搜档网
当前位置:搜档网 › 分析铁道牵引供电系统存在的问题及其解决方法

分析铁道牵引供电系统存在的问题及其解决方法

分析铁道牵引供电系统存在的问题及其解决方法
分析铁道牵引供电系统存在的问题及其解决方法

分析铁道牵引供电系统存在的问题及其解决方法摘要:铁道运输关系到我国的铁路运输事业的发展,要对铁道牵引供电系

统存在的问题进行分析,并研究其解决方法。

关键词:铁道牵引供电系统;问题;解决方法

前言

目前,我国铁路建设不断加快,铁道牵引供电系统也得到了相关建设部门

的重视,但是,面对铁道牵引供电系统存在的问题,应该更加重视对其进行研

究,提高铁路的使用效果。

一、铁道牵引供电系统的组成

铁道牵引供电系统主要是由三大部分组成,即:电气化铁道一次性供电系

统、铁道的牵引变电所以及牵引网。其中,铁道的牵引变电所其主要功能就是

把三相的交流高压电能通过各种方式转变成较低的电压,三相的交流高压电能

主要是从电气化铁道一次供电系统处所输送过来,而这些较低的电压主要适合

电力机车使用。铁道牵引网则主要包括五部分,分别为:接触网、馈电线、轨

道、大地以及回流线,铁道牵引网的功能主要是将铁道牵引变电所转化的较低

电压电能输送到电力机车。铁道牵引供电系统根据为铁道机车提供的电流性质

来划分,可以分为直流制以及交流制两种。其中交流制又可以分为两种,即:

工频单相交流制以及低频单相交流制。工频主要指的是工业标准的频率,一般

电气化铁道接触网故障分析与对策

电气化铁道接触网故障 分析与对策 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电气化铁道接触网故障分析与对策电气化铁道有着运营成本低,能合理、综合利用能源等优点。由于动车组结构、速度、动力特性需要,全部为电力驱动。在铁路电气化区段牵引供电系统已和信号系统、工务系统一同成为不可或缺的重要组成部分。尤其是动车组自身不带发电设备,车内各种工作和生活用电均直接从接触网上取电.一旦发生断电将会直接影响列车和旅客的工作生活。因此如何确保牵引供电设备的正常运行已成为牵引供电专业急需解决的问题。接触网是牵引供电系统中的重要组成部分,由于其设置的特殊性(机、电合一,露天设置,动态工作,没有备用),所以一旦发生故障将会直接影响牵引供电系统的正常运行,严重时还会中断电气化铁路的行车功能。因此分析和研究其常见故障,制定切实可行的防范措施尤显重要。通过对电气化铁路及新增二线电气化铁路改造中出现的接触网弓网故障进行分析,从弓网关系入手,分析造成接触网事故产生的各种因素,并提出预防和减少接触网事故的措施。 关键词:接触网,接触悬挂,补偿装置,弓网故障 目录 绪论

接触网是沿铁路上空架设的一条特殊形式的输电线路,是电气化铁道中的主要供电装置之一,其功用是通过它与受电弓的直接接触,而将电能传送给电力机车。随着电压的提高、运输量的增大、技术的不断改进以及对人身安全的严格要求等,使接触网的结构逐渐发展成为目前广泛采用的架空式接触网。 接触网是一种露天设置,没有备用的户外供电装置,经常受冰、霜、风等恶劣气象条件的影响,一旦损坏将中断行车,给铁路运输带来巨大损失。因此,一个好的接触网应满足以下基本要求: 1.接触网悬挂应弹性均匀、即悬挂点间的导线在受电弓抬升力的作用下,接触线的升高应尽量相等,且接触线在悬挂点间应无硬点存在。以保证受电弓的正常取流。 2.接触线对轨面的高度应尽量相等,若受悬挂条件限制时,接触线高度变化应避免出现陡坡。 3.接触网在受电弓压力及风力等作用下应有良好的稳定性,即电力机车运行取流时,接触线不发生剧烈的上、下振动。在风力作用下不发生过大的横向摆动。

高速铁路牵引供电典型故障分析及对策

高速铁路牵引供电典型故障分析及对策 发表时间:2017-12-07T19:01:49.683Z 来源:《电力设备》2017年第22期作者:谷孟雄 [导读] 摘要:本文通过对我国高速铁路牵引供电设备发生的几类典型故障进行分析,指出减少和预防故障的应对方法,深化对牵引供电设备的认识和相关问题的分析 (北京铁路局石家庄供电段河北石家庄 050000) 摘要:本文通过对我国高速铁路牵引供电设备发生的几类典型故障进行分析,指出减少和预防故障的应对方法,深化对牵引供电设备的认识和相关问题的分析,进一步提高专业技术水平及相关管理水平,使我国铁路电气化的运行更加可靠、稳定。 关键词:高速铁路;牵引供电;典型故障;措施 铁路运输是加强不同区域人们的沟通和交流的纽带,与经济社会和生活水平的提高有着紧密的联系。保持铁路供电系统的稳定、可靠与铁路运输的效率的提高、安全性的提升息息相关。这些年来,在电气化技术的发展的推动下,我国铁路中的牵引供电技术不断进步,并及时嵌入应用到我国铁路机车的供电系统设计中。同时,其不断发展也使得铁路机车供电系统的复杂性、技术含量越来越高。 1典型故障分析 牵引供电设备是高速铁路重要的行车设备,一旦发生事故,中断供电,将直接影响行车,干扰正常运输秩序,因此牵引供电设备的可靠运行对高速铁路显得尤为重要。 2影响牵引供电正常工作的典型故障主要有下列几类。 2.1牵引变电所故障 牵引变电所最常见的故障是牵引变电所跳闸,主要原因有以下几点: (1)雷击。 (2)机车自身。 (3)过负荷。 (4)外界环境。 其中外部环境原因引起跳闸约占跳闸总数的85%以上。 2.2接触悬挂及接触网相关的故障 接触悬挂及接触网的主要故障为关节及线岔处线间距不足,承力索、接触线、弹性吊索、吊弦及接触悬挂设备经常出现此类问题。特别是由于季节性或者作业产生的温度变化,相关设备易出现热胀冷缩,使得接触网静态参数也随之产生变化,极易导致此类故障的发生。另外,在技术人员施工过程中的疏忽也会导致此类问题,例如电连接压接操作不规范等。 2.3隔离开关相关的故障 隔离开关易出现的故障有以下4种: (1)首先是由于隔离开关的刀闸的开合角不到位、电机及整理部件损坏、螺栓力矩不够等机械方面的故障,这些故障易造成虚接,从而导致电气烧伤。 (2)其次是本地与电调综自系统的显示不同、非远动分合闸及远动无法运转,这类远动方面故障产生的主要原因是系统故障。 (3)第三类因铜铝过渡处没有按要求使用铜铝过渡板造成化学方面的腐蚀此类电气方面故障。 (4)最后一类为固定在隔离开关支柱上的附加设备故障,此类属于隔离开关附属设备故障,例如,如PVC管等脱落等。 2.4分段绝缘器相关的故障分段绝缘器故障一般为以下4类: (1)绝缘滑道被损坏。 (2)销弧角产生了断裂。 (3)本体电弧被灼伤。 (4)表面碳粉堆积过厚。 2.5避雷器相关的故障 金属氧化物避雷器有着产品体积过小、重量较轻、较为坚固不易破损、方便运输并且安装方便的优点。其常见故障有以下4点:(1)设备爆裂。 (2)设备脱离器损坏。 (3)计数器失效。 (4)设备接地极损坏或电阻过大。 2.6弓网相关的故障 弓网相关的故障通常发生在线岔、电分相、曲线段及各类线夹处,另外只要弓网设计存在瑕疵或者检修存在遗漏实质故障。因此此类故障特点较为综合,接触网或受电弓出现问题都会使其产生故障。随着列车运行速度的不断提高,使得接触网动态变化大,因此受电弓与接触网之间可能会出现离线等现象,甚至受电弓会可能因磨损而损坏。常见相关故障基本由于受电弓和接触网关系不良引起,例如:(1)受电弓脱弓、打弓、钻弓、抬弓。 (2)机车自动降弓。 (3)受电弓拉弧。 3以上典型性故障的应对措施 3.1牵引变电所断路器跳闸故障的应对措施解决方案: (1)可联系相关部门在每年雷雨季节来临前全面细致地检查管内的避雷的相关设施和接地系统。例如:牵引所、AT所、分区所处的避雷针及上网点处的避雷器、其引线等,保证此类避雷设施能够符合运行要求,从而限制雷电波的幅值,进而减少跳闸次数。 (2)在确认是由于机车原因而产生的跳闸时,应及时联系机务部门,对牵引所跳闸时车辆的相关位置进行核查减少因机车故障的原因对接触网设备的损坏。

铁路电力牵引供电设计规范

铁路电力牵引供电设计规范 TB10009—20XX (452 — 20XX 20XX年4月25日发布20XX 年4月25日实施 1总则 1为贯彻执行国家的技术经济政策,统一铁路电力牵引供电设计的技术要求,使设计做到安全适用、技术先进、节约能源、经济合理和维修方便,制定本规范。 2本规范适用于铁路网中客货列车共线运行、旅客列车设计行车速度等于或小于 160km/h、货物列车设计行车速度等于或小于120km/h的I、\级标准轨距铁路,采用单相工频绕组接入电力系统三相电网中的两相,二次侧绕组的一端接钢轨,另一端接入牵引侧母线。 单相V,结线方式,在牵引变电所设置两台双绕组单相变压器,联结成开口三角形,一次侧绕组的两个开口端和一个公共端接入电力系统三相电网,二次侧绕组将公共端与钢轨大地相连,两个开口端分别接入牵引侧母线。 三相V,结线方式,一台三相双绕组牵引变压器连接 成开口三角的结线方式。 2. 0. 4 三相一二相平衡牵引变压器 three phase—two phase bal—anced traction transformer 当一次侧就产生相位差90°的二相平衡电压,当二次侧两个供电臂负载平衡时,一次侧三相为对称系的牵引变压器。 5 三相牵引

变压器 three phase traction transformer 包括三相YN,dl1结线和YN,dl1,dl十字交叉结线牵引变压器。 YN,dl1结线为双绕组变压器,一次侧三相结线为Y型,分别接入电力系统三相电网'二次侧结线为\型,其一角和大地相连,另两角分别接入牵引侧母线。 YN,dl1,dl组成的十字交叉变压器,一次侧三相结线为Y型,二次侧dl1,dl结线的两个三角形线圈结成对顶三角形,对顶角接大地,其他各角分别接入牵引侧不同母线。 6 自稱变压器 auto—transformer 两个或多个绕组有一公共部分的变压器。 2. 0. 7 吸流变压器 booster transformer 变换比为1的变压器,其中一个绕组与接触悬挂串联,另一个绕组与绝缘回流导线串联。 2. 0. 8 并联电容补偿装置 xxpensator of paraller capacitance 并联在母线上用于提高功率因数的电容器组、放电线圈及串联电抗器等的总称。 9 分束供电 branch feeding 在枢纽的各分场中,为方便供电和检修的需要,按电化股道群不同供电分区进行供电。 2. 0. 10 电分段 sectioning

铁路电力贯通线常见故障分析及查找方法

铁路10KV电力贯通(自闭线)线路故障分析判断及查找方法 摘要:介绍了铁路系统10KV电力贯通线路,单线、复线区段贯通、自闭线路故障类别、产生的原因、分析判断及故障查找方法。讲解如何根据现象判断故障,快速查找、正确处理电力线路故障,最大限度缩短停电时间,及时恢复供电,减少对运输生产的干扰。 关键词:贯通线自闭线短路接地故障分析判断查找方法 引言 10KV电力贯通线(自闭线)路是铁路电力系统的重要组成部分,线路因点多线长,走径复杂,设备质量参差不齐,受气候、地理环境影响较大,供用电情况复杂,设备故障率居高不下,影响着铁路供电系统的安全运行,直接影响到铁路运输的安全正点。如何正确有效地判断、查找、处理电力线路故障,缩短停电时间,及时恢复供电尤为关键。现将电力设备故障类别,各种现象及分析判断方法进行论述: 一、10kV电力贯通(自闭)线常见故障 (一)类别: 1、短路故障: ⑴相间短路(三相和两相短路); ⑵接地短路(两相短路接地、两点接地短路故障、单相接地短路)。 2、接地故障:

⑴金属性接地; (2)非金属性接地。 (二)造成设备故障的主要原因: 1、雷击瓷瓶击穿、避雷器击穿(爆炸)引线搭接在金具上。 2、外力原因造成倒杆、断线、电缆损坏。 3、设备原因造成故障,如瓷瓶击穿、连接线夹断裂造成缺相、电缆接头工艺不达标造成接地或短路故障等。 4、气候因素造成故障,如大风倒树压在线路上。 5、设备缺陷处理不及时造成故障。 二、10KV电力贯通(自闭)线常见故障分析及处理 1、短路故障 贯通(自闭)线跳闸后,重合闸、备自投均不动作或动作均不成功时,首先由变配电所值班员分别调取跳闸、重合闸不成功、备自投不成功时的数据,通过分析初步判断故障性质及位置。根据分析情况,可组织对跳闸线路进行试送电。试送时应注意以下几个方面: (1)正确选择试送电的配电所 ①尽量避免用信号备用电源取自配电所的站馈柜,若试送电引起进线断路器跳闸,则会造成这些站信号主备用电源同时停电。 ②选择故障点远端的变配电所进行强送,且两配电所必须均取消备自投及重合闸。

高速铁路牵引供电方式

高速铁路牵引供电方式 1.直接供电方式 电方式是指牵引变电所通过接触网直接向动车组供电,回流经钢轨及大地直接返回牵引变电所。这种供电方式的电路构成简单、设备少,施工及运营维修都较方便,造价也低。但由于接触网在空中产生的强大磁场得不到平衡,对邻近的广播、通信干扰较大,因此一般不采用。 2.BT供电方式 BT供电方式就是在牵引供电系统中加装吸流变压器(3~4 km安装一台)和回流线。这种供电方式由于在接触网同高度的外侧增设了一条回流线,回流线上的电流与接触网上的电流方向相反,因此大大减轻了接触网对邻近通信线路的干扰。采用BT供电方式的电路是由牵引变电所、接触悬挂、回流线、轨道及吸上线等组成。牵引变电所作为电源向接触网供电;动车组列车运行于接触网与轨道之间;吸流变压器的原边串接在接触网中,副边串接在回流线中。吸流变压器是变比为1∶1的特殊变压器。它使流过原、副边线圈的电流相等,即接触网上的电流和回流线上的电流相等。因此,可以说是吸流变压器把经钢轨、大地回路返回变电所的电流吸引到回流线上,经回流线返回牵引变电所。这样,回流线上的电流与接触网上的电流大小基本相等、方向相反,故能抵消接触网产生的电磁场,从而起到防干扰作用。 理论上的理想情况是这样的,但实际上由于吸流变压器线圈中总需要励磁电流,经回流线的电流总小于接触网上的电流,因此不能完全抵消接触网对通信线路电磁感应的影响。另外,当机车位于吸流变压器附近时,回流还是从轨道中流过一段距离,至吸上线处才流向回流线,该段回流线上的电流会小于接触网上的电流,这种情况称为半段效应。此外,吸流变压器的原边线圈串接在接触网中,所以在每个吸流变压器安装处,接触网必须安装电分段,这样就增加了接触网的维修工作量和事故率。当高速大功率机车通过该电分段时会产生很大的电弧,极易烧损机车受电弓和接触线。BT供电方式的牵引网阻抗较大,造成较大的电压

铁道牵引供电系统综述(1)

高速铁路引供电系统综述 张膑侨陈文卿黄福万黄业帆谢卓林 (桂林电子科技大学机电工程学院·广西桂林 541004) 摘要:探讨我国高速铁路的牵引供电系统的原理。首先介绍我国高速铁路牵引供电系统的发展历程。然后从供电方式、变压器、牵引变电所以及保护装置4个方面介绍我国高速铁路牵引供电系统现状,接着介绍国外高速铁路牵引供电系统的现状并指出可借鉴之处,最后展望我国高速铁路牵引供电系统的未来发展方向。 关键词:中国高铁;牵引供电系统;发展历程;现状 Abstract: The principle of traction power supply system of the railway.At first introducing the traction power supply system’s development path. And then making an introduction of traction power supply system’s advantages and disadvantages from Power supply,transformer,Traction S ubstation and protective device. Then introducing the current situation of foreign high-speed railway traction power supply system and pointing out the advantages which we can learn from.The last having a outlook of high-speed railway traction power supply the future direction of the system. Key words: China Railway; traction power supply system; development path; status quo. 1 引言 近年来,我国的高速铁路交通建设发展迅猛,取得了一次又一次骄人的成绩。随着我国高速铁路网的逐渐密集,铁道交通相对低廉的价格,速度的提升以及铁路硬件设施的逐渐完善和服务水平的逐渐提高,铁路渐渐成为了我国人们出行的重要工具之一。铁道交通快速发展,给我国人们的生产生活带来了极大的便利,从而促进了地区之间的经济快速发展,文化的交流与传播。同时,作为列车运行能量来源的牵引供电系统,成为了行业研究课题的热点,并在同相供电、牵引变压器的研究中取得丰硕成果。【1】本文将通过供电方式、变压器、牵引变电所以及保护装置4个方面介绍我国高速铁路的详细情况,然后通过与国外一些国家高速铁路的牵引供电系统做出对比并指出我国高速铁路牵引系统的优点与不足,最后展望我国高速铁路牵引系统的发展方向。 2 牵引供电系统发展历程 牵引供电系统是电力机车的能源系统,主要由牵引变电所和牵引网组成。牵引变压器作为变电所中的核心元件,其作用是将电力系统提供的电能转换并送至牵引网。同时,牵引网电压水平直接受牵引网供电方式影响。因此,本节主要从牵引变压器、牵引网供电方式两个方面依次介绍牵引供

高速铁路牵引供电系统

第二章高速铁路牵引供电系统 第一节电气化铁路的组成 由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。 牵引供电系统主要由牵引变电所和接触网两部分组成,所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。 一、电力机车 (一)工作原理 电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置供给牵引电动机,牵引电动机通过传动机构使电力机车运行。 (二)组成部分 电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构成。 车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场所。 转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。 电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车顶、车内、车下和司机室内。 空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动机和管路等组成 (三)分类 干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机车和多流制电力机车。交流机车又分为单相低频电力机车(25Hz或16 2/3Hz)和单相工频(50Hz)电力机车。单相工频电力机车,又可分为交--直传动电力机车和交—直—交传动电力机车。 二、牵引变电所 牵引变电所的主要任务是将电力系统输送来的110kV三相交流电变换为(或55)kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变化由牵引变压器完成。电力系统的三相交流电改变为单相,是通过牵引变压器的电气接线

铁路牵引网的供电方式与接触网结构

铁路牵引网的供电方式与接触网结构 1 牵引网的供电方式 铁路牵引供电系统的主要功能是将地方电力系统的电能引入牵引变电所,通过牵引变电所和接触网等,向电力机车提供持续电能。牵引网主要由馈电线、接触网、钢轨、回流线组成。馈电线(Feeder)是指从牵引变电所母线连接出来连接到接触网之间的传输导线。接触网(Catenary)悬挂在铁道钢轨线正上方,对地标称电压27.5kV,是沿电气化铁路架空敷设的供电网,通过受电弓向电力机车或动车组提供电能。接触网主要由承力索、吊弦、接触线组成,接触线与路轨轨面的高度通常为 6.5m。牵引网供电方式主要有:直接供电方式、BT供电方式、AT供电方式、CC供电方式。目前我国高速铁路和客运专线普遍采用带回流线的AT 供电方式。 1.1 AT供电方式 AT(Auto-Transformer)供电方式的即自耦变压器供电方式,AT 供电方式具有更好的防干扰效果和更大的牵引能力,目前我国高速铁路和载重铁路基本使用AT 供电模式,牵引变电所的进线电源为交流110kv或220 kV,出线电压为交流2×27.5 kV。牵引变电所主变压器输出二次侧分别接于牵引馈线(T)相和(F)相,每隔10~15km 设立一个自耦变压器所,并联接入牵引网中,变压器的首端和尾端与接触网的(T)相和(F)相相连,绕组的中点与钢轨相连接。接触网和正馈线中的电流大小相等,方向相反,且电流大小仅为电力机车电力的一半,减少了电弧对接触网烧伤和受电弓滑板等问题,对邻近通信线路的干扰大大降低。与其它供电方式相比,线路上的电压降可以减少一半,因此供电臂可延长一倍,达到50km—60km。采用AT 供电方式无需加强绝缘就能使供电回路的电压提高一倍,在AT 区段电力机车是由前后两个AT 所同时并联供电,因此适宜与高速铁路和重载铁路等大负载电流运行。 图1 A T供电方式 2 接触网结构 高速铁路接触网功能是从牵引变电所引入电能,并将电能输送到沿铁路钢轨运行的电力机车的受电弓上。接触网主要包括支柱和导线,导线包括传输线(T 线)、承力索、正馈线(F

铁路电力牵引供电设计规范

第二篇接触网施工 第十二章接触网平面图 接触网平面布置图是接触网主要设计文件之一,是施工中应用最广的重要设计依据,认真弄懂 和记清这些图例,学会看平面布置图对于我们掌握和了解线路情况,指导施工是非常重要的。 第一节接触网图例 接触网的各种设计图是以机械制图或工程制图学为基础,加上接触网的各种特殊制图标记所组成,接触网图例: 第二节接触网平面布置图 识别接触网的平面布置图是掌握接触网施工的最基本技巧之一,除了要懂得接触网的图例及工程制图处,还要对接触网专业表示方式有一定的了解,下面分别介绍站场、区间及隧道内接触网平面布置图。 一、站场接触网平面布置图 站场接触网平面布置图实际路状态相符,其比例一般大站为1:1000,小站为1:2000。 站场接触网平面布置图上应包括: 1、全部电化股道(近期及远期)、与接触网架设有关的非电化股道。 2、股道编号及线间距、(股道编号应与运营部门编号一致)。 3、道岔编号、型号及出站道岔的中心里程(道岔编号与型号应与实际状况相符,不符的需做出说明); 4、曲线起讫点,半径和缓和曲线长度及总长; 5、桥梁名称、中心里程、总长、孔跨式样及结构型式; 6、隧道名称、起讫里程及总长; 7、涵管、虹吸管、平交道、地道、天桥、跨线桥、架线渡槽等中心里程及高度、宽度; 8、站场的名称、中心里程、站台范围及与架设接触见解关的建筑物(如站舍、雨棚、仓库、搬道房、水鹤、起、煤台及上下挡墙等); 9、进站信号机的位置及里程。 站场平面布置图图面上应主要内容有: 1、支柱(钢柱、钢筋混凝土柱)跨距、位置、号码及数量。 2、支柱类型及侧面限界。 3、锚段号、锚段长度及起讫杆号、下锚方式; 4、地质备件、基础及横卧板。 5、拉出值(拉出方向、拉出值大小)及导线高度; 6、支持装置及安装图号、软横跨节点; 7、设备安装及其位置(结、限界门、避雷器、隔离开关分段分相绝缘器等); 8、附加导线的走向、位置;设备及安装图号; 9、起测点位置及校核点; 站场接触网平面布置图中的说明应包括:

铁路电力电缆常见故障论述

铁路电力电缆常见故障论述 摘要:随着高铁时代的来临,我国铁路建设蓬勃发展,随之而来的铁路电力电缆故障屡见不鲜。本文分析了我国铁路电力电缆常见的故障以及故障成因,最后给出了维护和管理电缆的建议,对于铁路电力电缆故障分析有一定的参考价值。 关键词:铁路;电力电缆;常见故障 一、我国铁路电力电缆常见故障及成因分析 1、故障分类 第一种是接地故障,这种电缆故障比较常见,一般我们分为多相接地故障和单相接地故障;第二种是短路故障,这和接地故障的分类一样,通常也有多相短路故障和两相短路故障;第三种是断线故障,顾名思义,电缆的部分电气性能正常,但是存在多相或者单相断路、不连续;第四种是闪络故障,电缆工作在低电压区域时电气参数正常,一旦到高压环境下后,一段时间以后会出现突然性的绝缘击穿现象;第五种是综合类故障,就是同时发生了综上所述的两种以上电缆故障。 2、故障成因分析 以上铁路电缆产生的故障原因有很多,可以按照以下几

种分类。 第一种是机械损坏。由于突然受到强有力的外力冲击直接被破坏,导致不能正常工作,出现这种原因大多是受到一些改造工程和土建、线路工程的影响,在工程施工的时候不小心伤害到电缆;或者在敷设电缆的时候,施工人员操作不当,造成电缆线材过负荷的扭曲,导致电缆绝缘性能和抗干扰性能受到严重破坏,还有可能电缆受到过负荷的拉力导致电缆中间接头和终端头等连接部位受到损伤。 第二种是电缆绝缘部分老化。由于电缆工作的环境是大电压和大电流的承载环境,这样会使得电缆在工作一段时间后电缆的化学特性和物理特性直线下降,反过来,物理和化学特性的下降又会带来例如绝缘、散热等问题的急剧攀升,从而加速电缆的老化速度,形成恶性循环,这和电缆的工作寿命相挂钩。 第三种是绝缘受潮。电缆的绝缘受潮后,会产生综合类故障高发的风险。发生这类现象的原因大多是因为电缆接头盒和终端等接头的地方由于工艺和时间的原因,产生容易侵入电缆的部位,导致高电导率介质进入电缆接头部位,另一种是受到化学腐蚀,或被电解液腐蚀,导致水分等高电导率介质进入电缆。在电缆维修和维护的工作中要特别注意绝缘是否有受潮的部位。 第四种是过电压。电缆设备由于存在工艺缺陷和使用寿

铁路牵引供电系统实习总结

天津铁道职业技术学院 毕业环节总结 电气化铁道技术专业毕业总结 系部铁道动力系 班级电气化铁道技术1207班 姓名魏子涵 完成日期 2015年5月31日

电气化铁道技术毕业实习总结 魏子涵 时间就像白驹过隙一样,很快的三年的大学生活就要落幕,这三年的学习生活充满的各种滋味,有欢笑有汗水,生活就是这样,每一段时间都有不一样的事情发生,这三年是十分充实的,也是这三年的时间,促使我从一个学生不断的转变,让我不断的在探索中融入这个社会。大学生活即将结束时,感谢学校和单位给我们提供一个实习机会,让我在实践中更好地掌握从书本中学习的专业知识感受企业和社会文化,帮助我在将来的工作中更好地适应和发挥。 一、实习概况 (一)实习时间 2014年12月1日—15年5月31日 (二)实习地点兰州铁路局兰州供电段 (三)实习基本内容:在兰州供电段实习期间,主要学习供电段日常安全及工作是注意事项和铁路牵引变电所一、二次设备的绝缘测试以及接触网的维护与检修。 二、实习具体过程 (一)接触网部分 1.接触网工作基本知识的学习 通过对铁路安全文件的学习,我了解到接触网工必须实行安全等级制度, 经过考试评定安全等级, 取得安全合格证之后, 方准参加接触网的运行和检修工作。 接触网工分工较细, 同为接触网工岗位, 根据工作性质、安全等级的不同, 分为工作票填发人、工作领导人、监护( 工作监护、验电接地监护) 人、操作人、要令人、车梯负责人、防护人等。 工作职责也相应分为接触网工作票签发人工作职责、接触网工作领导人工作职责和作业组成员(包括监护、操作、要令、防护、车梯负责人等; 工作票签发人可以是作业组成员参加作业, 但必须履行作业组成员的工作职责) 工作职责。 2 .接触网日常工作 在师傅的指导下,我们学习了:

铁路电力牵引供电工程预算_实训(范本)

示范表:北京至上海铁路电气化改造铁路工程中上海枢纽站接触网工程个别概(预)算表(08级电化一班向丽敏02号)

出师表 两汉:诸葛亮 先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。 宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。 侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。 将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰能”是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。 亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也壬。 臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。 先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军, 北定中原,庶竭驽钝,攘除奸

凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。 愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。 今当远离,临表涕零,不知所言。

铁路电力系统电缆故障问题的查找与分析

铁路电力系统电缆故障问题的查找与分析 发表时间:2017-03-09T11:30:35.977Z 来源:《电力设备》2017年第1期作者:张勇[导读] 随着高速铁路的发展,铁路电力系统中电缆的采用范围越来越广泛。 (中铁九局集团电务工程有限公司辽宁沈阳 121000)摘要:随着高速铁路的发展,铁路电力系统中电缆的采用范围越来越广泛,贯通线路退步采用高压电力电缆来取代架空线路,电缆的施工及故障分析、处理在铁路电力系统中占据的地位也越来越重要。 关键词:铁路电力;电缆故障;问题分析 1、引言 铁路电力系统的安全稳定直接影响着铁路系统的正常运行,同时还肩负着铁路沿线各个站区、车辆段、机务段、电务段等各个基层单位的生活、生产用电。尤其是铁路电力系统中的自闭线路,自闭线路的主要任务是用来为铁路的各个车站和电务等集中的电气装备提供安全、可靠、连续的供电,保障铁路信号系统的正常工作,以及确保列车的安全行驶。所以,在铁路电气化的时代背景下,铁路电力系统对与铁路运输的安全相当重要,铁路电力系统电缆故障问题的查找与分析也有着非常重要的意义。 2、铁路电力系统电缆故障分析 2.1故障分类 铁路电力系统中常见的电缆故障主要有短路故障、接地故障、断线故障、闪络故障和综合类故障。短路故障主要指单相或者多相输电线路之间相互接触而形成的具有破坏性的大电流出现,当电力系统发生短路故障时,大电流能使导体温度迅速升高,破坏输电线路的绝缘性质,导致设备不能正常运行或者损坏。接地故障主要指输电线路不经过绝缘体而直接和大地连接,这也算是短路故障的一种,危害也是比较大的。短线故障也称为断路故障,指的是输电线路被断开,不能够正常的传输电能,这就会直接导致用电设备断电,严重时会使设备损坏或者使某些重要工作被干扰。闪络故障就是电缆在高电压保压过程中,突然被击穿,在此电压下又能继续维持保压的故障。高电压击穿电缆层后会对周围的设备造成一定的影响,严重时还会威胁工作人员的人身安全。综合类故障主要指以上两种或者两种以上的故障同时出现时的故障,这种故障不是很常见,但是危害最大,故障的情况也最为复杂。 2.2故障原因分析 铁路电力系统的故障种类很多,造成故障的原因也很多,通常情况下铁路电力系统电缆故障原因有一下几种:第一、电缆遭到机械损坏。机械损坏对电缆的影响是比较大的,也是最为常见的,机械损坏通常指的就是电缆遭受外力的冲击,致使电缆不能够正常工作。对电缆造成机械损坏的多数时施工时,在铁路施工时,由于施工人员不仔细查看施工现场,草草了事,导致了参与施工的工程机械对电缆造成一定损坏,或者是电缆的保护措施设置不到位,导致后期很容易被其它机械损伤。另外,在施工过程中电缆的过负荷拉伸也会导致电缆的机械损伤,多度拉伸、折叠、弯曲很可能导致电缆接头或者中间连接线出现故障,这些都是常见的电缆故障。 第二、电缆的绝缘层老化电缆的绝缘层老化直接会使电缆的绝缘能力下降,对电缆的损伤是巨大的。由于电缆经常运行在大电压大电流的环境下,电缆发热是必然的,电缆的过热会对电缆绝缘性能造成一定程度的影响,使电缆的化学性能和物理性能均受到严重影响。另外电缆深埋在底下,常年处在潮湿的环境中,有时候由于化肥或者化学物品的渗透到电缆沟,还会直接对电缆绝缘层造成腐蚀,对电缆的绝缘性能造成直接破坏。另外,随着电缆绝缘性能的降低,电缆的散热性能、抗腐蚀性等均会受到影响,这也就加速了电缆绝缘层的老化,电缆绝缘层老化是一个恶性循环的问题。第三、电缆质量不合格。在电缆的使用过程中难免会出现机械破坏和绝缘层老化的问题,所以电缆的设计时就会考虑到这些潜在的破坏因素,进而将相应的应对办法添加到电缆的设计和加工制作中,增强电缆的使用寿命。但是,生产电缆的厂家有着千差万别,不乏某些厂家偷工减料,在电缆生产过程中,不按照设计图纸执行,或者为了降低成本,将电缆使用的材料进行调整,致使电缆的质量不达标,这就为电缆的使用留下了很大的安全隐患。 3、故障查找方法 3.1脉冲电流法 该方法安全、可靠、接线简单。它是将电缆故障点用高压击穿,使用仪器采集并记录下故障点击穿产生的电流行波信号,并根据电流行波信号在测量端与故障点往返一趟的时间来计算故障距离。该方法用互感器将脉冲电流耦合出来,波形较简单,较安全。这种方法包括直闪法及冲闪法两种。与脉冲电压法使用电阻、电容分压器进行电压取样不同,脉冲电流法使用线性电流耦合器平行地放置在低压测地线旁,与高压回路无直接电器连接,对记录仪器与操作人员来说,特别安全和方便,所以一般使用此方法。 3.2脉冲电压法 该方法可用于测量高阻与闪络故障。首先将电缆故障点在直流或脉冲高压信号下击穿,然后通过记录放电脉冲在测量点故障点往返一次所需的时间来测距。脉冲电压法的一个重要优点是不必将高阻与闪络性故障点烧穿,直接利用故障点击穿产生的瞬时脉冲信号,测试速度快,测量过程也得到简化。但缺点是:仪器通过一个电容电阻分压器分压测量电压脉冲信号,仪器与高压回路有电耦合,很容易发生高压信号串人,造成仪器损坏,故安全性较差。在利用闪测法测距时,高压电容对脉冲信号呈短路状态,需要串一个电阻或电感以产生电压信号,增加了接线复杂性,使故障点不容易击穿。在故障放电时,特别在冲闪时,分压器耦合的电压波形变化不尖锐,难以分辨。 3.3脉冲回波法 针对低阻与断路类型的故障,利用低压脉冲反射方法来测电缆故障比电桥法简单直接,只需通过观察故障点反射与发射脉冲的时间差来测距。测试时,将一低压脉冲注入电缆,当脉冲传播到故障点时会发生反射,脉冲被反射送回到测量点。利用仪器记录发射和反射脉冲的时间差,只需知道脉冲传播速度就可计算出故障发生点的距离。该方法简单直观,不需知道电缆长度等原始数据,还可根据反射波形识别电缆接头与分支点的位置。 3.4电桥法 电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法比较简单,但需要事先知道电缆线长度截面等数据,且只适用于低阻及短路故障。但是,在实际运行中,故障常常为高阻及闪络性故障,因故障电阻很高造成电桥电流很小,因此一般灵敏度的仪器很难探测。 3.5跨步电压法

某版高速铁路电力牵引供电工程施工技术指南1

1总则 1.0.1为指导高速铁路电力牵引供电工程施工,统一主要技术要求, 加强施工管理,保证工程质量,制定本技术指南。 1.0.2本指南适用于新建时速250~300km高速铁路电力牵引供电工程 施工。时速250km以下客运专线、城际铁路电力牵引供电工程施工应参照执行。 1.0.3高速铁路电力牵引供电工程施工应执行国家法律法规及相关技 术标准,严格按照批准的设计文件施工,使其符合系统功能及性能要求,保证设计使用年限正常运行。 1.0.4高速铁路电力牵引供电工程施工应从管理制度、人员配备、现 场管理和过程控制等标准化管理,实现质量、安全、工期、投资效益、环境保护、技术创新等建设目标。 1.0.5高速铁路电力牵引供电工程施工应积极推行机械化、工厂化、 专业化、信息化。 1.0.6高速铁路电力牵引供电工程施工应提高文明施工水平。 1.0.7高速铁路电力牵引供电工程邻近运营接触网线路施工、牵引变 压器运输和安装等,应结合现场实际情况,通过风险监测等程序,做好风险管理工作,并制定专项施工方案和应急预案。1.0.8高速铁路电力牵引供电工程设计文物保护时,应根据相关管理 法规和设计保护措施进行施工。 1.0.9高速铁路电力牵引供电工程施工应根据国家节约资源、节约能 源、减少排放等有关法规和技术标准,结合工程特点、施工环

境编制并实施工程施工节能减排技术方案。 1.0.10高速铁路电力牵引供电工程施工的各类人员应经过专门 培训,合格后方可上岗。 1.0.11高速铁路电力牵引供电工程中采用的设备、器材。应符合 与高速铁路设计行车速度相适应的国家标准、行业标准或有关技术规定,并有合格证件。 1.0.12高速铁路电力牵引供电工程施工时,应同步做好资料的收 集和整理,做到系统、完整、真实、准确,并应按有关规定做好归档管理工作。 1.0.13高速铁路电力牵引供电工程施工在营业线施工及有可能 影响营业线运行安全的施工时,应严格执行有关安全管理办法的规定。 1.0.14高速铁路电力牵引供电工程施工除应符合本指南外,尚应 符合国家现行有关标准的规定。 2术语 2.0.1 接触悬挂 接触网中的悬挂部分,主要由承力索、接触线、吊弦、补偿装置、悬挂零件及中心锚结等组成。 2.0.2 无交叉线岔 在道岔处两支接触悬挂不相互交叉,以锚段关节方式来满足弓网关系的线岔。 2.0.3 带辅助悬挂的无交叉线岔

最新电气化铁路牵引供电系统试卷1

电气化铁路供电系统 试卷1一、单项选择题(在 每小题的四个备选答案中,选出一个正确的答案,并将其代码填入题干后的括号内。每小题1分,共20分) 1.我国电气化铁道牵引变电所由国家( )电网供电。 ( ) A 超高压电网 B 区域电网 C 地方电网 D 高压电网 2.牵引网包括 ( ) A 馈电线、轨道和大地、回流线 B 馈电线、接触网、轨道和大地、回流线 C 馈电线、接触网、回流线 D 馈电线、接触网、电力机车、大地 3.通常把( )装置的完整工作系统称为电力系统。 ( ) A 发电、输电、变电、配电、用电 B 发电、输电、配电、用电 C 发电、输电、配电、 用电 D 发电、输电、用电 4.低频交流制牵引网供电电流频率有:( ) ( ) A 50Hz 或25Hz B 30Hz 或50Hz C 2 163 Hz 或25Hz D 20Hz 或25Hz 5.单相结线牵引变电所牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达( )。 ( ) A 100% B 75.6% C 50% D 25% 6.牵引变压器采用阻抗匹配平衡变压器时,阻抗匹配系数等于1时, 且副边两负荷臂电流I I αβ=&&,原边三相电流( ) ( ) A 平衡 B 无负序电流 C 对称 D 有零序电流 7.交流牵引网对沿线通信线的静电影响由( )所引起。 ( ) A 牵引网电流的交变磁场的电磁感应 B 牵引网电场的静电感应 C 牵引网电场的高频感应 D 牵引电流的高次谐波 8.牵引网导线的有效电阻0r r ξ=(0r 是直流电阻;ξ是有效系数)。对于

工频和牵引网中应用的截面不太大的铝、铜等非磁性导线,有效系数ξ( )。 ( ) A ξ≈1 B ξ≈2 C ξ≈3 D ξ≈4 9.以下不属于减少电分相的方法有( )。 ( ) A 采用单相变压器 B 区段内几个变电所采用同相供电 C 复线区段内采用变电所范围内同行同相,上、下行异相 D 采用直供+回流线供电方式 10.对于简单悬挂的单线牵引网,1z 、2z 和12z 分别表示接触网—地回路, 轨道—地回路的自阻抗及两回路的互阻抗,牵引网的等值单位阻抗z ( )。 ( ) A 2 12 21 z z z - B 12212z z z z - C 12221 z z z z - D 212 12 z z z - 11.单链形悬挂的单线牵引网比简单悬挂相比多了一条( )。 ( ) A 承力索 B 接触网 C 回流线 D 加强导线 12.根据国家标准《铁道干线电力牵引交流电压标准》的规定,铁道干线 电力牵引变电所牵引侧母线上的额定电压为( )kV 。 ( ) A 27.5 B 25 C 20 D 19 13.牵引网的电压损失等于牵引变电所牵引侧母线电压与电力机车受电弓 上电压的 ( ) A 平方差 B 算数差 C 向量差 D 平均值 14.牵引网当量阻抗Z 为 ( ) A sin cos R X ??+ B cos sin R X ??+ C sin R X ?+ D cos R X ?+ 15.对于三相结线变压器,应以( )向轻负荷臂供电为宜。 ( ) A 任一相 B 引前相 C 滞后相 D 以上答案都不对 16.牵引供电系统的电能损失包括( )。 ( ) A 电力系统电能损失,牵引网电能损失 B 电力系统电能损失,牵引变电所电能损失 C 牵引网电能损失,牵引变电所电能损失 D 牵引变电所电能损失,馈线电能损失 17.按经济截面选择接触悬挂,如果增大导线截面引起的一次投资增量,

地铁和电气化铁路的牵引供电系统对比分析

地铁和电气化铁路的牵引供电系统有很大区别下面就通过对电气化铁道与城轨交通供电方式比较分析来进一步说明两者供电方式的异同。以帮助人们进一步了解。 1铁路牵引供电系统的供电方式 1.1 直接供电方式 电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。如图所示; 直接供电方式 1.2 吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。如图所示 吸流变压器(BT)供电方式

铁路电力贯通(自闭)线常见故障分析及查找方法

铁路10KV电力贯通(自闭线)线路 故障分析判断及查找方法 10KV电力贯通线(自闭线)路是铁路电力系统的重要组成部分,线路因点多线长,路径复杂,设备质量参差不齐,受气候、地理环境影响较大,供用电情况复杂,设备故障影响着铁路供电系统的安全运行,直接影响到铁路运输的安全正点。如何正确有效地判断、查找、处理电力线路故障,缩短停电时间,及时恢复供电尤为关键。现将电力设备故障类别,各种现象及分析判断查找方法简述如下: 一、10kV电力贯通(自闭)线常见故障 1. 短路故障: ⑴相间短路(三相和两相短路); ⑵接地短路(两相短路接地、两点接地短路故障、单相接地短路)。 2. 接地故障: ⑴金属性接地; ⑵非金属性接地。 二、造成设备故障的主要原因: 1. 雷击瓷瓶击穿、避雷器击穿(爆炸)引线搭接在金具上。 2. 外力原因造成倒杆、断线、电缆损坏。 3. 设备原因造成故障,如瓷瓶击穿、连接线夹断裂造成缺相、电缆接头工艺不达标造成接地或短路故障等。 4. 气候因素造成故障,如大风倒树压在线路上。 5. 设备缺陷处理不及时造成故障。 三、10KV电力贯通(自闭)线短路故障分析及处理 贯通(自闭)线跳闸后,重合闸不动作或动作不成功时,首先由变配电所值班员和生产调度分别调取跳闸、重合闸不成功时的数据,通过分析

初步判断故障性质及位置。根据分析情况,可组织对跳闸线路进行试送电进行故障排查。试送电进行故障时应注意以下几个方面: 1. 正确选择试送电的配电所 ⑴尽量避免用信号备用电源取自该配电所的馈线柜,若试送电引起进线断路器跳闸,则会造成这些站信号主备用电源同时停电。 ⑵选择故障点远端的变配电所进行强送,且两配电所必须均取消重合闸,待线路故障处理完毕恢复供电时重新开通。 ⑶选择进线、母联与馈线断路器整定值级差较大的变配电所进行强送。选择配电所贯通线不在主供的变配电所,如果并网条件好的,则需要并网倒电将主供所的贯通线(自闭线)倒为备供,避免强送电时因线路故障未消除,造成越级跳闸,扩大停电范围。 ⑷选择地方电源供电质量高、供电可靠的变配电所进行强送。 2. 组织试送电进行故障排查 ⑴线路未装设远动分断装置,可在经过分析跳闸数据后,对跳闸线路组织一次强送电。 ⑵装设有远动分段装置的贯通(自闭)线跳闸后,在确认故障分段装置设备运行正常的情况下,配电所保护Ⅰ段动作跳闸后,重合闸不成功时,原则上不能一个供电臂贯穿性试送电(雷击跳闸除外)。保护Ⅱ、Ⅲ段跳闸后,重合闸不成功时,允许贯穿性(跳闸前所有负荷)送电一次。 ⑶线路故障排查时首先使用“1/2分段查找法”缩小故障区段,分别从该供电臂两端的配电所采用“递推法”再进行排查,从离配电所最近的车站开始逐区间查找,基本能确保冲击故障点2次既能确定故障区间。 ⑷如故障发生在夜间,故障区段已被隔离,并且不影响故障线路上相关各车站行车设备,重要的是确认信号电源供电正常,次日组织巡视查找故障。 ⑸故障区间确定后,隔离故障区间,对无故障的区段立即恢复线路

相关主题