搜档网
当前位置:搜档网 › 碳纤维增强复合材料概述

碳纤维增强复合材料概述

碳纤维增强复合材料概述
碳纤维增强复合材料概述

碳纤维增强复合材料概述

摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。

关键字:碳纤维,复合材料,应用

Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials.

Key words: carbon fiber, composite materials, applications

1.碳纤维增强复合材料介绍

复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。

碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;由于碳化过程中对纤维进行了沿轴向的预拉伸处理,使得分子沿轴向进行取向排列,因而碳纤维轴向拉伸强度大大提高,成为一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。用碳纤维和高性能的树脂基体复合而成的先进树脂基复合材料是目前用得最多,也是最重要的一种结构复合材料。此外,用天然纤维、玻璃纤维和玄武岩纤维作增强体的树脂基复合材料也在快速发展。

碳纤维增强复合材料( CFRP) 是目前最先进的复合材料之一。它可以兼顾碳纤维和基体的性能而成为综合性能更为优异的工程结构材料和具有特殊性能的功能材料。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料,是其它纤维增强复合材料所无法比拟的。碳纤维复合材料因其较高的比强度、比模量在国外先进战略、战术固体火箭发动机方面应用较多,如美国的战略导弹侏儒三级发动机壳体, 三叉戟 一、二、三级发动机壳体的复合材料裙,民兵系列发动机的喷管扩张段, 部分固体发动机及高速战术导弹美国的THAAD、ERINT 等。目前,C F R C 在人造卫星及高性能飞机等航空航天材料中得到了相当广泛的应用,除军用外, 开发纤维复合材料的其它应用也大有作为, 如飞机及高速列车刹车系统、民用飞机及汽车复合材料结构件、高性能碳纤维轴承、风力发电机大型叶片、体育运动器材(如滑雪板、球拍、渔杆)等。随着碳纤维生产规模的扩大和生产成本的逐步下降, 在增强混凝土、新型取暖装置、新型电极材料乃至日常生活用品中的应用也必将迅速扩大。我国为配合北京奥运会,拟大力开发新型CFRP建材及CFRP的研究和开发应用已成为一项涉及多项学科领域的系统工程,而CFRP的发展状况则成为一个国家材料科学乃至整个科学技术发展水平的重要标志之一。

2. 碳纤维复合材料的优点[2]

碳纤维复合材料与金属材料或其他工程材料相比,具有以下许多优良的性能:

1)比强度和比模量高

高强度碳纤维-环氧基复合材料(单向)的比强度是钢SAE1010 (冷轧)的

近20 倍,是铝6061-T6的近10 倍;其比模量则超过这些钢和铝材的3倍。这些特性使CFRP材料的利用效率大为提高,实际证明用CFRP 代替钢或铝可减轻重量达20%~40%,因而在许多工业领域特别是在航空航天领域得到广泛的应用。业内专家指出,飞机自重每减少 1 kg,相当于五百万美元的累积经济效益,由此可以看出复合材料在航空航天领域内的重要地位。不仅如此,其他如汽车、海运、交通等与运行速度要求有关的部门都会因采用复合材料而大为受益。

2)材料性能的可剪裁性(tailorability)

大多数CFRP 可通过设计增强纤维的取向及用量来对结构材料的性能实行剪裁,达到性能最佳化。例如,可把复合材料设计成在主受力方向上有足够的纤维取向来承受载荷,其他方向有适当的纤维来承受剪切载荷或其他载荷,而这种多纤维取向结构的成型又可通过不同的成型技术来完成。复合材料的这种性能可剪裁性,不仅可提高材料的使用效率,而且有助于从材料到结构的设计和制造实行一体化,既简化了制造程序,又降低了制造成本。

3)成型工艺的多选择性

复合材料技术经过几十年的发展,到现在有数十种不同的成型工艺可供选择,如热压罐、模压、纤维缠绕、树脂传递模塑(RTM)、拉挤、注射、喷塑、搓管以及大型复杂部件的共固化整体成型技术等,实际应用时可根据构件的性能、材料种类、产量规模和成本等因素选择最适合的成型方案。

4)良好的耐疲劳性能

层压的CFRP 对疲劳裂纹扩张有“抑制”作用,这是因为当裂纹由表面向内层扩展时,到达某一纤维取向的层面时,会使裂纹扩展在该层面内呈现断裂发散,这种特性使得CFRP的疲劳强度大为提高。研究表明钢和铝的疲劳强度是静力强度的50%,而CFRP 可达90%。

5)良好的抗腐蚀性

由于CFRP 的表面是一层高性能的环氧树脂或其他树脂塑料,因而具有良好的耐酸、耐碱及耐其他化学腐蚀性介质的性能。这种优点使CFRP在未来的电动汽车或其他有抗腐蚀要求的领域上应用具有很强的竞争力。

3.碳纤维增强复合材料的应用

3.1固体火箭发动机应用方面

碳纤维复合材料制造的壳体具有强度高、刚度大、尺寸稳定等特点,因此,碳纤维复合材料可用于新型陆基机动固体洲际导弹一二、三级发动机壳体、新一代中程地地战术导弹发动机壳体[3]。如美国侏儒小型地对地洲际弹道导弹三级发动机燃烧壳体由IM- 7 碳纤维/HBRF- 55A 环氧树脂缠绕制作, 壳体容器特性系数PV/W 39KM; 三叉戟( D5)第一、二级固体发动机壳体采用碳/环氧制作,其性能较凯芙拉/环氧提高30% 。爱国者导弹及其改进型,其发动机壳体开始采用D6AC 钢,到PAC- 3导弹发动机上已经采用了T800 纤维/环氧复合材料。此外,由美国陆军负责开发的一种新型超高速导弹系统中的小型动能导弹( CKEM) ,其壳体采用了T1000 碳纤维/ 环氧复合材料, 使发动机的质量比达到0. 82。碳/酚醛复合材料是目前树脂基扩张段、收敛段最常用的防热材料。如国外应用碳/酚醛材料作为喷管防热构件的型号有:MX 系列、三叉戟 ( C4)、三叉戟 ( D5) 第一和二级发动机的喷管扩张段和防热环、侏儒导弹第一和二级发动机喷管的扩张段和防热环、侏儒导弹第三级发动机喷管的防热环等, 俄罗斯的白杨-M 战略导弹的第一、二级固体发动机喷管扩张段也采用碳/酚醛材料作为防热材料。碳/聚芳基乙炔复合材料,美国在军用航天项目的支持下,已进行了多次固体火箭发动机耐烧蚀材料应用试验,性能优异。九五期间,本所与华东理工大学合作,开展了碳/聚芳基乙炔树脂复合材料在固体火箭发动机防热材料方面的应用研究,取得了较大进展。

3.1空间技术应用方面

从二十世纪六十年代末开始,航天领域中以S玻纤和Kevlar- 49纤维复合的金属内衬轻质压力容器逐渐取代传统的全金属压力容器。美国在1975年开始了轻质复合材料气瓶及储箱研制, 采用S-玻纤/环氧、Kevlar/环氧缠绕复合材料。随着碳纤维52 纤维复合材料2004 年性能提高及成本大幅度下降, 碳纤维与低成本铝内衬制造技术相结合, 使得费用低、质量轻、性能高、可靠性好的高压容器的生产成为现实[4]。目前空间用复合材料基体主要采用环氧树脂;由于碳纤维的密度、耐热性、刚性等方面的优势,增强纤维以碳纤维为主。碳纤维复合材料在空间技术上的应用, 国内也有成功范例,如我国的第一颗实用通信卫星应用了碳纤维/环氧复合材料抛物面天线系统;第一颗太阳同步轨道风云一号气象卫星采用了

多折迭式碳纤维复合材料刚性太阳电池阵结构等。

4.碳纤维复合材料存在的问题及建议

我国的碳纤维树脂基复合材料研制起步于20世纪60 年代末,至今已有40 多年的发展历程,在产品开发、制造加工、产品应用及人才培养等方面都取得了很大进步,但是同先进国家相比仍有很大差距,尤其近年来,由于西方国家的快速发展,这种差距还有加大的趋势。目前我国碳纤维的品种、质量和产业规模远不能满足国内复合材料快速发展的要求,仍然是制约我国碳纤维复合材料发展的瓶颈,这主要表现在:

1)产品质量不完全过关,缺陷多,性能分散性大;

2)产品规格和品种少;

3)由于性能和质量上的问题以及生产成本高,制约了生产规模的扩大。

从技术上看,造成上述问题的主要原因是基础研究工作薄弱,造成生产碳纤维的pan 基原丝质量不高。因此,以提高原丝质量为目标,应加强科学基础及工程化研究,强化国内碳纤维研究生产的自主创新能力,建立高效的产业创新体系,坚持原始创新与引进消化吸收并举,突破瓶颈,改变我国碳纤维落后局面。

在管理体制上也存在如下一些问题:

1)碳纤维是多学科和多技术集成的高新技术产品,国家在项目组织、管理、实施和政策扶持等上应起主导作用,但多年来这种局面尚未形成,国家总体上的规划和领导以及集中调控作用不够,基础研究、技术攻关、中试生产、工业化生产和应用开发之间缺乏有机联系,因而无论从规模和质量上,与国外水平的差距越拉越大。

2)国内碳纤维多元化研发的格局尚未建立。从碳纤维产业的源头到最终产品,真正拥有完整研发与生产过程的单位不多,技术水平同国外相比差距较大。潜心研究碳纤维产业发展的气氛不够浓厚,民营企业中拿来主义现象较为明显,急于求成、急功近利的思想十分严重。

3)以应用牵头,带动碳纤维产业发展的体制未健全,以往国内航空航天高端产品应用主要依赖进口,而国产碳纤维得不到应用,因此也就得不到改进和提

高的机会。

4)企业之间产、学、研交流相当欠缺。碳纤维产业的发展不仅需要产、学、研相结合,而且更需要产、学、研、用有机地相结合,但在现有体制下产、学、研、用这个有机体系尚未真正建立,因而阻碍了国内碳纤维产业的快速发展。

5)装备技术研发滞后。有关碳纤维装备技术研发工作长期没有得到相应的重视。到目前为止,如大容量聚合反应器等被称为碳纤维7 大关键性设备只有两种设备实现了国产化,而其余5种设备尚需进口,严重影响着国内碳纤维产业化的进程。

6)目前国内缺乏具有工程孵化特征的研发基地。科研院所目前更多地承担产品研发,工程研发放在企业,而企业又往往缺乏强大的研发力量。因此,我国需要一个以产业化为目的、以科研院所技术力量为主导、企业积极参与的具有工程孵化功能和特征的研发基地。其实,这些问题在国内业界早有所认识,但长期没有得到认真解决,主要原因还是在于体制和机制方面的问题[5]。

针对碳纤维产业存在的问题,提出建议如下:

1)建立以市场需求为动力的机制。国内航空航天等行业领域的高端产品应加大应用国产碳纤维的力度,及时解决在应用中发现的问题,促进高端碳纤维的发展。

2)建立符合中国市场特征的自主生产的碳纤维产品规格和质量评价体系,科学论证产品和技术的质量定位,以终端复合材料的应用来评价碳纤维的质量。建立高、中、低3 个层次的碳纤维产业和相应的产业标准,应根据不同的应用目标建立符合中国市场的技术—生产—应用的产业链条,形成产—学—研—用一体化的研发体系,既有多功能的开发能力,又有小批量生产能力[6]。

3)集中力量进行高端碳纤维的技术和质量攻关。加快碳纤维国产化进程不仅需要明确的产品市场定位、充足的资金支持、发展中市场的及时跟进,而且需要强大的社会与政府力量的支持、多元化力量的有效介入,才能有力地推动碳纤维产业化进程。

4)发展高强度的碳纤维聚丙腈前驱体原丝生产技术,建立全方位质量保证体系和标准化体系,重点发展原丝原材料入厂检验和验收标准、生产过程中工艺参数优化和稳定性控制等质量保证体系,保证批量生产质量稳定,在此基础上

形成大规模产能并建立碳纤维原材料生产的产业链。

5)强化碳纤维生产线的全面质量控制与质量保证体系和标准化体系。特别是重点发展前驱体原丝入厂检验和验收标准、碳化过程的工艺参数优化和质量保证体系,保证批量生产的性能和质量稳定,在此基础上形成年产能达千t 规模的高性能碳纤维生产基地。

6)在参考国外碳纤维产品相关标准的同时,尽快建立健全符合中国国情的独立自主的产品标准体系,避免碳纤维发达国家对我国碳纤维产品的限制和干扰。

7)实现主要生产设备国产化,重点是大规格的反应釜、预氧化炉、碳化炉、收丝机、尾气焚烧炉及高温碳化炉等设备的国产化,耐高温(≥1 800 ℃)、大尺寸(≥1 500 mm×1 000 mm×10 mm)石墨等辅助材料的国产化。针对树脂基体的产品系列不全、性能和质量不高、产业规模较小等主要问题,提出建议:应以环氧树脂为主,结合发展高温型的双马聚酰亚胺树脂,大力发展新型增韧的高强高温树脂体系,形成产品系列,扩大生产规模,与复合材料结构制造形成产业链,以满足航空航天高端产品应用的需要。低成本成型技术是碳纤维复合材料产业发展的重点方向,目前我国存在的主要问题是高端的航空航天复合材料结构的低成本成型技术尚处于试验阶段,未能形成规模化生产,其他应用领域特别是在航海及风电应用领域,有待于提高低成本成型技术生产的产品品种和规模。针对低成本成型技术存在的主要问题,提出建议如下:

1)加快发展高效低成本的树脂基复合材料整体化成型技术,包括树脂传递成型技术(RTM)、预浸带自动铺放技术(ATP)、拉挤成型技术、纤维缠绕技术等,形成规模化生产能力,满足航空、航天和民用工业需求,特别是大飞机复合材料次结构件及主结构件制造技术需求。

2)重点发展集设计、材料成型和配套保障的技术体系,加快发展纺织用复合材料的液态成型技术和自动化技术(如纤维缠绕、拉挤、编织、丝束铺放、隔膜成型、自动成套裁减、激光样板等);发展高效率的非热压罐固化技术,如微波、电子束、超声波、X射线等新固化技术[7]。

3)建立飞机复合材料设计中心和试验评价验证中心。跟踪国外的先进经验,研究和发展复合材料结构优化设计的新概念、新方法,推进结构整体化设计和制

造技术。

4)发展复合材料的应用分析方法和分析工具,重点发展用来预测复合材料的加工性能、结构完整性以及耐久性的先进计算机应用分析工具;发展将先进的分析法及模拟方法与数据库技术相结合的智能化设计和验证系统。

5. 结语

在固体火箭发动机领域, 先进复合材料起着重要的、无与伦比的作用。当前,先进的碳纤维增强复合材料技术的快速发展, 使研制和应用碳纤维增强的复合材料壳体、喷管等发动机构件成为可能, 先进的碳纤维增强复合材料技术将给高性能固体发动机的研制和开发提供强有力的技术支持, 使发动机性能获得新的飞跃。此外, 高性能碳纤维增强复合材料在空间技术领域的应用,将会简化飞行器结构设计,减轻结构重量并降低飞行器的起飞重量,对于大幅提高空间飞行器的性能和寿命、降低成本有着重要意义。

参考文献:

1 王茂章,贺福,碳纤维的制造、性能及其应用[M],科学出版社,1 9 84

2 杨乃宾. 先进树脂基复合材料[M].中国材料工程大典: 第十卷, 第七篇. 北京: 化学工业出版社, 2000

3 陈祥宝, 包建文. 聚合物基体材料[M].中国材料工程大典: 第十卷, 第三篇. 北京: 化学工业出版社, 2000

4 张鹏.碳纤维的应用及市场,A d v a n c e d Ma t e r i a l s I n d u s t r y,200

1,( 7 ) :2 7~2 9 .

5 刘沐宇,李开兵,张学明,等.碳纤维布加固损伤混凝土梁的疲劳性能试验[J ].20

04,26 ( 4 )52~55.

6 赵稼祥.碳纤维在美国国防军工上的应用. 高科技纤维与应用,2003, 1: 6~ 9

7 林德春, 张德雄. 固体火箭发动机材料现状、前景和发展对策. 航天四院建国

五十周年科技论文集. 1999

碳碳复合材料概述

碳/碳复合材料概述 摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。 关键词碳碳复合材料制备工艺性能应用 1前言 C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 2碳碳复合材料的发展 碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段: 60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表; 90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。 由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。目前碳碳复合材料面对的最主要问题是抗氧化问题[2]。 3碳碳复合材料的制备加工工 艺[3] C/ C 复合材料的制备工艺: 碳 纤维的选择→胚体的预制成型→胚体 的致密化处理→碳碳复合材料的高温 热处理(如图[4]) 3.1碳纤维的选择 CF 的选择可以改变碳碳复合材 料的力学和热力学性能。纤维的选择 主要依赖于成本、织物结构、性能及 纤维的工艺稳定性。 常用CF 有三种, 即人造丝CF, 聚丙烯腈( PAN ) CF 和沥青CF。 3.2坯体的预制成型 坯体的成型是指按产品的形状和性能要求先把CF 预先成型为所需结构形状的毛坯, 以便进一步进行C/ C 复合材料的致密化处理工艺。

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维增强复合材料概述(精编文档).doc

【最新整理,下载后即可编辑】 碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之

间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;由于碳化过程中对纤维进行了沿轴向的预拉伸处理,使得分子沿轴向进行取向排列,因而碳纤维轴向拉伸强度大大提高,成为一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。用碳纤维和高性能的树脂基体复合而成的先进树脂基复合材料是目前用得最多,也是最重要的一种结构复合材料。此外,用天然纤维、玻璃纤维和玄武岩纤维作增强体的树脂基复合材料也在快速发展。 碳纤维增强复合材料( CFRP) 是目前最先进的复合材料之一。它可以兼顾碳纤维和基体的性能而成为综合性能更为优异的工程结构材料和具有特殊性能的功能材料。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐

碳纤维复合材料在航空航天领域的应用

碳纤维复合材料在航空航天领域的应用林德春潘鼎高健陈尚开 (上海市复合材料学会)(东华大学)(连云港鹰游纺机集团公司) 碳纤维是纤维状的碳素材料,含碳量在90%以上。具有十分优异的力学性能,与其它高性能纤维相比具有最高比强度和最高比模量。特别是在2000℃以上高温惰性环境中,是唯一强度不下降的物质。此外,其还兼具其他多种得天独厚的优良性能:低密度、高升华热、耐高温、耐腐蚀、耐摩擦、抗疲劳、高震动衰减性、低热膨胀系数、导电导热性、电磁屏蔽性,纺织加工性均优良等。因此,碳纤维复合材料也同样具有其它复合材料无法比拟的优良性能,被应用于军事及民用工业的各个领域,在航空航天领域的光辉业绩,尤为世人所瞩目。 可以明显看出,在航空航天领域碳纤维的用量有大幅度增加,2006年比2001年增长约40%,2008年增长约76%,2010年和2001年相比增长超过100%。 本文将介绍碳纤维增强树脂基复合材料(CFRP)在航空航天领域应用的新进展。 1 航空领域应用的新进展 T300 碳纤维/树脂基复合材料已经在飞行器上广泛作为结构材料使用,目前应用较多的 为拉伸强度达到5.5GPa,断裂应变高出T300 碳纤维的30%的高强度中模量碳纤维T800H 纤维。 (1)军品 碳纤维增强树脂基复合材料是生产武器装备的重要材料。在战斗机和直升机上,碳纤维复合材料应用于战机主结构、次结构件和战机特殊部位的特种功能部件。国外将碳纤维/环氧和碳纤维/双马复合材料应用在战机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,起到了明显的减重作用,大大提高了抗疲劳、耐腐蚀等性能,数据显示采用复合材料结构的前机身段,可比金属结构减轻质量31.5%,减少零件61.5%,减少紧固件61.3%;复合材料垂直安定面可减轻质量32.24%。用军机战术技术性能的重要指标——结构重量系数来衡量,国外第四代军机的结构重量系数已达到27~28%。未来以F-22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材。 美国在歼击机和战斗机上大量使用复合材料:F-22的结构重量系数为27.8%,先进复合材料的用量已达到25%以上,军用直升机用量达到50%以上。八十年代初美国生产的单人

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维复合材料

碳纤维复合材料 编辑本段概况 在复合材料大家族中,纤维增强材料一直是人们关注的焦点。自玻璃纤维与有机树脂复合的玻璃钢问世以来,碳纤维、陶瓷纤维以及硼纤维增强的复合材料相继研制成功,性能不断得到改进,使其复合材料领域呈现出一派勃勃生机。下面让我们来了解一下别具特色的碳纤维复合材料。 编辑本段结构 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 碳纤维是由含碳量较高,在热处理过程中不熔融的人造化学纤维,经热稳定氧化处理、碳化处理及石墨化等工艺制成的。 碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。 编辑本段用途 碳纤维的主要用途是与树脂、金属、陶瓷等基体复合,制成结构材料。碳纤维增强环氧树脂复合材料,其比强度、比模量综合指标,在现有结构材料中是最高的。在密度、刚度、重量、疲劳特性等有严格要求的领域,在要求高温、化学稳定性高的场合,碳纤维复合材料都颇具优势。 碳纤维是50年代初应火箭、宇航及航空等尖端科学技术的需要而产生的,现在还广泛应用于体育器械、纺织、化工机械及医学领域。

碳纤维复合材料

碳纤维的研究现状与发展 摘要:碳纤维主要是由碳元素组成的一种特种纤维,分子结构界于石墨和金刚石之间,含碳体积分数随品种而异,一般在0.9以上。 关键词:碳纤维复合材料性能与应用 正文 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。 1.2性能 碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大 4-5倍,弹性回复l00%;(3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。

通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。 1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 二、生产工艺 通常用有机物的炭化来制取碳纤维,即聚合预氧化、炭化原料单体—原丝—预氧化丝—碳纤维。碳纤维的品质取决于原丝,其生产工艺决定了碳纤维的优劣。以聚丙烯腈(PAN)纤维为原料,干喷湿纺和射频法新工艺正逐步取代传统的碳纤维制备方法。 2.1干喷湿纺法 干喷湿纺法即干湿法,是指纺丝液经喷丝孔喷出后,先经过空气层(亦叫干段),再进入凝固浴进行双扩散、相分离和形成丝条的方法。经过空气层发生的物理变化有利于形成细特化、致密化和均质化的丝条,纺出的纤维体密度较高,

碳纤维增强复合材料在汽车上的应用终结版综述

碳纤维增强复合材料在汽车中的应用 摘要 随着汽车工业的飞速发展,减少燃料消耗和降低对环境的污染已成为汽车工业发展和社会可持续发展急需解决的关键问题。汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,寻找较轻且性能良好的材料代替钢制汽车零件成为一个重要的研究方向。碳纤维增强复合材料具有强度高、重量轻、耐高温、耐腐蚀、热力学性能优良等特点,碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能,是当前汽车材料轻量化的重要研究发展方向之一。本文介绍了碳纤维增强复合材料的特点、成型工艺及在汽车行业的应用情况,以及碳纤维增强复合材料在汽车应用中存在的问题。 关键词:碳纤维增强汽车应用

1 前言 现在社会汽车已成为人民出行必不可少的交通工具,在汽车给人类带来方便的同时也给环境带来了污染,汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,美国能源部相关研究表明,美国现有的汽车,如减重25%,每天可节省750,000桶燃油,每年二氧化碳的排放量可减少1.01亿吨,因此汽车轻量化已成为汽车工业技术发展的重要方向。除了对汽车各种零部件结构进行优化设计和改进外,采用高性能轻质材料是实现汽车轻量化的一条重要途径。如选用铝、镁、钛、高强度钢、工程塑料和复合材料等,用以制造汽车车身、底盘、发动机等零部件,可以有效的减轻汽车自重,提高发动机效率。 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料,是目前最先进的复合材料之一。它以其质量轻、强度高、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗腐蚀材料,是其它纤维增强复合材料所无法比拟的。纤维增强复合材料具有高强度、高模量,已在航天航空等领域广泛使用,是制造卫星、导弹、飞机的重要结构零部件的关键结构材料,同时也受到汽车工业广泛重视,碳纤维增强复合材料在汽车方面主要是汽车骨架、缓冲器、弹簧片、引擎零件等,早在1979年,福特汽车公司就在实验车上作了试验,将其车身、框架等160个部件用碳纤维复合材料制造,结果整车减重33%,汽油的利用率提高了44%,同时大大降低了振动和噪音。 碳纤维具有比重小、强度高、模量高、耐腐蚀等特点,可用于制造碳纤维增强聚合物、金属、陶瓷基复合材料,是先进复合材料最重要的增强体。碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能。本文将简述碳纤维增强复合材料的性能特点,及其在汽车工业应用的前景和存在的问题。由于碳纤维增强复合材料的价格昂贵,严重影响其在汽车工业中的应用。因此,发展廉价的碳纤维和高效率碳纤维增强复合材料的生产方法和工艺已成为汽车轻量化材料研究中的关键课题,美国、日本等已将其列为汽车轻量化材料的研究计划。

碳碳复合材料概述

碳碳复合材料概述 1概述 碳/碳复合材料是由碳纤维(或石墨纤维)为增强体,以碳(或石墨)为基体的复合材料,是具有特殊性能的新型工程材料,也称为“碳纤维增强碳复合材料”。碳/碳复合材料完全是由碳元素组成,能够承受极高的温度和极大的加热速率。它具有高的烧蚀热和低的烧蚀率,抗热冲击和在超热环境下具有高强度,被认为是超热环境中高性能的烧蚀材料。在机械加载时,碳/碳复合材料的变形与延伸都呈现出假塑件性质,最后以非脆性方式断裂。 它的主要优点是:抗热冲击和抗热诱导能力极强,具有一定的化学惰性,高温形状稳定,升华温度高,烧蚀凹陷低,在高温条件下的强度和刚度可保持不变,抗辐射,易加工和制造,重量轻。 碳/碳复合材料的缺点是非轴向力学性能差,破坏应变低,空洞含量高,纤维与基体结合差,抗氧化性能差.制造加工周期长,设计方法复杂,缺乏破坏准则。1958年,科学工作者在偶然的实验中发现了碳/碳复合材料,立刻引起了材料科学与工程研究人员的普遍重视。尽管碳/碳复合材料具有许多别的复合材料

不具备的优异性能,但作为工程材料在最初的10年间的发展却比较缓慢,这主要是由于碳/碳的性能在很大程度上取决于碳纤维的性能和谈集体的致密化程度。当时各种类型的高性能碳纤维正处于研究与开发阶段,碳/碳制备工艺也处于实验研究阶段,同时其高温氧化防护技术也未得到很好的解决。 在20世纪60年代中期到70年代末期,由于现代空间技术的发展,对空间运载火箭发动机喷管及喉衬材料的高温强度提出了更高要求,以及载人宇宙飞船开发等都对碳/碳复合材料技术的发展起到了有力的推功作用。那时,高强和高模量碳纤维已开始应用于碳/碳复合材料,克服碳/碳各向异性的编织技术也得到了发展,更为主要的是碳/碳的制备工艺也由浸渍树脂、沥青碳化工艺发展到多种CVD沉积碳基体工艺技术。这是碳/碳复合材料研究开发迅速发展的阶段,并且开始了工程应用。由于20世纪70年代碳/碳复合材料研究开发工作的迅速发展,从而带动了80年代中期碳/碳复合材料在制备工艺、复合材料的结构设计,以及力学性能、热性能和抗氧化性能等方面基础理论及方法的研究,进一步促进和扩大了碳/碳复合材料在航空航天、军事以及民用领域的推广应用。尤其是预成型体的结构设计和多向编织加工技术日趋发

复合材料增强体定义和分类

1.1 增强体的概念 增强体的概念: 复合材料中能明显提高基体材料某一性能的组元物质 增强体的特征: (1)具有能明显提高基体某种所需的特殊性能; (2)增强体应具有稳定的化学性质; (3)与基体有良好的润湿性 1.2 增强体的分类 (1)颗粒类增强体(零维) 性能特点:高强度、高模量、耐热、耐磨、耐腐蚀 实例:碳化硅、氧化铝、氮化硅、碳化硼、石墨、碳化钛、滑石、碳酸钙等无机非金属颗粒 复合材料性能特点:具有各向同性 (2)纤维类增强体(一维) 连续长纤维: 长度:连续长度一般超过数百米; 性能特点:沿轴向有很高的强度和弹性模量 分类:分为单丝和束丝两种。 应用:成本高、性能高,只用于高性能复合材料复合材料性能特点:具有各向异性 连续长纤维实例 单丝:硼纤维、CVD法制备的碳化硅纤维 (直径约为95-140微米) 束丝:碳纤维、氧化铝纤维、氮化硅纤维 烧结法制备的碳化硅纤维等 (含500-12000根单丝, 单丝直径5.6-14微米) 短纤维: 长度:连续长度一般几十毫米 性能特点:沿轴向有方向性,但性能一般比长纤维低应用:成本比较低,应用广 实例:硅酸铝纤维、氧化铝纤维 碳纤维、氮化硼纤维等 复合材料特点:无明显方向性(制造时排列无序 短纤维: 长度:连续长度一般几十毫米 性能特点:沿轴向有方向性,但性能一般比长纤维低应用:成本比较低,应用广 实例:硅酸铝纤维、氧化铝纤维 碳纤维、氮化硼纤维等 复合材料特点:无明显方向性(制造时排列无序) (3)晶须类增强体(一维)

外形尺寸:直径0.2-1微米,长约为几十微米 性能特点:有很高的强度和模量 (结构细小、缺陷少) 应用:陶瓷增韧(成本比颗粒高得多) 实例:碳化硅、氧化铝、氮化硅等 复合材料性能特点:各向同性。 (4)金属丝增强体(一维) 不锈钢丝、钨丝等(W/Al、W/Ni、不锈钢丝/Al) (5)片状物增强体(二维) 陶瓷薄片:SiC/C、SiC/ZrO2、Si3N4/BN等。 (6)纤维编织类增强体(三维) 纤维编织成的三维结构 1.3 纤维类增强体具有高强度的原因 (1)固体材料的理论强度: σth = (Eγ/a0)1/2 纤维类增强体: Be、B、C、Al、Si以及它们与N、O的化合物(常温下原子半径小、化学性质稳定)纤维类增强体理论强度高 纤维材料所包含的缺陷的形状、位置、取向和数目 都有别与同质地的块状材料 内部径向最大裂纹尺寸: 非常小(纤维类增强材料) 一般(同质地块状材料) 内部轴向最大裂纹尺寸: 一般(纤维类增强材料) 一般(同质地块状材料) 纤维中轴向的最大裂纹尺寸虽然可与块体材料中的相比,但对轴向性能的影响则很小(纤维主要承受轴向拉伸载荷)

碳纤维增强复合材料用环氧树脂研究进展

碳纤维增强复合材料用环氧树脂研究进展 摘要:综述了环氧树脂的合成方法、固化方法以及改性的研究现状以及理论知 识,介绍了碳纤维增强环氧树脂复合材料的生产和性能,重点讲述了环氧树脂的改性方法。 关键词:环氧树脂;碳纤维;复合材料;改性 碳纤维(carbon fiber,简称CF),是一种含碳量在90%以上的高强度、高模量、综合性能优异的新型纤维材料,其中含碳量高于99%的称石墨纤维。碳纤维作为一种高性能纤维,具有高强度、高模量、耐高温、抗化学腐蚀、抗蠕变、耐辐射、耐疲劳、导电、传热和热膨胀系数小等诸多优异性能。此外,还具有纤维的柔曲性和可编性[1]。碳纤维既可用作结构材料来承载负荷,又可用作功能材料。因此在国内外碳纤维及其复合材料近几年的发展都十分迅速。碳纤维的制备是有机纤维进行碳化的过程,在惰性气体中将含碳的有机物加热到3000℃左右,非碳元素脱离,碳元素含量逐步增大并最终形成碳纤维。其典型的宏观结构如图1所示。 图1 碳纤维的宏观结构 a 整体效果 b 局部效果 1891年德国的Lindmann用对苯二酚和环氧氯丙烷合成了树脂状产物,1909年俄国化 学家Prileschajew发现用过氧化苯甲醚和烯烃反应可生成环氧化合物,在19世纪末20世纪初的这两个重大发现揭开了环氧树脂走向世界的帷幕。环氧树脂是一类重要的热固性树脂,是聚合物复合材料中应用最广泛的基体树脂。环氧树脂具有优异的粘接性能、耐磨性能、机械性能、电绝缘性能、化学稳定性能、耐高低温性能,以及收缩率低、易加工成型和成本低廉等优点,在胶粘剂、电子仪表、轻工、建筑、机械、航天航空、涂料、电子电气绝缘材料及先进复合材料等领域得到广泛应用[2]。我国环氧树脂的研制开始于1956年,在上海、 沈阳两地首获成功,并在1958年于上海首先开始了工业化生产。到了60年代中期国内开始研究新型的环氧树脂,如脂环族环氧树脂、酚醛环氧树脂、缩水甘油酯环氧树脂、聚丁二烯环氧树脂等种类,70年代末着手开发了元素改性环氧树脂、特种环氧树脂等诸多新品种。 经过五十余年的发展,环氧树脂的生产和应用取得了长足的进步,然而和金属等传统材料相比,我国的环氧树脂产业在生产规模、品种数量、产品质量等方面和发达国家仍有较大差距。

第三章 复合材料的增强体

第三章复合材料的增强体 1.被用于复合材料的增强体主要有高性能纤维,晶须,金属丝片装物和颗粒等。其中发展最快已经大批量生产和应用的增强纤维是碳纤维 2.作为复合材料的增强体应具有以下基本特性 ①增强体应具有能明显提高基体某种所需特性的性能 ②增强体应具有良好的化学稳定性 ③与基体有良好的润湿性 3.增强体的分类 ①纤维类增强体:纤维类增强体有连续长纤维和短纤维。增强体纤维主要包括无机纤维和有机纤维。无机纤维主要有碳纤维,氧化铝纤维,碳化硅纤维,硼纤维,氮化硼纤维,氮化硅纤维硅酸铝纤维及玻璃纤维等。有机纤维分为刚性分子链和柔性分子链两种 ②颗粒类增强体:由于颗粒增强物成本低,制成的复合材料有各向同性,因此在复合材料中的应用发展非常迅速,尤其是在汽车工业中。 ③晶须类增强体:晶须增强复合材料的性能基本上是各向同性的。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 4.碳纤维:一般将小于1500℃碳化处理成的称为碳纤维,将碳化处理后再经高温石墨化处理(2500℃)的碳纤维称为石墨纤维。碳纤维强度高,而石墨纤维模量高,以制取碳纤维的原丝分类,碳纤维可分为聚丙烯腈基碳纤维,黏胶基碳纤维,沥青基碳纤维和木质素纤维基碳纤维。以其性能分类,可分为高强度碳纤维,高模量碳纤维和中模量碳纤维。后者有耐火纤维,碳质纤维和石墨纤维等。 5.碳纤维的制造。只能以有机物为原料,采用间接法制造。制造方法可分为两种类型,即气相法和有机纤维碳化法。 ①气相法:在惰性气氛中小分子有机物在高温沉积成纤维。用该法只能制取短纤维或晶须,不能制取连续长丝 ②有机纤维碳化法:将有机纤维经过稳定话处理变成耐焰纤维然后再在惰性气氛中进行高温煅烧碳化使有机纤维失去部分碳和其他非碳原子,形成以碳为主要成分的纤维。可制造连续长纤维。天然纤维,再生纤维,合成纤维均可制备碳纤维 6.目前为止,制作碳纤维的原料主要有三种:人造丝;聚苯烯腈纤维;沥青。无论用何种原丝纤维制造碳纤维,都要经过五个阶段:拉丝,牵引,稳定,碳化,石墨化。无论采用什么原材料制备碳纤维,均需经过上述五个阶段,即原丝预氧化,碳化以及石墨化,所产生的最终纤维其基本成分为碳。 黏胶纤维是一种纤维素纤维,最早用来生产脱黏纤维的原丝 1.用沥青为原料制造碳纤维,比用聚苯烯腈和黏胶纤维制备碳纤维有更丰富的原料来源,且属于综合利用,可降低成本。制备碳纤维的沥青主要有石油沥青,煤焦沥青和聚氯乙烯沥青。 2.碳纤维的力学性能影响碳纤维的弹性模量的主要因素是晶粒的取向度,而热处理条件的张力是影响这种取向的主要因素。碳纤维的拉伸强度,弹性模量与材料的固有弹性模量,纤维的轴向取向度,结晶厚度,碳化处理的反应速度常数的关系如下。碳纤维的力学性能除了取决于纤维的结构之外,与纤维的直径,纤维性能测试试样的标距长短都有关系 3.先驱体法制备碳化硅纤维的主要工艺流程为聚碳硅烷合成,聚碳硅烷纺丝,不熔化处理,烧结等阶段。 4.以氧化铝为主要纤维组分的陶瓷纤维称为氧化铝纤维。一般将含氧化铝大于70%的纤维称为氧化铝纤维,而将氧化铝含量小于70%,其余为二氧化硅和少量杂质的纤维称为硅酸铝纤维。

碳纤维复合材料

碳纤维复合材料 摘要:主要介绍了碳纤维复合材料的基本概述,并对它的一些结构性能、应用(主要在航空领域的应用)、发展,并分析了目前我国碳纤维复合材料的研究进展和应用前景。 关键字:碳纤维复合材料、碳纤维树脂基复合材料、碳/碳复合材料、结构性能、发展、航空领域。 1、引言 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐磨擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的“比强度”。碳纤维属于聚合物碳,是有机纤维经固相反应转变为纤维状的无机碳化合物。碳纤维是一种新型非金属材料,它和它的复合材料具有高强度、耐高温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、比重小和热胀胀系数小等优异性能,碳纤维单独使用时主要是利用其耐热性、耐蚀性、导电性和其它性质。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP(即碳纤维复合材料)的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。目前,碳纤维不仅广泛应用军事工业,而且在汽车构件、风力发电叶片、核电、油田钻探、体育用品、碳纤维复合芯电缆以及建筑补强材料领域也存在巨大应用空间,而其在航空领域的光辉业绩尤为引人注目。 2、碳纤维的发展 碳纤维的出现是材料史上的一次革命。碳纤维是目前世界首选的高性能材料,具有高强度、高模量、耐高温、抗疲劳、导电、质轻、易加工等多种优异性能,正逐步征服和取代传统材料。现已广泛应用于航天、航空和军事领域。世界各国均把发展高性能碳纤维产业放在极其重要的位置。碳纤维除了在军事领域上的重

碳纤维制备工艺简介资料

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

相关主题