搜档网
当前位置:搜档网 › 计算流体力学软件

计算流体力学软件

计算流体力学软件
计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。

计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品

------------------------------------------------------

FLUENT

FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。

Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括:

GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM

CFD进行前处理,由TecPlot进行后处理。

Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating

flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。

Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。

FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。

Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。

Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

直接设定或挑选搅拌槽大小、底部形状、折流板之配置,叶轮的型式等等。MixSim随即自动产生3维网络,并启动FLUENT做后续的模拟分析。

Icepak——专用的热控分析CFD软件,专门仿真电子电机系统内部气流,温度分布的CFD分析软件?乇鹗钦攵韵低车纳⑷任侍庾鞣抡娣治觯?逵赡?榛?纳杓瓶焖俳?⒛P汀?

--------------------------------------------------------------------------------

CFX

CFX是由英国AEA公司开发,是一种实用流体工程分析工具,用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。适用于直角/柱面/旋转坐标系,稳态/非稳态流动,瞬态/滑移网格,不可压缩/弱可压缩/可压缩流体,浮力流,多相流,非牛顿流体,化学反应,燃烧,NOx生成,辐射,多孔介质及混合传热过程。CFX采用有限元法,自动时间步长控制,SIMPLE算法,代数多网格、ICCG、Line、Stone和Block

Stone解法。能有效、精确地表达复杂几何形状,任意连接模块即可构造所需的几何图形。在每一个模块内,网格的生成可以确保迅速、可*地进行,这种多块式网格允许扩展和变形,例如计算气缸中活塞的运动和自由表面的运动。滑动网格功能允许网格的各部分可以相对滑动或旋转,这种功能可以用于计算牙轮钻头与井壁间流体的相互作用。CFX引进了各种公认的湍流模型。例如:k-e模型,低雷诺数k-e模型,RNG

k-e模型,代数雷诺应力模型,微分雷诺应力模型,微分雷诺通量模型等。CFX的多相流模型可用于分析工业生产中出现的各种流动。包括单体颗粒运动模型,连续相及分散相的多相流模型和自由表面的流动模型。

CFX-TASCflow在旋转机械CFD计算方面具有很强的功能。它可用于不可压缩流体,亚/临/超音速流体的流动,采用具有壁面函数的k-e模型、2层模型和Kato-Launder模型等湍流模型,传热包括对流传热、固体导热、表面对表面辐射,Gibb’s辐射模型,多孔介质传热等。化学反应模型包括旋涡破碎模型、具有动力学控制复杂正/逆反应模型、Flamelet模型、NOx和碳黑生成模型、拉格朗日跟踪模型、反应颗粒模型和多组分流体模型。CFX-TurboGrid是一个用于快速生成旋转机械CFD网格的交互式生成工具,很容易用来生成有效的和高质量的网格。

--------------------------------------------------------------------------------

PHOENICS

Phoenics是英国CHAM公司开发的模拟传热、流动、反应、燃烧过程的通用CFD软件,有30多年的历史。网格系统包括:直角、圆柱、曲面(包括非正交和运动网格,但在其VR环境不可以)、多重网格、精密网格。可以对三维稳态或非稳态的可压缩流或不可压缩流进行模拟,包括非牛顿流、多孔介质中的流动,并且可以考虑粘度、密度、温度变化的影响。在流体模型上面,Phoenics内置了22种适合于各种Re数场合的湍流模型,包括雷诺应力模型、多流体湍流模型和通量模型及k-e模型的各种变异,共计21个湍流模型,8个多相流模型,10多个差分格式。

Phoenics的VR(虚拟现实)彩色图形界面菜单系统是这几个CFD软件里前处理最方便的一个,可以直接读入Pro/E建立的模型(需转换成STL格式),是复杂几何体的生成更为方便,在边界条件的定义方面也极为简单,并且网格自动生成,但其缺点则是网格比较单一粗糙,针对复杂曲面或曲率小的地方的网格不能细分,也即是说不能在VR环境里采用贴体网格。另外VR的后处理也不是很好。要进行更高级的分析则要采用命令格式进行,但这在易用性上比其它软件就要差了。

另外,Phoenics自带了1000多个例题与验证题,附有完整的可读可改的输入文件。其中就有CHAM 公司做的一个PDC钻头的流场分析。Phoenics的开放性很好,提供对软件现有模型进行修改、增加新模型的功能和接口,可以用FORTRAN语言进行二次开发。

--------------------------------------------------------------------------------

STAR-CD

STAR-CD的创始人之一Gosman与Phoenics的创始人Spalding都是英国伦敦大学同一教研室的教授。

STAR-Cd 是Simulation of Turbulent flow in Arbitrary

Region的缩写,CD是computational Dynamics

Ltd。是基于有限容积法的通用流体计算软件,在网格生成方面,采用非结构化网格,单元体可为六面体,四面体,三角形界面的棱柱,金字塔形的锥体以及六种形状的多面体,还可与CAD、CAE软件接口,如ANSYS,IDEAS,NASTRAN,PATRAN,ICEMCFD,GRIDGEN等,这使STAR-CD在适应复杂区域方面的特别优势。

STAR--cd能处理移动网格,用于多级透平的计算,在差分格式方面,纳入了一阶UpWIND,二阶UpWIND,CDS,QUICK,以及一阶UPWIND与CDS或QUICK的混合格式,在压力耦合方面采用SIMPLE,PISO以及称为SIMPLO的算法。在湍流模型方面,有k-e,RNK-ke,ke两层等模型,可计算稳态,非稳态,牛顿,非牛顿流体,多孔介质,亚音速,超音速,多项流等问题.

STAR-cd的强项在于汽车工业,汽车发动机内的流动和传热

计算流体力学软件CFD在燃烧器设计中的应用探讨

计算流体力学软件CFD在燃烧器设计中的应用探讨[摘要]本文通过对目前燃烧器的现状与技术发展的研究,探讨计算流体力学 软件CFD在燃烧器设计中应用的必要性和可行性,以CFD(计算流体力学)软件为工具,以普通大气式燃烧器为研究对象,采用实验和理论相结合的方法,充分利用现代计算机技术,达到降低燃烧器设计成本和研制费用的目的。 [关键词]燃烧器数值模拟计算流体力学 一、燃烧器的发展现状 1.部分预混式燃烧器的产生及其原理 燃烧的方法被分为扩散式燃烧、部分预混式燃烧和完全预混式燃烧。扩散式燃烧易产生不完全燃烧产物,燃烧温度很低,并未充分利用燃气的能量;而一旦预先混入一部分空气后火焰就会变的清洁,燃烧温度也可以提高,燃烧较充分。完全预混燃烧(无焰燃烧)要求事先按照化学当量比将燃气和空气均匀混合(实际应用中空气系数要大于1),燃烧充分,火焰温度很高,但稳定性较差,易回火。所以民用燃具多采用部分预混式燃烧。 1855年工程师本生发明了一种燃烧器,能从周围大气中吸入一些空气和燃气预混,在燃烧时形成不发光的蓝色火焰,这就是实验室常用的本生灯(单火孔燃烧器)。这种燃烧技术就被称作部分预混式燃烧。 本生灯燃烧所产生的火焰为部分预混层流火焰(俗称本生火焰)。它由内焰,外焰及燃烧区域外围肉眼看不见的高温区组成。火焰一般呈锥体状。燃气—空气的混合气体先在内锥燃烧,中间产物及未燃尽的部分便从锥内向外流出,且混合气体出流的速度与内锥表面火焰向内传播速度相互平衡,此外便形成一个稳定的焰面,呈蓝色。而未燃烧尽的混合气体残余物继续与大气中的空气进行二次混合燃烧,形成火焰外锥。如图1所示,完成燃烧后产生高温co2和水进而在外焰的外侧形成外焰膜(肉眼看不见的高温层): 图1. 本生灯示意图 如果混合气流是处于层流状态,则外焰面呈较光滑的锥形;如果处于紊流状态,则外焰面产生褶皱,直至产生强烈扰动,气团不断飞散、燃尽。

CFX的流场精确数值模拟教程

基于CFX的离心泵 内部流场数值模拟基于CFX的离心泵内部流场数值模拟 随着计算流体力学和计算机技术的快速发展,泵内部的流动特征成为热点研究方向,目前应用 CFX 软件的科研人员还较少,所以将CFX 使用的基本过程加以整理供初学者参考。如有不对之处敬请指教。 、CFX数值计算的完整流程 、基于ICEM CFD勺离心泵网格划分 2.1导入几何模型 2.2修整模型 2.3创建实体 2.4仓U建PRAT 2.5设置全局参数 2.6划分网格 2.7检查网格质量并光顺网格2.8导出网格—选择求解器2.9导出网格 、CFX-Pre设置过程 3.1基本步骤 3.2新建文件

3.3导入网格 3.4定义模拟类型3.5创建计算域3.6指定边界条件3.7建立交界面

3.8定义求解控制 3.9定义输出控制 3.10写求解器输入文件 3.11定义运行 3.12计算过程 四、CFX-Post 后处理 4.1计算泵的扬程和效率 4.2云图 4.3矢量图 4.4流线图 2.1导入几何模型 在ICEMCFD软件界面内,单击File宀Imort Geometry^STEP/IGES(—般将离心泵装配文件保存成STEP格式), 将离心泵造型导入I C E M如图3所示。 图3导入几何模型界面

2.2 修整模型 单击Geometry^Repair Geometry 宀Build Topology,设置Tolerenee,然后单击Apply,如图 4 所示。拓扑 分析后生成的曲线颜色指示邻近表面的关系:gree n =自由边,yellow =单边,red =双边,blue =多边,线条 颜色显示的开/关Model tree T Geometry T Curves T Color by cou nt,Red curves 表示面之间的间隙在容差之 内,这是需要的物理模型, N41 f !孕ECHH 匚丁E> !1 Z-和-1 :z? ...... ....................... 兰直卤* 百曲gw 卜宀-im * Q涕曲空JIT^J 厂社tt-sfri- Piwpe^ifl-5 CorFklr air^ i Cphcri s Quip^jr 匸* JO 匸叭和皈X XWM X ■an. y% wn- Yellow edges 通常是一些需要修补的几何。 亠 图4修整模型界面 2-3 创建实体单击Geometry^Creade Body,详细过程如图5所示。

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

《流体力学》典型例题20111120解析

《流体力学》典型例题(9大类) 例1~例3——牛顿内摩擦定律(牛顿剪切公式)应用 例4~例5——流体静力学基本方程式的应用——用流体静力学基本方程和等压面计算某点的压强或两点之间的压差。 例6~例8——液体的相对平衡——流体平衡微分方程中的质量力同时考虑重力和惯性力(补充内容) (1)等加速直线运动容器中液体的相对平衡(与坐标系选取有关) (2)等角速度旋转容器中液体的平衡(与坐标系选取有关) 例9——求流线、迹线方程;速度的随体导数(欧拉法中的加速度);涡量计算及流动有旋、无旋判断 例10~16——速度势函数、流函数、速度场之间的互求 例17——计算流体微团的线变形率、角变形率及旋转角速度 例18~20——动量定理应用(课件中求弯管受力的例子) 例21~22——总流伯努利方程的应用 例23——综合:总流伯努利方程、真空度概念、平均流速概念、流态判断、管路系统沿程与局部损失计算 例题1:如图所示,质量为m =5 kg 、底面积为S =40 cm ×60 cm 的矩形平板,以U =1 m/s 的速度沿着与水平面成倾角θ= 30 的斜面作等速下滑运动。已知平板与斜面之间的油层厚度δ =1 mm ,假设由平板所带动的油层的运动速度呈线性分布。 求油的动力粘性系数。 U G=mg δ θ 解:由牛顿内摩擦定律,平板所受的剪切应力du U dy τμ μδ == 又因等速运动,惯性力为零。根据牛顿第二定律: 0m ==∑F a ,即: gsin 0m S θτ-?= ()32 4gsin 59.8sin 301100.1021N s m 1406010m U S θδμ--?????==≈????? 粘性是流体在运动状态下,具有的抵抗产生剪切变形速率能力的量度;粘性是流体的一种固有物理属性;流体的粘性具 有传递运动和阻滞运动的双重性。 例题2:如图所示,转轴的直径d =0.36 m ,轴承的长度l =1 m ,轴与轴承的缝隙宽度δ=0.23 mm ,缝隙中充满动力粘性系数0.73Pa s μ=?的油,若轴的转速200rpm n =。求克服油的粘性阻力所消耗的功率。 δ d l n 解:由牛顿内摩擦定律,轴与轴承之间的剪切应力 ()60d d n d u y πτμ μδ == 粘性阻力(摩擦力):F S dl ττπ=?=

CFX的流场精确数值模拟教程.pdf

基于CFX的离心泵内部流场数值模拟 基于CFX的离心泵内部流场数值模拟 随着计算流体力学和计算机技术的快速发展,泵内部的流动特征成为热点研究方向,目前应用CFX 软件的科研人员还较少,所以将CFX使用的基本过程加以整理供初学者参考。如有不对之处敬请指教。 一、 CFX数值计算的完整流程 二、基于ICEM CFD的离心泵网格划分 2.1 导入几何模型 2.2 修整模型 2.3 创建实体 2.4 创建PRAT 2.5 设置全局参数 2.6 划分网格 2.7 检查网格质量并光顺网格 2.8 导出网格-选择求解器 2.9 导出网格 三、CFX-Pre 设置过程 3.1 基本步骤 3.2 新建文件 3.3 导入网格 3.4 定义模拟类型 3.5 创建计算域 3.6 指定边界条件 3.7 建立交界面 3.8 定义求解控制

3.10 写求解器输入文件 3.11 定义运行 3.12 计算过程 四、 CFX-Post后处理 4.1 计算泵的扬程和效率 4.2 云图 4.3 矢量图 4.4 流线图 2.1 导入几何模型 在ICEM CFD软件界面内,单击File→Imort Geometry→STEP/IGES(一般将离心泵装配文件保存成STEP格式),将离心泵造型导入ICEM,如图3所示。 图3 导入几何模型界面 2.2 修整模型 单击Geometry→Repair Geometry→Build Topology,设置Tolerence,然后单击Apply,如图4所示。拓扑分析后生成的曲线颜色指示邻近表面的关系:green = 自由边, yellow = 单边,red = 双边, blue =多边,线条

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

流体力学例题

第一章 流体及其主要物理性质 例1: 已知油品的相对密度为0.85,求其重度。 解: 例2: 当压强增加5×104Pa 时,某种液体的密度增长0.02%,求该液体的弹性系数。 解: 例3: 已知:A =1200cm 2,V =0.5m/s μ1=0.142Pa.s ,h 1=1.0mm μ2=0.235Pa.s ,h 2=1.4mm 求:平板上所受的内摩擦力F 绘制:平板间流体的流速分布图 及应力分布图 解:(前提条件:牛顿流体、层流运 动) 因为 τ1=τ2 所以 3 /980085.085.0m N ?=?=γδ0=+=?=dV Vd dM V M ρρρρρ d dV V -=Pa dp d dp V dV E p 84105.2105% 02.01111?=??==-==ρρβdy du μ τ=??????? -=-=?2221110 h u h u V μτμτs m h h V h u h u h u V /23.02 112212 2 11 =+= ?=-μμμμμN h u V A F 6.41 1=-==μ τ

第二章 流体静力学 例1: 如图,汽车上有一长方形水箱,高H =1.2m ,长L =4m ,水箱顶盖中心有一供加水用的通大气压孔,试计算当汽车以加速度为3m/s 2向前行驶时,水箱底面上前后两点A 、B 的静压强(装满水)。 解: 分析:水箱处于顶盖封闭状态,当加速时,液面不变化,但由于惯性力而引起的液体内部压力分布规律不变,等压面仍为一倾斜平面,符合 等压面与x 轴方向之间的夹角 例2: (1)装满液体容器在顶盖中心处开口的相对平衡 分析:容器内液体虽然借离心惯性力向外甩,但由于受容器顶限制,液面并不能形成旋转抛物面,但内部压强分布规律不变: 利用边界条件:r =0,z =0时,p =0 作用于顶盖上的压强: (表压) (2)装满液体容器在顶盖边缘处开口的相对平衡 压强分布规律: =+s gz ax g a tg = θPa L tg H h p A A 177552=??? ?? ?+==θγγPa L tg H h p B B 57602=??? ?? ?-==θγγC z g r p +-?=)2( 2 2ωγg r p 22 2ωγ =C z g r p +-?=)2( 2 2ω γ

计算流体力学软件Fluent在烟气脱硫中的应用

计算流体力学软件Fluent在烟气脱硫中的应用 0引言 污染最为有效的方法之一,而石灰石—石膏湿烟气脱硫是目前能大规模控制燃煤造成SO 2 法脱硫技术以其脱硫效率高、吸收剂来源丰富、成本低廉、技术成熟和运行可靠等优点获得广泛应用.从气液两相流体力学和化学反应动力学的观点看,脱硫吸收塔内流体流动的目的是强化气液两相的混合和质量传递、延长气液两相在塔内的接触时间、增大气液两相的接触面积并尽量减小吸收塔的阻力.合理的塔内流场分布对提高脱硫效率、降低脱硫投资和运行成本都具有重要意义. 目前,国内外对烟气脱硫吸收塔进行大量研究,主要采用实验方法,如研究塔的阻力特性、液滴运动速度沿塔高变化和TCA塔内温度场分布等,这些研究对指导工业应用具有重要意义,但其结果往往只针对特定的设备或结构,具有较大的局限性.随着计算机技术的迅速发展,计算流体力学(ComputationalFluidDynamic,CFD)已成为研究三维流动的重要方法:周山明等[4]利用FLUENT计算空塔和喷淋状态下的塔热态流场,结果表明脱硫吸收塔入口处流场变化最剧烈、压降损失最大,并根据计算结果改造来流烟道;孙克勤等采用混合网格和随机颗粒生成模型对烟气脱硫吸收塔的热态流场进行数值模拟;郭瑞堂等采用FLUENT结合非稳态反应传质-反应理论对湿法脱硫液柱冲的吸收进行数值模拟. 击塔内的流场和SO 2 本文尝试应用FLUENT对某脱硫吸收塔内烟气脱硫过程进行初步数值模拟,通过对内部流场进行分析验证本文模拟的合理性,进而对脱硫过程中脱硫吸收塔内是否存在湿壁现象进行深入分析研究. 1基于RANS求解器的CFD数值模拟 方法 1.1控制方程 时均的不可压缩连续性方程和N S方程 (RANS方程)如下: 1.2湍流模型和多相流模型

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分程的时候提出的一个问题,用一维无粘可压缩Euler程就可以描述了。 这里 这个程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量)随空间变化()的关系。 在CFD常把这个程写成矢量形式 这里 进一步可以写成散度形式

计算流体力学课程大作业

《计算流体力学》课程大作业 ——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟 张伊哲 航博101 1、 引言和综述 2、 问题的提出,怎样使用涡量-流函数方法建立差分格式 3、 程序说明 4、 计算结果和讨论 5、 结论 1引言 虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。 考虑不可压缩流动的N-S 方程: 01()P t νρ??=? ? ??+??=-?+???? U U UU f U (1.1) 其中ν是运动粘性系数,认为是常数。将方程组写成无量纲的形式: 01()Re P t ??=?? ??+??=-?+????U U UU f U (1.2) 其中Re 是雷诺数。 从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。 如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。 目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。其中涡量-流函数法是解决二维不可压缩流动的有效方法。作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。 本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。第3节介绍程序的结构。第4节对于不同雷诺数下的计算结果进行分析,并且与U.GHIA 等人【1】的经典结论进行对比,评述本

计算流体力学实例

汽车外部气体流动模拟 振动和噪声控制研究所 1.模型概述 在汽车外部建立一个较大的长方体几何空间,长度约为30m,宽度和高度约为5m,在空间内部挖出汽车形状的空腔,汽车尺寸参照本田CRV为4550mm*1820mm*1685mm。由于汽车向前开进,气体从车头流向车尾,因此将汽车前方空间设为气体入口,后方空间设为气体出口,模拟气体在车外的流动。另外为了节省计算成本将整个模型按1:100的比例缩小,考虑到模型和流体均是对称的,因此仅画出几何模型的一半区域,建立对称面以考虑生成包含理想气体的流体域。在Catia中建立的模型如图1.1所示。 图1.1几何模型 2.利用ICEM CFD进行网格划分 a)导入有Catia生成的stp格式的模型; b)模型修复,删除多余的点、线、面,允许公差设为0.1; c)生成体,由于本模型仅为流体区域,因此将全部区域划分为一个体,选取方法可以 使用整体模型选取; d)为了后面的设置边界方便,因此将具有相同特性的面设为一个part,共设置了in, out,FreeWalls,Symmetry和Body; e)网格划分,设置Max element=2,共划分了1333817个单元,有225390个节点; f)网格输出,设置求解器为ANSYS CFX,输出cfx5文件。 3.利用ANSYS CFX求解 a)生成域,物质选定Air Ideal Gas,参考压强设为1atm,浮力选项为无浮力模型,

域运动选项为静止,网格变形为无;流体模型设定中的热量传输设定为Isothermal,流体温度设定为288k,湍流模型设定为Shear Stress Transport模型,壁面函数 选择Automatic。 b)入口边界设定,类型为Inlet,位置选定在in,质量与栋梁选定Normal Speed,设 定为15m/s,湍流模型设定类型为Intensity and Length Scale=0.05,Eddy Len.Scale=0.1m。 c)出口边界设定,边界类型为Outlet,位置选out。质量与动量选项为Static Pressure,相对压强为0pa。 d)壁面边界设定,边界类型为Wall,位置选在FreeWalls。壁面边界详细信息中指定 WallInfluence On Flow为Free Slip。 e)对称边界设定,边界类型为Symmetry,位置选在Symmetry。 f)汽车外壁面设定,边界类型为Wall,位置设在Body,壁面详细信息选项中指定Wall Influence On Flow为No Slip,即汽车壁面为无滑移壁面。 g)初始条件设定,初始速度分量设为U方向为15m/s,其他两个方向的速度为零。 h)求解设置,残差类型选为RMS,残差目标设定为1e-5,当求解达到此目标时,求解 自动终止。求解之前的模型如图3.1所示。 图3.1求解之前的模型 4.结果后处理 从图4.1中可以看出计算收敛。

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

流体力学的应用

流体力学在航空航天工程中的应用 (洪渊,西安科技大学,能源学院采矿工程卓越1301班,1303110113) 摘要:航天航空工程综合了最新最高的现代科学与技术,是一个国家科技实力和国防现代化的重要标志之一,更是目前世界各国之间争相研究发展的顶尖科技产业,它直接关系到国家的安全和经济的发展。随着科学技术的进步和航天器的发展,遥远而深邃的宇宙已不再可望而不可及,飞天早已不再是无稽之谈。在20世纪对人类影响最大的20项技术中就包括航空航天技术,流体力学的发展对航空航天科技的发展起到了关键性的作用,而这些看似离我们非常遥远的高薪技术其实其基本原理无时无刻不伴随我们。因为我们身边有各种流体的存在。 关键词:航空航天技术、流体、流体力学 Application of fluid mechanics in Aerospace Engineering (Hong Yuan, Xi'an University of Science And Technology, the Institute of mining engineering excellence 1301, 1303110113) Aerospace Engineering integrated the latest modern science and technology, is a national science and technology strength and the important symbol of the modernization of national defense, but also the world's top scientific and technological industry, which is directly related to the national security and economic development. With the development of science and technology and the progress of the spacecraft, as remote and profound universe is no longer inaccessible and, flying already no longer is nonsense. In twentieth Century the greatest impact on human beings in the 20 technologies, including aerospace technology, the development of fluid mechanics to the development of Aerospace Science and technology has played a key role, and these seemingly away from us very far from the high paying technology in fact its basic principles are not accompanied by us. Because we have all kinds of fluid in the presence of. Key words: aerospace technology, fluid, fluid mechanics

计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。 计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品 ------------------------------------------------------ FLUENT FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。 Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括: GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM CFD进行前处理,由TecPlot进行后处理。 Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。 Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。 FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。 Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。 Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

流体力学计算软件报告

三维方管内部二次流特征分析 ——基于NUMECA 数值仿真 2120130457 李明月 【摘 要】运用NUMECA 数值仿真的方法,通过在有粘与无粘的工况下三维方管的内部三维流线对比分析,重点在分析粘性工况下方管内部沿流向各截面上的切向速度矢量分布特征和总压系数分布特征对二次流机理进行讨论和分析。 【关键字】数值仿真 二次流 欧拉方程 N-S 方程 压力梯度 0 前言 在边界层内流体质点向着压力梯度相反并与主流运动方向大致垂直的方向流动,称为二次流。几乎所有的过流通到里面都存在着速度和压力分布不均的情况,压力分布不均则产生一个从高压指向低压的作用力,它与惯性力的大小关系是能否形成二次流的关键。而二次流会使叶轮机械叶片的边界层增厚从而导致分离和损失,而二次流在换热器中增强了对流换热,从而强化了传热,故对二次流的成因和特征的研究具有很大的现实意义。而运用NUMECA 软件对一个简单的三维方管在不同工况下进行数值运算,能够直观地观察得到二次流的结果,并对此进行对比和分析,对流体初学者而言,一方面可以熟悉NUMECA 软件的基本操作,一方面可以基于此加深对二次流的理解。 1 几何描述 如图一所示为三维方管的三维图与所需设定的边界条件。在此算例中,最大的特点在于 中部有一个90°的弯道,且出流部分较长。 10m m 30m m 80m m r20m m r10m m 图1 几何模型

2 网格划分与边界条件 在调入IGG data 文件生成几何文件之后,用网格功能中生成网格块的功能用对应网格顶点与几何顶点重合的方式将网格块贴附在几何模型上,再调整网格数量,和Cluster Points 功能调整边界网格大小,使得近壁面的网格较密,使数值计算时能更好地捕捉到近壁面的参数。生成的网格如图2所示。网格生成后一共33×33×129个网格,网格质量为:最小的正交角度为50.68°,最大宽高比为200,最大膨胀比为1.51,多重网格数为3。在边界条件上,管壁设为SOL 类型,另外短管端面设为INL 类型,剩下那一面设为OUT 类型。 3 边界设定及收敛特性 在NUMECA Fine Turbo 里面建立两个工况并命名为一个无粘一个有粘。在无粘的工况下,选择的流动模型为基于Euler 方程的数学模型。在有粘工况下,流动模型选择的是湍流N-S 方程,并且湍流模型为Spalart-Allmaras 模型。两个工况皆为理想气体的定常流动,进口边界设为总量下(total quantities imposed )马赫数推断(mach number extrapolated ),进口压力为1.3bar ,进口温度为340K 。出口设定为由静压推断(static pressure imposed ),出口压力为1.0bar 。固壁面在欧拉方程下为无粘的欧拉壁,在N-S 方程里为绝热壁。经初始化后选择计算后输出的参数,除了常规的静压静温和速度外,在壁面数据(solid data )里额外输出一个粘性压力(viscous stress )。选择500次迭代后,两种工况下的收敛曲线如图3~图6所示。 图2 三维方管网格划分示意图 图3 Euler 方程下残差收敛曲线

中科大计算流体力学CFD之大作业一

CFD 实验报告一 姓名: 学号: 一、题目: 利用中心差分格式近似导数22/dx y d ,数值求解常微分方程 x dx y d 2sin 2 2= (10≤≤x ) 00==x y 4 2 s i n 11- ==x y 步长分别取x ?=0.05, 0.01, 0.001,0.0001。 二、报告要求: 1)列出全部计算公式和步骤; 2)表列出程序中各主要符号和数组意义; 3)绘出数值计算结果的函数曲线,并与精确解比较; 4)比较不同差分格式和不同网格步长计算结果的精度和代价; 5)附源程序。 三、相关差分格式 二阶导数22/dx y d 的三点差分格式有向前差分、向后差分和中心差分,表达 式分别如下: ()()()22122 22122 211 222 222j j j j j j j j j u u u u O x x x u u u u O x x x u u u u O x x x ++--+--+?=+???-+?=+???-+?=+???一阶向前差分:一阶向后差分:二阶中心差分: 代入微分方程可以得到差分方程,表达式分别如下: 212 212 11 2 2=sin 22=sin 22=sin 2j j j j j j j j j j j j u u u x x u u u x x u u u x x ++--+--+?-+?-+?一阶向前差分:一阶向后差分:二阶中心差分: 对于三种差分格式,差分格式可以改写成AY b =的形式,其中A 是相同的,

非齐次项b 不同,如下所示: 2112112112A -????-?? ??=?? -?? ??-?? 系数矩阵 ()()()02112 3221sin 2sin 2sin 2k k y x x b x x x x y ---???? ??? ? ?=????? ?? ?-?? 一阶向前差分 ()()()()2202 322121sin 2sin 2sin 2sin 2k k x x y x x b x x x x y -???-????? ??=????? ???-?? 一阶向后差分 ()()()()2102 232 2211sin 2sin 2sin 2sin 2k k x x y x x b x x x x y --?? ?-????? ??=??????? ?-? ? 二阶中心差分 求解AY b =可以得到各节点y 的值[]T 1 22 1k k Y y y y y --= 。 四、计算公式和步骤; 1.关于精确解的推导: 已知22sin 2d y x dx =,对 x 进行两次积分,得到121 sin 24 y x C x C =-++,再结合 边界条件00 ==x y 和4 2 sin 11-==x y 得到相对应的1C 和2C ,确定最后精确解为: 1 sin 24y x x =-+。 2.关于数值求解方法: 对于方程组AY b =可直接求解,也可以使用追赶法求解,下面介绍简单追赶法求解三对角方程组的过程。

相关主题