搜档网
当前位置:搜档网 › 不等式(教师版)

不等式(教师版)

不等式(教师版)
不等式(教师版)

热点问题4 基本不等式

一、

填空题

1.已知2()log (2)f x x =-,若实数,m n 满足()(2)3f m f n +=,则m n +的最小值为 . 答案 7

解析 由()(2)3f m f n +=可得:22log (2)log (22)3m n -+-=,则(2)(1)4m n

--=,

其中(2,1m n >>),由基本不等

式3

2

m n +-,则7m n +≥(当且仅当4,3m n ==时,等号成立).

2.已知正实数x ,y 满足24xy x y ++=,则x + y 的最小值为 .

答案

3 解

24

xy x y ++=,则

421x

y x

-=+,所以

426

621

311

1

x x y x x x x

x x -+=

+=+-=++

-

+++ 正实数x ,y ,则0

00242001x x x x y x >?>??

??<<-??>>??+?

又6

1331

x x ++

-≥+

(当且仅当1x =时式中等号成立) 3.函数3

24

()12x x f x x x -=++的最大值为 .

答案

14

解析 3

24221()1122x x x x f x x x x x --==++++211()4x x x x -=-+,令10t x x =->,则2

1()44t f x t t t

==++

欲使函数3

24

()12x x f x x x -=++取得最大值,则0t >,又44t t +≥,所以1()4f x ≤.

4.若不等式x 2+2xy ≤a (x 2+y 2)对于一切正数x ,y 恒成立,则实数a 的最小值为________.

答案

解析 因为2222()x xy a x y +≤+?22

22

2()2()2()1x x x xy y y

a x x y y

++≥=++

令x

t y

=,则2221t t a t +≥+(0t >),又22222

2121211111t t t t t t t t +++--==++++ 令21u t =-,则2221111()12t u t -+

=+++

=2

44252u u u u u

=≤++++

所以a ≥

. 5.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB ?的最大值是 . 答案 5

解析 由题意:(0,0),(1,3)A B ,又两直线互相垂直,所以点P 的轨迹是以AB 为直径的圆,

则22||||10PA PB +=,所以22

||||||||52

PA PB PA PB +?≤

=

6.已知(),,0,24,x y z x y z x x y z yz >++=+++则的最大值为_________. 答案 4

解析 ()()()()()2

42x y x z x x y z yz x y x z +++??

+++=++≤=????

7.已知00x y >>,,且满足18

102y x x y

+++=,则2x y +的最大值为 . 答案 18 解析

18102y x x y ??+=-+ ???,18(2)()(2)102y x y x y x x y ???

?++=+-+ ??????

? 18(2)()18x y x y ++≥,(2)10182y x y x ???

?+-+≥ ??????

?,2218x y ≤+≤….

8.国际上钻石的重量计量单位为克拉.已知某种钻石的价值V 美元与其重量ω克拉的平方成正比,

若把一颗钻石切割成重量分别为m ,n (m ≥n )的两颗钻石,且价值损失的百分率=原有价值-现有价值

原有价值

×100%(切割中重量损耗不计),则价值损失的百分率的最大值为________.

答案 50%???

?填0.5,1

2都算对 解析 因为V 与ω的平方成正比,所以设V =kω2,则原有价值V 0=k (m +n )2,现有价值V =V 1+V 2=km 2

+kn 2

,所以价值损失的百分率=V 0-V V 0=k (m +n )2-km 2-kn 2

k (m +n )2

×100%,而

k (m +n )2-km 2-kn 2k (m +n )2=2mn (m +n )2≤2mn 4mn =1

2,当且仅当m =n 时取等号.故价值损失的百分率的最大值为50%.

二、解答题

9.设函数)0(3)2()(2≠+-+=a x b ax x f . (1)若不等式0)(>x f 的解集)3,1(-.求b a ,的值; (2)若(1)2,00f a b =>>、求

解 (1)由不等式0)(>x f 的解集)3,1(-可得:方程2(2)30ax b x +-+=的两根为1,3-且

0a <

由根与系数的关系可得:???=-=4

1

b a

(2)若(1)2,00

f a b =>>、,则1a b +=,所以

14144()()59b a

a b a b a b a b +=++=++≥

9(当且仅当12,33a b ==时式中等号成立)

10.有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定:大桥上的车距d m 与车速v km/h 和车长l m 的关系满足d =k v 2l +1

2l (k 为正的常数).假定车身长为4 m ,

当车速为60 km/h 时,车距为2.66个车身长.

(1)写出车距d m 关于车速v km/h 的函数关系式;

(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多? 解 (1) 由题意,当v =60时,d =2.66l ,

所以k =2.66l -1

2l

602

l =2.16

602=0.0006, 所以d =0.0024v 2+2.

(2)设每小时通过的车辆数为Q ,则Q =1000v

d +4

即Q =1000v

0.0024v 2+6

1000

0.0024v +6

v

. 因为0.0024v +6

v ≥2

0.0024v ×6

v =0.24,

所以Q ≤10000.24=125003,当且仅当0.0024v =6v ,即v =50时,Q 取最大值12500

3.

故当车速为50 km/h 时,大桥上每小时通过的车辆最多. 11. 已知数列{}n a 的前n 项和为n S ,22n n S a =-.

(1)求数列{}n a 的通项公式; (2)设2log n n b a =,n c =

1

1n n b b +,记数列{}n c 的前n 项和n T .若对n N *

∈, ()4n T k n ≤+ 恒成立,求实数k 的取值范围.

解:(1)当1n =时,12a =,

当2n ≥时,1122(22)n n n n n a S S a a --=-=--- 即:

1

2n

n a a -=,∴数列{}n a 为以2为公比的等比数列 2n a n ∴= (2)由2log n n b a =得n b n =,则c n =

11

n n b b +=()11n n +=1n -11

n +, T n =1-

12+12-13+…+1n -11n +=1-11n +=1

n n +. ∵

1

n

n +≤k (n +4),∴k ≥21454n n n n n n =(+)(+)++=

1

45n n

++. ∵n +

4n +

5=9,当且仅当n =4

n ,即n =2时等号成立, ∴

145n n

++≤19,因此k ≥19,故实数k 的取值范围为1,9??

+∞????

(第12题图)

12.如图,点)1,0(-P 是椭圆)0(1:22

221>>=+b a b

y a x C 的一个顶点,1C 的长轴是圆

4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交

椭圆1C 于另一点D

(1)求椭圆1C 的方程; (2)求ABD ?面积取最大值时直线1l 的方程.

解 (1)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2

214

x y +=; (2)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-?--=,

直线21

:10l y x x ky k k

=-

-?++=,所以圆心(0,0)到直线 1:110l y kx kx y =-?--=

的距离为d =

所以直线1l 被圆224x y +=

所截的弦AB ==

由22222

048014

x ky k k x x kx x y ++=???++=?+=??,所以

228||44

D P k x x DP k k +=-∴==++,所以

222

114

||||

22444313 ABD

S AB DP

k k k ?

?

==?==

++++

2

3232

==≤=

+

+

当2

5

22

k k

=?=?=±时等号成立,此时直

线1

:1

l y x

=-.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

基本不等式专题 ---完整版(非常全面)

创作编号:BG7531400019813488897SX 创作者: 别如克* 基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅 当b a =时取“=”) (4)若 R b a ∈,,则 2)2(2 22b a b a ab +≤ +≤ ( 5 ) 若 * ,R b a ∈,则 2 2111 22b a b a ab +≤+≤≤+ ( 1 ) 若 ,,,a b c d R ∈,则 22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 2222222 1231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+) 22212) n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等

一元一次不等式---教师版

不等式的俩边都乘上(或除去)同一个正数,不等号的方向不变。不等式的俩边都乘上(或除去)同一个负数,不等号的方向改变。“>”填空。若a>b 且m≠0,则 ___a b (2) 2 2 ____ a b m m ___m a m b (4) ___a m b m 1. 若0,a 则下列各式错误的是(C ) 1a B 10a 10a 2a 0,m 那么(20032004m m 3.14m m C 2003 200420042003m m D 1 1 23 m m 关于x 的方程7 45ax x 的解是正数,求的取值范围。 解: ax+7=4x-5 ax-4x=-12 x=-12÷(a-4)>0 a b a m b m m>0am>bm: a b a b m m 且m<0am

2 1 32 x x 2)36 x x 436 x x 364 x x 合并同类项得2 x 把系数化为1得2 x 解不等式: 221 23 x x 2)2(21) x x 622 x x 226 x x 合并同类项得8 x 把系数化为1得8 x 解关于x的不等式:(m m-1>0,m>1时,

变式 不等式-2x<4的解集表示在数轴上,正确的是(B ) A C 四.一元一次不等式组 一元一次不等式组解集的确定主要是借助数轴直观找到.共分四种情况,“同大取大,同小取小,大小小大取中间,大大小小解不见”, 例6 不等式组 2110 x x >-?? -≤?的解集是_1 12x -<≤-____________________ 不等式组 图示 解集 x a x b b a x a >(同大取大) x a x b ? b a b x a <<(大小交叉取中间) x a x b >??

基本不等式中“1的妙用教师版PDF

基本不等式中“1 的妙用” 例1:(1)已知,x y R *∈,21x y +=,求12x y +的最小值;(2)已知,x y R *∈,23x y +=,求12x y +的最小值;(3)已知,x y R *∈,322x y +=,求62x y +的最小值;(4)已知,x y R *∈,2x y xy +=,求2x y +的最小值; 【解析】这四个题目中,(1)是“1的替换”的最基础题目,已知整式的值为1,求分式的最小值,(2)是将已知值变成了3,需要调节系数,(3)是已知分式的值求整式的最值,(4)对分式进行等价变换. 【答案】(1)121222(2)()1459x y x y x y x y y x +=++=+++≥+=,当且仅当22x y y x =即13 x y ==时取等号. (2)121121221(2)(1453333x y x y x y x y y x +=++=+++≥+=()(,当且仅当22x y y x =即13 x y ==时取等号. (3)1323662=(2)92182y x x y x y x y x y +++=+++≥+,当且仅当63x y y x =即 2 y ==时取等号. (4)因为2x y xy +=,所以121y x +=,然后1242=(+2y)(+)=48x y x y x y x y x +++≥,当且仅当4x y y x =即24x y ==时取等号.例2:(1)已知,x y R *∈,1x y +=,求 1213 x y +++的最小值;(2)已知,x y R *∈,1x y +=,求2211x y x y +++的最小值;(3)已知,x y R *∈,1x y +=,求1223 x y y +++的最小值;(4)已知,x y R *∈,231x y +=,求123x y y +++的最小值; 【解析】这四个题目:(1)是分式的分母分别加上一个常数,为了能够使用基本不等式,我们需要对整式也进行相应的变形;(2)在上一题的基础上,是分式的分子分母不再是一个常数而是二次项,需要分离出一个代数式,变成熟悉的形式;(3)在(1)的情况下分母进一步变化,不是加一个常数,而是混搭的形式;(4)在上一题的基础之上不再是直接观察出结果,而是需要配凑一个系数. 【答案】(1)整式变形成113x y +++=,

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

不等式复习资料(教师)

不等式复习资料 1 ?已知f3为R 上的减函数,贝IJ 满足f (丄)>f (l )的实数W 的取值范围是( ) X A. (—8,1) B ?(1,+8) C ?(―8,0)U (0,1) D ?(―8, 0)U (I, + 8) 【答案】D fx>0 2x-2y+l<0 【答案】B 5. 当XG (1,2)时,不等式x 2+/m+4<0恒成立,则加的取值范围是 ________________ 。 【答案】(一8,—5] 6. 在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4俩甲型货车和 8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台:每辆乙型货 车 运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费 用为( ) A. 2000 元 B. 2200 元 C. 2400 元 D. 2800 元 【答案】B 0100 2.在约束条件! y0且XH I 时,lgx+ 1 >2 lgx C.当x>2^.x +丄的最小值为2 x B ?当x>0时,肩+4=?2 D.当0VXS2时,兀一丄无最大值 x 4.已知正数X 、 y 满足v 2x-y<0 x-3v+5>0 则z = 2 2x+y 的最大值为( A. 8 【答案】 B. 16 C. 32 D. 64

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

不等式及其性质(教师版)

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2)五种不等号的读法及其意义: 符号读法意义 “≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小 “<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大 “≤”读作“小于或等 于” 即“不大于”,表示左边的量不大于右边的量 “≥”读作“大于或等 于” 即“不小于”,表示左边的量不小于右边的量 (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x 表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1. 判断下列各式哪些是等式,哪些是不等式. (1)4<5; (2)x2+1>0; (3)x<2x-5; (4)x=2x+3; (5)3a2+a; (6)a2+2a≥4a-2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是() A.18<t<27 B.18≤t<27 C.18<t≤27D.18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a;②-2>-5;③x≥-1;④

基本(均值不等式)不等式知识点基础练习

VIP 免费 欢迎下载 学生姓名: 任课教师: 试卷审查教师: 测试科目: 涉及章节: 教师评语: 不等是知识点 ★ 知 识 梳理 ★ 1.基本形式:,a b R ∈,则222a b ab +≥;0,0a b >>,则2a b ab +≥,当且仅当a b =时等号成立. 2求最值:当ab 为定值时,22,a b a b ++有最小值;当a b +或22a b +为定值时,ab 有最大值(0,0a b >>). 3.拓展:若0,0a b >>时,22 2 1122a b a b ab a b ++≤≤≤+,当且仅当a b =时等号成立. ★ 重 难 点 突 破 ★ 1.重点:理解基本不等式2 a b ab +≤ 等号成立条件,掌握用基本不等式证明不等式 会用基本不等式解决简单的最大(小)值问题. 2.难点:利用基本不等式2a b ab +≤求最大值、最小值 3.重难点:正确运用基本不等式证明不等式,会用基本不等式求某些函数的最值 二 方法技巧讲解 (1) 灵活运用基本不等式处理不等关系 问题1. 已知正数x 、y 满足x +2y =1,求 x 1+y 1的最小值. 点拨:∵x 、y 为正数,且x +2y =1, 日期: 2012- 时间:

∴x 1+y 1=(x +2y )(x 1+y 1) =3+x y 2+y x ≥3+22, 当且仅当 x y 2=y x ,即当x =2-1,y =1-22时等号成立. ∴x 1+y 1的最小值为3+22. (2)注意取等号的条件 问题2. 已知两正数x,y 满足x+y=1,则z=11()()x y x y ++ 的最小值为 。 点拨: 错解1、因为对a>0,恒有12a a +≥,从而z=11()()x y x y ++≥4,所以z 的最小值是4。 错解2、222222()22x y xy z xy xy xy xy xy +-==+-≥22(21)-=-,所以z 的最小值是2(21)-。 错因分析:解一等号成立的条件是11,11,1x y x y x y x y ====+=且即且与相矛盾。解二等号成立的条件是2,2xy xy xy ==即,与104 xy <≤相矛盾。 解析:z=11()()x y x y ++=1y x xy xy x y +++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210( )24x y t xy +<=≤=,由2()f t t t =+在10,4?? ???上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值254 。 ★ 热 点 考 点 题 型 探 析★ 考点1 利用基本不等式求最值(或取值范围) 题型1. 当积ab 为定值时,求和a b +最小值

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

不等式及其性质(教师版)

不等式及其性质(教师 版) https://www.sodocs.net/doc/479376559.html,work Information Technology Company.2020YEAR

一、不等式及其性质 【学习目标】 1.了解不等式的意义,认识不等式和等式都刻画了现实世界中的数量关系; 2. 理解不等式的三条基本性质,并会简单应用; 3.理解并掌握一元一次不等式的概念及性质; 【要点梳理】 要点一、不等式的概念 一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式. 要点诠释: (1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大. (2) (3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立. 类型一、不等式的概念 例1.判断下列各式哪些是等式,哪些是不等式. 例2.(1)4<5; 例3.(2)x2+1>0; 例4.(3)x<2x-5; 例5.(4)x=2x+3; 例6.(5)3a2+a;

例7. (6)a 2+2a≥4a -2. 变式练习: 1.(2017春?城关区校级期末)贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t ℃,则下面表示气温之间的不等关系正确的是( ) A .18<t <27 B .18≤t <27 C .18<t≤27 D .18≤t≤27 2.(2017春?未央区校级月考)下列式子:①a+b=b+a ;②-2>-5;③x≥-1;④ 31y-4<1;⑤2m≥n ;⑥2x-3,其中不等式有( ) A .2个 B .3个 C .4个 D .5个 3.(2017春?南山区校级月考)下面给出了6个式子:?3>0; x+3y >0; x=3;④x-1;⑤x+2≤3;⑥2x≠0;其中不等式有( ) A .2个 B .3个 C .4个 D .5个 4.(2017春?太原期中)学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x+30y≥500”表示的实际意义是( ) A .两种客车总的载客量不少于500人 B .两种客车总的载客量不超过500人 C .两种客车总的载客量不足500人 D .两种客车总的载客量恰好等于500人 5.已知有理数m ,n 的位置在数轴上如图所示,用不等号填空. (1)n-m 0;(2)m+n 0;(3)m-n 0;(4)n+1 0;(5)m?n 0; (6)m+1 0. 例2.用不等式表示: (1)x 与-3的和是负数; (2)x 与5的和的28%不大于-6; (3)m 除以4的商加上3至多为5. 举一反三: 【变式】a a 的值一定是( ).

上海昂立智立方数学高中 高一(秋季班) 高数—10秋—08—基本不等式—翁军成-教师版

高一数学秋季班(教师版)教师日期 学生 课程编号08课型同步复习课题基本不等式 教学目标 1.掌握基本不等式的概念; 2.掌握几个重要不等式; 3.掌握比较法,综合法,分析法证明不等式的基本思路; 4.掌握简单基本不等式的相关证明问题; 教学重点 1.掌握不等式的使用条件; 2.掌握不等式的变形; 3.掌握多次使用不等式的方法; 教学安排 版块时长1知识梳理10 2例题解析60 3巩固训练40 4师生总结10 5课后练习60

一、基本不等式: 1.若,a b R ∈,222a b ab +≥,当且仅当a =b 时取等号 2.(1)“积定和最小”:ab b a 2≥+?如果积ab 是定值P ,那么当a b =时,和a b +有最小值 2P ; (2)“和定积最大”:2 2? ? ? ??+≤b a ab ?如果和a b +是定值S ,那么当a b =时,积ab 有最大值214S 。 3.若,a b R + ∈,22 22 a b a b ab ++≥≥ 加权平均》算术平均》几何平均 二、均值不等式:若a 、b 为正数,则2 a b ab +≥,当且仅当a b =时取等号 变式:2 2 2 ()22 a b a b ab ++≥ ≥ 推广:123,,,,n a a a a L 是n 个正数,则 12n a a a n +++L 称为这n 个正数的算术平均 数,12n n a a a ???L 称为这n 个正数的几何平均数, 它们的关系是: 1212n n n a a a a a a n ++???+≥??????, 当且仅当12n a a a ===L 时等号成立。 知识梳理 基本不等式

高中基本不等式经典例题教案

全方位教学辅导教案

例1:(2)1 2,33 y x x x =+>-。 变式:已知5 4x < ,求函数14245 y x x =-+-的最大值 。 技巧二:凑系数 例1.当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此 题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将 (82)y x x =-凑上一个系数即可。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:1、设2 3 0< -+的值域。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 当 ,即t= 时,4 259y t t ≥? +=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 变式 (1)231 ,(0)x x y x x ++= > 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函 数()a f x x x =+的单调性。 例:求函数22 5 4 x y x +=+的值域。 解:令24(2)x t t +=≥,则2 254 x y x +=+221 1 4(2)4 x t t t x =++ =+≥+ 因10,1t t t >?=,但1 t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调 性。 因为1 y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 故52 y ≥。

基本不等式完整版(非常全面)

2 8 基本不等式专题辅导 2 2 2、基本不等式一般形式(均值不等式) 若 a,b R ,则 a b 2 ab 3、基本不等式的两个重要变形 (1)若 a,b R *,则 2 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数 的和为定植时,它们的积有最小值; a b 6、柯西不等式 (1)若 a, b,c, d R ,则(a 2 b 2)(c 2 d 2) (ac bd )2 (2) 若 a 1, a 2, a 3, bi, b 2, b 3 R ,则有: 2 2 2 2 2 2 2 (a 1 a 2 a 3 )(柑 b ? b 3 ) (aQ a ?b 2 a s b s ) (3) 设a 1,a 2, ,a n 与 db, ,b 是两组实数,则有 2 2 2 p22 2 佝 a 2 a . )(0 b 2 b n )(日山 a 2b 2 a n b n ) 一、知识点总结 1、基本不等式原始形式 二、题型分析 题型一:利用基本不等式证明不等式 (1)若 a,b R ,则 a 2 b 2 2ab 1、设a,b 均为正数,证明不等式:、.ab 二 (2)右 a, b R ,则 ab a,b,c 为两两不相等的实数, (2)若 a, b R ,则 ab b 2 ab bc ca 4、求最值的条件:“一正, 二定,三相等” 5、常用结论 1 (1)若 x 0,则 x — 2 (当且仅当 x 1时取“=”) x 1 (2)若 x 0,则 X - 2 (当且仅当 x 1时取 “=”) X (3)若 ab 0,则-- 2 (当且仅当 a b 时取 “=”) b a 2 2 (4)若 a, b R ,则 ab ( 旦 b)2 a b 2 2 (5)若 a, b R ,贝U 1 . a ab b a 2 b 2 v ------ 1 1 2 2 (1 已知a a,b,c a )(1 1, 求证: b)(1 c) 8abc a, b, c R

高中数学不等式知识点总结教师版

高中数学不等式专题教师版 一、 高考动态 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ 二、不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b ab +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小;

5第五讲 不等关系与基本不等式(教师版) - 副本 - 副本

第一课时:不等式关系与不等式 知识点一 不等关系 思考 限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40 km /h ,用不等式如何表示? 答案 v ≤40. 梳理 试用不等式表示下列关系: (1)a 大于b a >b (2)a 小于ba b ?a -b >0;a =b ?a -b =0; a b ?b b ,b >c ?a >c (传递性); 第三节.不等关系与基本不等式 基本不等式

(3)a >b ?a +c >b +c (可加性); (4)a >b ,c >0?ac >bc ;a >b ,c <0?ac b ,c >d ?a +c >b +d ; (6)a >b >0,c >d >0?ac >bd ; (7)a >b >0?a n >b n (n ∈N +); (8)a >b >0n ∈N +). 类型一 用不等式(组)表示不等关系 例1 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 考点 用不等式(组)表示不等关系 题点 用不等式(组)表示不等关系 解 提价后销售的总收入为? ?? ?? 8-x -2.50.1×0.2x 万元, 那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式? ?? ?? 8-x -2.50.1×0.2x ≥20. 反思与感悟 数学中的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时: (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系; (3)用不等式表示不等关系.思维要严密、规范. 跟踪训练1 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

基本不等式专题----完整版(非常全面)

学习必备 欢迎下载 基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x + ≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则 2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” 6、柯西不等式 (1)若,,,abc d R ∈,则22222 () ()()a b c d a c b d ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 2 2 2 (a a a ++???+)2 2 2 )b b b ++???+(2 ()a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: a b c c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ?????? ---≥ ???????????