ETD34 0.971 1.220 1.185 37.9 45.5 91.0 136.5 182.0 284.3 379.1 473.8 568.6 7.64 ETD39 1.250 1.740 2.175 69.6 83.5 167.0 250.6 334.1 522.0 696.0 870.0 1044.0 11.50 ETD44 1.740 2.130 3.706 118.6 142.3 284.6 427.0 569.3 889.0 1186.0 1482.5 1779.0 18.00 ETD49 2.110 2.710 5.718 183.0 219.6 439.2 658.7 878.3 1372.3 1829.8 2287.2 2744.7 24.20 152

几种常用磁性器件中磁芯的选用及设计

几种常用磁性器件中磁芯的选用及设计 开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下: P=KfNBSI×10-6T=hcPc+h W P W 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;P c为铁损;P W为铜损;h c和h W为由实验确定的系数。 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感

Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。 通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。 近年来发展起来的新型逆变弧焊电源单端脉冲变压器,具有高频大功率的特点,因此要

变压器设计及磁芯相关资料

磁性器件中磁芯的选用及设计 开关电源中使用的磁性器件较多,其中常用的软磁器件有:作为开关电源核心器件的主变压器(高频功率变压器)、共模扼流圈、高频磁放大器、滤波阻流圈、尖峰信号抑制器等。不同的器件对材料的性能要求各不相同,如表所示为各种不同器件对磁性材料的性能要求。 (一)、高频功率变压器 变压器铁芯的大小取决于输出功率和温升等。变压器的设计公式如下: P=K*f*N*B*S*I×10-6T=hc*Pc+hW*PW 其中,P为电功率;K为与波形有关的系数;f为频率;N为匝数;S为铁芯面积;B为工作磁感;I为电流;T为温升;Pc为铁损;PW为铜损;hc和hW为由实验确定的系数。 由以上公式可以看出:高的工作磁感B可以得到大的输出功率或减少体积重量。但B值的增加受到材料的Bs值的限制。而频率f可以提高几个数量级,从而有可能使体积重量显著减小。而低的铁芯损耗可以降低温升,温升反过来又影响使用频率和工作磁感的选取。一般来说,开关电源对材料的主要要求是:尽量低的高频损耗、足够高的饱和磁感、高的磁导率、足够高的居里温度和好的温度稳定性,有些用途要求较高的矩形比,对应力等不敏感、稳定性好,价格低。单端式变压器因为铁芯工作在磁滞回线的第一象限,对材料磁性的要求有别于前述主变压器。它实际上是一只单端脉冲变压器,因而要求具有大的B=Bm-Br,即磁感Bm和剩磁Br之差要大;同时要求高的脉冲磁导率。特别是对于单端反激式开关主变压器,或称储能变压器,要考虑储能要求。 线圈储能的多少取决于两个因素:一个是材料的工作磁感Bm值或电感量L,另一个是工作磁场Hm或工作电流I,储能W=1/2LI2。这就要求材料有足够高的Bs值和合适的磁导率,常为宽恒导磁材料。对于工作在±Bm 之间的变压器来说,要求其磁滞回线的面积,特别是在高频下的回线面积要小,同时为降低空载损耗、减小励磁电流,应有高磁导率,最合适的为封闭式环形铁芯,其磁滞回线见图所示,这种铁芯用于双端或全桥式工作状态的器件中。 通常,金属晶态材料要降低高频下的铁损是不容易的,而对于非晶合金来说,它们由于不存在磁晶各向异性、金属夹杂物和晶界等,此外它不存在长程有序的原子排列,其电阻率比一般的晶态合金高2-3倍,加之快冷方法一次形成厚度15-30微米的非晶薄带,特别适用于高频功率输出变压器。已广泛应用于逆变弧焊电源、单端脉冲变压器、高频加热电源、不停电电源、功率变压器、通讯电源、开关电源变压器和高能加速器等铁芯,在频率20-50kHz、功率50kW以下,是变压器最佳磁芯材料。

磁芯选择指南

磁芯选择指南 来源:网络更新时间:2009-12-14点击数: 1

高频变压器设计时选择磁芯的两种方法 来源:网络 更新时间:2008-11-5 8:06:32 点击数: 42 在高频变压器设计时,首先遇到的问题,便是选择能够满闵杓埔蠛褪褂靡蟮拇判尽?lt;BR> 通常可以采取下面介绍的两种方法:面积乘积法和几何尺寸参数法。这两种方法的区别在于:面积乘积法是把导线的电流密度作为设计参数,几何尺寸参数法则是把绕组线圈的损耗,即铜损作为设计参数。 1 面积乘积法 这里讲的面积乘积。是指磁芯的可绕线的窗口面积和磁芯的截面积,这两个面积的乘积。 表示形式为WaAe ,有些讲义和书本上简写为Ap ,单位为 。 根据法拉第定律,我们有: 窗口面积利用情况有: KWα=NAw 变压器有初级、次级两个绕组。因此有: KWα=2NAw 或

0.5KWα=NAw 我们知道: Aw= 而电流有效值 I=Ip 得到以下关系式:0.5KWα= 即: 于是就有如下式:

由于:EδIp=Pi 又有:Pi= 最后得到如下公式: 这个公式适用于单端变压器,如正激式和反激式。 δ<0.5,Bm-T,K-0.3~0.4,η-0.8~0.9,J-A/。推挽式的公式则为: 半桥式的公式则为: 这里的δ>0.5,例如0.8~0.9。 单端变压器如正激式和反激式:Bm=△B=Bs-Br。 双端变压器如推挽式、半桥式和桥式:Bm=2Bpk。 全桥式公式与推挽式相同,但δ>0.5,例如0.8~0.9。

在J=400A/,K=0.4,η=0.8,δ=0.4(单端变压器),δ=0.8(双端变压器)。公式简化如下: (单端变压器) (推挽式) (半桥式和桥式) 2 几何尺寸参数法 这个方法是把绕组线圈的损耗,即铜损作为设计参数。因此,公式正是由计算绕组线圈的铜损的公式演变而来的。 。变压器有两个绕组 这里为初级绕组电阻, 为次级绕组电阻。 由于

罐型磁芯

罐型磁芯 骨架和绕组几乎全部被磁芯包裹起来,致使它对EMI的屏蔽效果非常好;罐型磁芯尺寸均符合IEC标准,在制造的时候互换性非常好;可提供简单型骨架(无插针的)和P CB板安装骨架(有插针);由于罐型形状的设计,致使与其它类型同等尺寸的磁芯相比费用更高;由于它的形状不利于散热,因此不适于应用于大功率变压器电感器。 RM型磁芯 与罐型相比,切掉了罐型的两个对称的侧面,这重设计更有利于散热和大尺寸的引线引出;与罐形相比,节约了大约40%的安装的空间;骨架有无针型的和插针型的;可以采用一对夹子进行安装;RM型磁芯可以作成扁平形状(适合现在的平面变压器或者是直接把磁芯装配到已经设计好绕组的印制板电路上);虽然屏蔽效果不如罐型的好,但是仍然不错。 E型磁芯 与罐型磁芯相比,E型磁芯的费用要低的多,再加上绕制和组装都比较简单,这种磁芯形状现在应用最广,但是它的缺点是不能提供自我屏蔽;E型磁芯可以进行不同方向的安装,也可以几付叠加应用更大的功率;这种磁芯可以作成扁平形状(是现在平面变压器很流行的磁芯形状);也可以提供无针和插针型骨架;由于其散热非常好、可以叠加使用,一般大功率电感器和变压器都使用这种形状的磁芯。 EC、ETD和EER型磁芯 这些类型的磁心结构介于E型和罐型之间。和E型磁芯一样,他们能提供足够的空间供大截面的引线引出(适合现在开关电源低压大电流的趋势);这些形状的磁心散热也非常好;有于中心柱为圆柱形,与相同截面的长方体相比,单匝的绕组的长度缩短了11%,这样致使铜损也降低了11%,同时使的磁心能提供一个更高的输出功率;同时中心柱为圆柱形,与长方体中心柱相比,也避免了由于长方体棱角在绕制时破坏绕组线材绝缘的隐患。 PQ型磁心

磁芯的种类及应用

磁芯的种类及应用: 1.磁性材料的磁化曲线 磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。 2.软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。 剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。 矩形比:Br?Bs 矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。 磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。 初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。 居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。 损耗P:磁滞损耗Ph及涡流损耗 Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为: 总功率耗散(mW)/表面积(cm2) 3.软磁材料的磁性参数与器件的电气参数之间的转换 在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。 一、软磁材料的发展及种类 1. 软磁材料的发展 软磁材料在工业中的应用始于19世纪末。随着电力工及电讯技术的兴起,开始使用低碳钢制造电机和变压器,在电话线路中的电感线圈的磁芯中使用了细小的铁粉、氧化铁、细铁丝等。到20世纪初,研制出了硅钢片代替低碳钢,提高了变压器的效率,降低了损耗。直至现在硅钢片在电力工业用软磁材料中仍居首位。到20年代,无线电技术的兴起,促进了高导磁材料的发展,出现了坡莫合金及坡莫合金磁粉芯等。从40年代到60年代,是科学技术飞速发展的时期,雷达、电视广播、集成电路的发明等,对软磁材料的要求也更高,生产出了软磁合金薄带及软

高导磁芯、功率磁芯的区别

高导磁芯、功率磁芯的区别 功率磁芯和高导磁芯表象区别在于电感,高导就是磁导率高的意思,一般磁导率都有5K---10K,而功率磁芯的磁导率都在2K---3K之间. 实质上:功率磁芯注重的是功率传输过程中的功率损耗或发热现象,越好的功率磁芯如P4、的功率损耗就越严格,否则就越差,高导材料注重的是电感值,尤其是电感在高频下的稳定性.第二,功率材料和高导材料还有一个很重要的区别:居里温度,一般P4的居里温度为240度,而高导的居里温度为130度左右. 通常情况下,材料磁导率越低,适用的频率范围越宽;材料磁导率越高,适用的频率范围越窄。 磁导率是磁阻的倒数,磁阻大了,磁导率就小了。 磁阻的倒数称作磁导。在SI制中,它的单位是亨利(H)。磁阻(magnetic reluctance)是指含有永磁体的磁路中的一个参量。源于磁路中存在漏磁。利用永磁体来产生一工作磁场时,需要有永磁体、高导磁软磁体和适当大小的空隙三部分,总称为磁路。永磁体提供磁通,经过软磁体连接后在空隙处产生磁场。磁路中的总磁通量是守恒的,但在空隙处的磁通密度相对降低,因有部分磁通在非空隙处流失,称之为漏磁,导致磁路中的磁阻。 磁导率μ等于磁介质中磁感应强度B的微分与磁场强度H的微分之比,即μ=dB / dH 通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与真空磁导率μ0之比,即μr=μ/μ0 相对磁导率μr与磁化率χ的关系是:μr=1+χ

磁导率μ,相对磁导率μr和磁化率χ都是描述磁介质磁性的物理量。 对于顺磁质μr>1;对于抗磁质μr<1,但两者的μr都与1相差无几。在大多数情况下,导体的相对磁导率等于1.在铁磁质中,B与H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。 例如,如果空气(非磁性材料)的相对磁导率是1,则铁氧体的相对磁导率为10,000,即当比较时,以通过磁性材料的磁通密度是10,000倍。铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000。

常用铁氧体磁芯说明

磁芯说明 E、I形磁芯 特点:具有高的导磁率,高饱和的磁通密度和很小的损耗。由于铁损和温度成负相关,因而可以防止温度的逐步上升,特别在100℃附近,功率损失最小。 用途:电源转换用变压器及扼流圈,通讯设备用变压器。 E形磁芯比罐形磁芯便宜,并有易缠绕和易组装的优点。然而,E形磁芯没有自屏蔽的功能。我们提供迭片尺寸的E形磁芯,可与市场上原本设计用于标准迭片尺寸的绕带冲压件的线圈管搭配。同时提供公制和DIN尺寸。E形磁芯可压制成各种厚度,提供不同截面的选择。E形磁芯的典型应用包括差模、功率和电信电感器,以及宽带变压器、电源、变换式和逆变式变压器。 E FD磁芯 特点: 卧式安装,可降低高度,备有多路输出,适用于密集型贴装。 用途: 适用于小功率开关电源。 符合行业标准的经济型平面设计(E FD)磁芯可为变压器或电 感器节省大量空间。其横截面特别针对超薄变压器而优化。E FD磁芯非常适合超薄变压器和电感器使用。 E TD磁芯 E TD磁芯是变压器或电感器的经济型选择。其圆形中柱可减小绕组电阻。而且,专门针对提高电源变压器效率而优化尺寸。 E TD磁芯的典型应用包括差模电感器和电源变压器。 E E R磁芯

E E R磁芯是变压器和电感器的经济型选择。在缩短缠绕路径长度上,其圆形中柱比方形中柱更具有优势。美磁E ER磁芯的典型应用包括差模电感器和电源变压器。 E C磁芯 特点:磁芯中心部份的断面呈圆形,绕线十分方便。绕线面积增加,可设计出大功率的开关变压器。 用途: 1、各类开关电源Dc-Dc、Ac-Dc、Ac-Ac 2、适宜各种电源形式:如:单端反激式、正激式推挽、半桥、全桥。 3、适用于家电、通讯、照明、办公自动化、卫星电视接收系统、军品等领域 设计功率参考表 U、I、UR磁芯 U形磁芯适用于窄小空间或罕见因素下的高功率操作。U形磁芯的长支柱有利于漏电感设计,以及与高压绝缘。U/I组合磁芯可节省组装费用。U形磁芯非常适用于电源变压器。 平面E、I形磁芯 平面E形磁芯不但有所有IEC标准尺寸,还有其他尺寸。适合特定用途,不需重新加工就可调整支柱长度和窗口高度(B和D尺寸)。因此,设计人员可以精确根据平面电感器可容纳高度,调整最终的磁芯规格,而不浪费空间。I形磁芯的标准尺寸,也提供设计上的灵活性。E-I面组合磁芯可用于需要表面粘结的大容量组装,还可用于制造有间隙的电感器磁芯(由于是平面构架,所以必须慎重考虑边缘损耗)。平面磁芯的典型应用包括差模电感器和DC-DC、AC-DC变频器。

各种磁芯特性和优势

这种磁性的特点和应用的范围 究竟是选择磁粉芯,还是铁粉芯?相信这个许多工程师在进行开关电源方案的设计中经常碰到。在高功率电感磁芯选择的问题上,磁芯、粉芯、铁硅铝以及铁氧体中的选择和比较是工程师经常探讨的问题。市场上高功率电感的磁芯选择还是挺多的,可供选择的电感材料有:铁硅铝(Kool Mμ)、铁粉芯、铁硅(硅钢叠片)、间隙铁氧体、钼坡莫(MPP)和高磁通(High Flux)等。那么他们究竟有什么特性适合怎么样的应用呢? 磁芯材料比较 铁硅铝与间隙铁氧体 铁硅铝和间隙铁氧体是两种常用的材质,在软饱和方面,间隙铁氧体必须在下降曲线的安全区进行设计。铁硅被设计在受控制的下降曲线范围中,这样就能够提供好的容错特性,特别是在高功率时候。信息请登陆:输配电设备网 在磁通量比较方面,假设特定的50%下降设计点,铁硅铝(Kool Mμ)的磁通量是间隙铁氧体的2倍以上, 这使磁芯的尺寸可缩小35%,设计时可以把磁芯的尺寸缩小30%至35%。 软饱和曲线使铁硅设计本身具有容错能力,而间隙铁氧体则没有。 铁氧体磁能力随温度变化,而铁硅保持相对稳定。很多铁氧体供应商或者厂家会给出产品在25℃到100℃不同环境下材质的差异。由于铁硅铝的材质及结构和间隙铁氧体不同,随着温度改变,变化不会很大。信息来源:http://www.tede. 在边缘损耗方面,铁硅不会发生边缘损耗,而间隙铁氧体有很大的边缘损耗。铁芯的间隙部分随着温度的增加损耗会增加。铁硅铝(Kool Mμ)也有间隙,但是这是均匀的分布式间隙,因为这个形式,在高功率的应用上会更好。信息来自:www.t 对于尺寸和储能,从铁硅铝(Kool Mμ)与锰锌铁氧体在LI2值比较中可以看出,当尺寸都是55mm的大小,测试铁硅铝用60μ,铁硅铝(Kool Mμ)在体积大小的情况下,储能大概是锰锌铁氧体的2倍多,如表1所示。 而当储能是一样的时候,LI2值一样,铁硅铝(Kool Mμ)体积缩小了很多,对于设计者来说,这有效缩小了设计尺寸。如表2所示。

磁芯形状对比表

磁芯形状对比表 分别介绍 罐型磁芯 骨架和绕组几乎全部被磁芯包裹起来,致使它对EMI的屏蔽效果非常好;罐型磁芯尺寸均符合IEC标准,在制造的时候互换性非常好;可提供简单型骨架(无插针的)和PCB 板安装骨架(有插针);由于罐型形状的设计,致使与其它类型同等尺寸的磁芯相比费用更高;由于它的形状不利于散热,因此不适于应用于大功率变压器电感器。 RM型磁芯 与罐型相比,切掉了罐型的两个对称的侧面,这重设计更有利于散热和大尺寸的引线引出;与罐形相比,节约了大约40%的安装的空间;骨架有无针型的和插针型的;可以采用一对夹子进行安装;RM型磁芯可以作成扁平形状(适合现在的平面变压器或者是直接把磁芯装配到已经设计好绕组的印制板电路上);虽然屏蔽效果不如罐型的好,但是仍然不错。 E型磁芯 与罐型磁芯相比,E型磁芯的费用要低的多,再加上绕制和组装都比较简单,这种磁芯形状现在应用最广,但是它的缺点是不能提供自我屏蔽;E型磁芯可以进行不同方向的安装,也可以几付叠加应用更大的功率;这种磁芯可以作成扁平形状(是现在平面变压器

很流行的磁芯形状);也可以提供无针和插针型骨架;由于其散热非常好、可以叠加使用,一般大功率电感器和变压器都使用这种形状的磁芯。 EC、ETD和EER型磁芯 这些类型的磁心结构介于E型和罐型之间。和E型磁芯一样,他们能提供足够的空间供大截面的引线引出(适合现在开关电源低压大电流的趋势);这些形状的磁心散热也非常好;有于中心柱为圆柱形,与相同截面的长方体相比,单匝的绕组的长度缩短了11%,这样致使铜损也降低了11%,同时使的磁心能提供一个更高的输出功率;同时中心柱为圆柱形,与长方体中心柱相比,也避免了由于长方体棱角在绕制时破坏绕组线材绝缘的隐患。 PQ型磁心 PQ型磁心专门为开关电源用电感器和变压器设计。PQ形状的设计优化了磁心体积、表面积和绕组绕制面积之间的比率;这种设计,使的使用最小的磁心提供最大的电感量和最大化的绕制面积成为可能;这种设计,使得在最小的变压器体积和重量下,获得最大的输出功率,并且占用最小的PCB安装空间;可以使用一付夹子进行安装固定;这种有效的设计也使的磁心的磁路截面积更加统一,因此这种磁心结构也使得比其它的磁心结构设计有更少的工作热点。 EP型磁心 EP型磁心的圆形中心柱立体形结构,除了与PCB板接触的末端外,完全的把绕组包裹了起来,屏蔽非常好;这种独特的形状最小化了在两片磁心装配时接触面形成的气隙的影响,并且提供了一个更大的体积和总的空间利用率的比例。 环形磁心 对于制造商来说,环型磁心是最经济的,在与其可比较的各种磁心中,它的花费是最低的;由于使用骨架,附加的和组装的费用等于零;适合时可以使用绕线机进行绕制;它的屏蔽也是非常不错的。

相关主题