搜档网
当前位置:搜档网 › 内质网应激

内质网应激

内质网应激
内质网应激

内质网应激

庄娟(江苏省淮阴师范学院生命科学学院淮安223300)

摘要内质网是真核细胞内蛋白质合成的重要场所,只有正确折叠的蛋白质才能够在内质网驻留或转运至高尔基体。如果蛋白质合成过多或不能正确折叠与运输,内质网内就会累积大量蛋白质,造成内质网应激,引发未折叠蛋白质反应。未折叠蛋白质反应主要与内质网感受器蛋白介导的信号通路有关。

关键词内质网应激未折叠蛋白质反应内质网感受器

内质网(endoplasmic reticulum,ER)是真核细胞内蛋白质合成、脂质生成和钙离子贮存的主要场所。多种蛋白需要在内质网中折叠、组装、加工、包装及向高尔基体转运,这是一个需要细胞精确调控的过程。ER 含有一种免疫球蛋白结合蛋白(immunoglobulin-bind-ing protein,BIP)和蛋白二硫键异构酶(protein disulfide isomerase,PDI),可以帮助与促进蛋白质的正确折叠。不能正确折叠的畸形肽链或未组装成寡聚体的蛋白质亚单位,无论是在内质网腔内还是在内质网膜上,一般不能进入高尔基体,主要通过泛素依赖性降解途径被蛋白酶体所降解。当内质网中未折叠或错误折叠蛋白累积,就会造成内质网应激,引发未折叠蛋白质反应(unfolded protein response,UPR)。

1内质网应激

内质网应激(endoplasmic reticulum stress,ERS)是指细胞受到内外因素的刺激时,内质网形态、功能的平衡状态受到破坏后发生分子生化的改变,蛋白质加工运输受阻,内质网内累积大量未折叠或错误折叠的蛋白质,细胞会采取相应的应答措施,缓解内质网压力,促进内质网正常功能的恢复[1]。引发ERS的因素很多,缺血低氧、葡萄糖或营养物匮乏、钙离子紊乱等可造成急性应激损伤;而病毒感染、分子伴侣或其底物的基因突变等能引发慢性应激损伤。

根据诱发原因,可将ERS分为以下3种类型:①未折叠或者错误折叠蛋白质在内质网腔内蓄积引发的UPR;②正确折叠的蛋白质在内质网腔内过度蓄积激活细胞核因子κB(NF-κB)引发的内质网过度负荷反应(ER over-load response,EOR);③胆固醇缺乏引发的固醇调节元件结合蛋白质(sterol regulatory element binding protein,SREBP)通路调节的反应。

ERS是细胞对内质网蛋白累积的一种适应性应答方式,细胞通过减少蛋白质合成,促进蛋白质降解,增加帮助蛋白质折叠的分子伴侣等方式缓解内质网压力[2]。但ERS过强或持续时间过长,超过细胞自身的调节能力,就会伤害细胞,引起细胞代谢紊乱[3]和凋亡[1]等。

2未折叠蛋白质反应

目前对UPR的机制研究较为深入。如果新合成的蛋白质在N末端糖基化、二硫键形成以及蛋白质由内质网向高尔基体转运等过程受阻时,未折叠或错误折叠的新合成蛋白质就会在内质网中大量堆积,细胞就会启动UPR[2]。UPR与内质网膜上的跨膜蛋白PERK(PKR-like ER1kinase)、IRE1(inositol requiring enzyme1)和ATF6(activating transcription factor-6)介导的信号通路有关[4,5],这三种膜蛋白也被称为内质网感受器(ER stress sensors)[2]。

2.1内质网感受器蛋白的激活BIP(immunoglobulin -binding protein)是ER腔内的一种分子伴侣,为热休克蛋白70(heat shock protein of70kDa,HSP70)家族成员,又称为葡萄糖调节蛋白78(glucose-regulated pro-tein of78kDa,GRP78),由N端的ATP酶结构域和C 端的待折叠蛋白结合结构域组成,从酵母到高等哺乳动物高度保守。BIP能结合未折叠蛋白质富含疏水氨基酸区域,利用ATP水解释放能量帮助蛋白质折叠,并阻止未折叠、错误折叠的蛋白质聚集。非应激状态时GRP78/BIP与PERK、IRE1及ATF6这三种感受器的ER腔部分结合在一起,此情况下感受器蛋白没有活性。当ER内蛋白聚集,内质网处于应激状态时,与未折叠蛋白结合能力较强的BIP就解离释放到ER腔内,执行蛋白质折叠功能。此时内质网感受器被激活,产生PERK-eIF2α、IRE1-XBP1s和ATF6-ERSE三条主要的信号通路,进行UPR[2,6]。内质网应激条件下,BIP/GRP78表达上调明显,因而BIP/GRP78的诱导表达可作为ERS和UPR的激活标志[7]。

2.2信号通路PERK-eIF2α的应答反应PERK是内质网单次跨膜蛋白,胞质区有激酶结构域。内质网应激时,与BIP/GRP78解偶联的PERK蛋白形成同源二聚体,胞质区结构域自身磷酸化被激活,与真核生物起始因子2(eukaryotic initiation factor2,eIF2)的α亚单位(eIF2α)结合并促使eIF2α上的N端第51位丝氨酸磷酸化。磷酸化的eIF2a蛋白能抑制翻译起始复合物中GDP与GTP的交换,阻断了翻译起始复合物eIF2-GTP-tRNAMet的组装,从而抑制蛋白质的翻译与合成,减少新生蛋白质向内质网的内流,减少未折叠蛋

白的进一步增加[8]。磷酸化的eIF2α虽然能够非特异性地抑制细胞内一般蛋白的合成,但也会特异性提高某些基因的表达,如磷酸化eIF2α可选择性介导转录激活因子4(activating transcription factor4,ATF4)的mRNA表达水平升高,翻译水平显著增加。ATF4属于CCAAT增强子结合蛋白(CCAAT/enhancer-binding protein,C/EBP)的转录因子,进入细胞核后可以作用于下游因子,通过促进氨基酸代谢、氧化还原反应,蛋白质分泌和缓解细胞应激反应使细胞存活[9],持久的ERS也会激活CCAAT增强子结合蛋白(C/EBP homol-ogous protein,CHOP)和细胞生长抑制与DNA损伤诱导基因(growth-arrest and DNA damage-inducial gene 34,GADD34)等蛋白的表达,使细胞进入内质网应激诱导的凋亡程序[10,11]。

2.3信号通路IRE1-XBP1s的应答反应IRE1是单次跨膜内质网驻留蛋白,胞质区具有丝氨酸/苏氨酸受体蛋白激酶活性和核糖核酸内切酶活性。发生UPR 时IRE1蛋白形成二聚体,激活IRE1蛋白激酶活性并发生自身磷酸化。X盒-结合蛋白1(X box-binding protein1,XBP1)mRNA为ATF6的诱导产物,XBP1 mRNA编码具有碱性亮氨酸拉链(basic leucine zipper,bZIP)结构的转录因子[12]。磷酸化激活IRE1的核酸内切酶活性,可以与底物XBP1前体mRNA分子结合,并剪切其一个26nt的内含子,产生新的mRNA转录本,翻译生成有活性的转录因子XBP1s(box binding protein1splicing)。XBP1s进入细胞核后与内质网应激反应元件(ER stress response element,ERSE)的基因启动子结合,诱导CHOP、BIP/GRP78等分子伴侣和折叠酶基因的表达,上调内质网相关蛋白降解(ER asso-ciated degradation,ERAD)组份,加快蛋白折叠和错误蛋白降解[13]。

IRE1在哺乳动物和人类细胞中有IRE1α和IRE1β两种构型。研究表明,IRE1α和IRE1β都能与ER定位的mRNA分子(ER-localized mRNA)作用[14],IRE1α剪切前体XBP1mRNA能力较IRE1β强[15],而在IRE1β过表达的HeLa细胞中,IRE1β剪切28S rRNA的能力较强[16]。Nakamur等[9]的研究表明,人类细胞IRE1β能抑制膜结合核糖体的翻译活性,广泛抑制内质网相关蛋白的合成,而游离核糖体蛋白合成功能不受影响。因此,在发生UPR时IRE1β活化,通过降解内质网定位的mRNA而减少分泌性蛋白的合成,有效缓解ERS。

2.4信号通路ATF6-ERSE的应答反应内质网驻留蛋白ATF6为跨膜蛋白,内质网腔内区负责感知蛋白折叠情况,胞质区由转录激活结构域和含bZIP的DNA结合结构域构成[17]。ERS发生时,BIP/GRP78偶联解除,ATF6从内质网转位至高尔基体,并被高尔基体内S1P与S2P蛋白酶(site-1,site-2protease)先后切割,释放出N端转录激活结构域,产生活化型ATF6。活化型ATF6作为转录因子进入细胞核,诱导含有内质网应激反应元件(ER stress response element,ERSE)的基因启动子起始转录[8]。一些重要的内质网分子伴侣,例如BIP、GRP94、PDI以及一些转录因子XBP1、CHOP/GADD153都被鉴定为ATF6的下游靶基因[18,19]。

3结语

综上所述,内质网不仅是蛋白质和脂质合成的重要场所,也是细胞内信号转导的关键场所,与细胞存活或凋亡的命运密切联系。当内质网内蛋白合成过多超过其折叠能力,或者合成蛋白不能正确折叠,内质网内就会累积大量蛋白质,引起内质网应激。细胞为了缓解内质网压力,启动未折叠蛋白质反应。内质网膜上的三种压力感受器蛋白:PREK、IRE1和ATF6与BIP/ GRP78解偶联,激活三条信号转导途径,抑制一般蛋白合成,上调内质网应激相关蛋白的表达,使细胞得以存活。但是,内质网压力过强或持续时间过长,超过细胞处理的能力时,应激信号通路就会切换至细胞凋亡通路,造成细胞死亡。

主要参考文献

[1]Rutkowski DT,Kaufman RJ.2004.A trip to the ER:coping with stress.Trends Cell Biology,14(1):20 28

[2]Ron D,Walter P.2007.Signal integration in the endoplasmic retic-ulum unfolded protein response.Nature Reviews Molecular Cell Biol-ogy,8(7):519 529

[3]Yoshiuchi K,Kaneto H,Matsuoka T,et al.2008.Direct monitoring of in vivo ER stress during the development of insulin resistance with ER stress-activated indicator transgenic mice.Biochemical and Bio-physical Research Communications,366(2):545 550

[4]Zhang KZ,Kaufman RJ.2004.Signaling the unfolded protein re-sponse from the endoplasmic reticulum.The Journal of Biological Chemistry,279(25):25935 25938

[5]Kaufman R.1999.Stress signaling from the lumen of the endoplas-mic reticulum:coordination of gene transcriptional and translational controls.Genes&Development,13(10):1211 1233

[6]Bertolotti A,Zhang Y,Hendershot LM,et al.2000.Dynamic inter-action of BiP and ER stress transducers in the unfolded-protein re-sponse.Nature Cell Biology,2(6):326 332

[7]Schroder M,Kaufman RJ.2005.The mammalian unfolded protein response.Annual Review Biochemisty,74:739 789

[8]Harding HP,ZhangY,Bertolotti A,et al.2000.Perk is essential for translational regulation and cell survival during the unfolded protein response.Molecular Cell,5(5):897 904

[9]Harding HP,Zhang Y,Zeng H,et al.2003.An integrated stress

优化高三生物学一轮复习的策略

王锦明(福建省福州格致中学鼓山校区350014)

摘要本文结合“免疫调节”的复习,阐述高三生物学一轮复习的策略,旨在帮助师生提高复习课的效率。关键词高三生物学一轮复习免疫调节有效复习

如何上好高三复习课?怎样提高复习效率?这是每一个高中生物学教师都无法回避的问题。由于大多数省市采用“3+理综”的高考模式,期望学生在课外安排大量时间去复习生物学显然是不现实的,但一轮复习又是二、三轮复习的基础,是复习过程最关键的阶段,直接关系着总复习的成败和质量。

在有限的课堂时间内,让学生获得知识、能力的最大限度的巩固发展,做到有效复习就显得十分重要。

下面以高中《生物》(必修3)“免疫调节”的复习为例,谈谈一轮复习的策略。

1解读考纲,明确复习范围

解读考纲,应从中把握命题的指导思想和能力要求,要对考纲考点内容认真分析,适当拓展,分解成相应的具体要求,界定明确的复习范围,这样复习时心中有数,能避免偏离考试范畴,提高复习备考的效果。例如可将考纲中“免疫调节”的内容,细化为表1所示的具体要求:

表1“免疫调节”复习的具体要求

考纲的知识内容考纲要求相应细化的具体要求人体的内环境与稳态

人体免疫系统在维持稳态中的作用艾滋病的流行和预防Ⅱ

说出淋巴细胞的起源和分化

简述免疫系统的组成

概述免疫系统的主要功能

描述抗原和抗体

概述体液免疫和细胞免疫的过程及关系

概述自身免疫病和过敏反应

说出艾滋病的全称、病原体存在部位和发病机理,指出艾滋

病的传播途径及预防措施

经过分解细化,考点的要求一目了然,使学生对复习的范围明确具体,能让学生对比检测是否达到复习要求,是否有知识的缺漏,做到拾遗补漏,有的放矢,提高复习的针对性。2推陈出新,创新复习形式

高三生物学一轮复习课经常是这样一种模式,先是把课本知识梳理一遍,事实上就是以前上新课的克隆,然后是练习和讲评,缺乏新意,没有吸引力,

檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨檨

其复习

response regulates amino acid metabolism and resistance to oxidative stress.Molecular Cell,11(3):619 633

[10]Harding HP,Novoa I,Zhang Y,et al.2000.Regulated translation initiation controls stress-induced gene expression in mammalian cells.Molecular Cell,6(5):1099 1108

[11]Chen A,Wu K,Fuchs SY,et al.2000.The conserved RING-H2 finger of ROC1is required for ubiquitin ligation.The Journal of Bio-logical Chemistry,275(20):15432 15439

[12]Tirasophon W,Welihinda A,Kaufman R.1998.A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease(Ire1p)in mammalian cells.Genes&Development,12(12):1812 1824[13]Yoshida H,Matsui T,Hosokawa N,et al.2003.A time-depend-ent phase shift in the mammalian unfolded protein response.Devel-opmental Cell,4(2):265 271

[14]Hollien J,Lin J,Li H,et al.2009.Regulated Ire1-dependent decay of messenger RNAs in mammalian cells.Cell Biology,186

(3):323 331

[15]Imagawa Y,Hosoda A,Sasaka S,et al.2008.Rnase domains de-termine the functional difference between IRE1alpha and IRE1beta.

FEBS Letters,582(5):656 660

[16]Iwawaki T,Hosoda A,Okuda T,et al.2001.Translational control by the ER transmembrane kinase/ribonuclease IRE1under ER stress.Nature Cell Biology,3(2):158 164

[17]Ozcan U,Cao Q,Yilmaz E,et al.2004.Endplasmic reticulum stress links obesity,insulin action,and type2diabetes.Science,306(5695):457 461

[18]Yoshida H,Okada T,Haze K,et al.2000.ATF6activated by pro-teolysis binds in thepresence of NF-Y(CBF)directly tothe cis-

acting element responsible for the mammalian unfolded protein re-sponse.Molecular Cell Biology,20(18):6755 6767

[19]Oyadomari S,Mori M.2004.Roles of CHOP/GADD153in endo-plasmic reticulum stress.Cell Death and Differentiation,11:381

389?

内质网应激通路相关蛋白ATF4及CHOP在主动脉夹层中的表达以及意义

? 1451 ?中国循证心血管医学杂志2019年12月第11卷第12期 Chin J Evid Based Cardiovasc Med,December,2019,Vol.11,No.12? 论著 ? 内质网应激通路相关蛋白ATF4及CHOP 在主动脉夹层中的表达以及意义 陈若诗1,吴琪1,王志维1 基金项目:国家自然科学基金(8157020938)作者单位:1 430060 武汉,湖北省武汉市武汉大学人民医院心血管外科【摘要】目的 探讨主动脉夹层(AD)患者环磷酸腺苷反应元件结合转录因子同源蛋白(CHOP) 和活性转录因子4(ATF4)的表达及其意义。方法 选取2017年3月至2018年4月于武汉大学人民医院确诊为StanfordⅠ型夹层并行胸主动脉夹层全弓置换患者为AD组(n =13),另选取5例于武汉大学人民医院接受心脏移植的患者作为Donor组(此5例患者均无大血管疾病,其在心脏移植术中取下的主动脉血管可作为相对正常主动脉血管组织)。通过Masson染色、间苯二酚染色研究两组患者主动脉血管结构变化,通过TUNEL染色明确主动脉夹层发病后平滑肌细胞凋亡情况;通过RT-PCR及Western-blot分别在mRNA水平及蛋白水平检测ATF4及CHOP的变化情况。在动物实验方面,20只SD大鼠随机分为两组:Control组(n =10)及AD组(n =10)。Control组给予大鼠维持饲料,AD组给予含0.3%的β-异氨基丙腈酯(BAPN)的大鼠维持饲料进行主动脉夹层动物模型构建。动物模型构建成功后,取两组大鼠主动脉组织做石蜡包埋,标本切片后处理步骤及检测指标同人体标本。结果 在人体标本中,Masson染色及间苯二酚染色发现,AD组患者主动脉血管标本胶原沉积较Donor组明显增多,弹力纤维断裂程度也更加严重;TUNEL凋亡染色发现,AD组患者主动脉血管组织较Donor组正常血管组织细胞凋亡明显增多,差异有统计学意义(P <0.01);RT-PCR及Western-blot实验发现,AD组患者主动脉血管ATF4、CHOP的表达在RNA水平及蛋白水平均较Donor组正常主动脉血管明显增高,差异均有统计学意义(P <0.05)。在动物实验中,Masson染色发现,AD组大鼠主动脉血管较Control组胶原沉积明显增多;间苯二酚染色发现,AD组大鼠主动脉血管较Control组弹力纤维断裂程度明显加重,Control组基本无弹力纤维断裂;TUNEL 凋亡染色发现,AD组大鼠主动脉血管较Control组细胞凋亡明显增多,差异有统计学意义(P <0.05)。RT-PCR及Western-blot实验亦发现,AD组大鼠主动脉血管ATF4、CHOP的表达在RNA水平及蛋白水平均较Control组明显增高,差异均有统计学意义(P <0.05)。结论 CHOP和ATF4与内质网应激关系密切,CHOP及ATF4在人主动脉夹层标本及主动脉夹层动物模型标本中均显著升高,说明在主动脉夹层中内质网应激水平较高,这或许是主动脉血管平滑肌细胞发生凋亡的重要原因之一,进而在一定程度上参与主动脉夹层的发生发展。 【关键词】主动脉夹层;内质网应激;细胞凋亡;活性转录因子4;环磷酸腺苷反应元件结合转录 因子同源蛋白 【中图分类号】R543.1 【文献标志码】A 开放科学(源服务)标识码(OSID) The significance of endoplasmic reticulum stress pathway related proteins ATF4 and CHOP expression in aortic dissection Chen Ruoshi *, Wu Qi, Wang Zhiwei. *Department of Cardiothoracic Surgery, Renmin Hospital of Wuhan University,Wuhan 430060, Hubei Province,China Corresponding author: Wang Zhiwei, E-mail: wangzhiwei@https://www.sodocs.net/doc/4a10280019.html, [Abstract ] Objective To investigate the expression and significance of C/EBP-Homologous protein (CHOP) and active transcription factor 4 (ATF4) in aortic dissection. Methods Patients who were diagnosed as Stanford type I with a parallel thoracic aortic dissection from March 2017 to April 2018 were enrolled in the AD group (n =13), and 5 patients were admitted for heart transplantation. The patients were treated as donors (these 5 patients had no macrovascular disease, and the aortic vessels removed during heart transplantation were used as relatively normal aortic vascular tissue). The aortic vascular structure changes were studied by mason staining and resorcinol staining. The sharp muscle cells after aortic dissection were confirmed by TUNEL staining. ATF4 was detected by RT-PCR and Western-blot at mRNA and protein levels, respectively. And changes in CHOP. In animal experiments, 20 SD rats were randomly divided into control group: control group (n =10) and AD group (n =10). Rats in the control group were given feed, and rats in the AD group were given a 0.3% beta-isopropylaminoglycolate (B APN)-maintained feed for aortic dissection animal model establishment. After the animal model was successfully constructed, the rat 通讯作者:王志维,E-mail:wangzhiwei@https://www.sodocs.net/doc/4a10280019.html, doi:10.3969/j.issn.1674-4055.2019.12.09

心理应激

医学心理学与医患沟通技巧相关知识讲座 第五讲心理应激 一、总论 (一)塞里的应激学说 每一种疾病或有害刺激都有相同的、特征性的和涉及全身的生理生化反应过程,塞里将其称为“一般适应综合征”(general adaptation syndrome,GAS)。GAS与刺激的类型无关,而是机体通过兴奋下丘脑-垂体-肾上腺轴所引起的生理变化,是机体对有害刺激所作出的防御反应的普遍形式。GAS分为警戒、阻抗和衰竭三期。 (二)心理应激的定义 1.根据过程模型,心理应激可以被定义为:个体在应激源作用下,通过认知、应对、社会支持和个性特征等中间因素的影响或中介,最终以心理生理反应表现出来的作用“过程”。 2.根据系统模型,心理应激可以被定义为:个体的生活事件、认知评价、应对方式、社会支持、人格特征和心身反应等生物、心理、社会多因素构成相互作用的动态平衡“系统”,当由于某种原因导致系统失衡时,就是心理应激。 3.医学心理学将心理应激定义为:个体在觉察(认知评价)到威胁或挑战、必须做出适应或应对时的心身紧张状态。 4.应激系统模型的基本特征(法则): ⑴应激是多因素的系统;

⑵各因素互相影响互为因果; ⑶各因素之间动态的平衡或失衡决定个体的健康或疾病; ⑷认知因素在平衡和失衡中起关键作用; ⑸人格因素起核心作用。 5.心理应激理论在临床医学、预防医学和健康促进教育等领域具有多方面的理论与实际指导意义。 ⑴在医学认识论方面:心理应激理论特别是系统模型使我们认识到个体实际上是生活在应激多因素的动态平衡之中。 ⑵在临床医学的病因学方面:“过程模型”有助于我们清晰地认识心理疾病和症状的发生发展过程。 ⑶在预防医学方面:“系统模型”有助于认识和指导合理调整应激各有关因素的动态平衡,促进个体在不同内外环境下的健康成长或保持适应。 6.应激系统模型在医学心理学临床实际工作中的应用 应激系统模型及其基本法则在临床个体心理咨询(治疗)程式、压力管理和家庭婚姻咨询中都有广泛的应用价值。 ⑴应激系统模型与临床心理咨询:首先根据系统模型,对患者的心身问题以及相关因素作出三级评估。第一层次的评估分析患者的应激反应和心身症状情况;第二层次评估进一步分析生活事件、认知评价、应对方式和社会支持程度,确定应激各因素在“问题”中的地位以及因素之间的互动关系;第三层次评估分析人格特点(特别是观念方面的人格特点),如求全、完美主义倾向。然后,在系统模型的评估基础上,以系统论与整体观的水平作出干预决策,可以决定采用心理教育、心理指导、系统心理治疗

内质网应激

内质网应激 庄娟(江苏省淮阴师范学院生命科学学院淮安223300) 摘要内质网是真核细胞内蛋白质合成的重要场所,只有正确折叠的蛋白质才能够在内质网驻留或转运至高尔基体。如果蛋白质合成过多或不能正确折叠与运输,内质网内就会累积大量蛋白质,造成内质网应激,引发未折叠蛋白质反应。未折叠蛋白质反应主要与内质网感受器蛋白介导的信号通路有关。 关键词内质网应激未折叠蛋白质反应内质网感受器 内质网(endoplasmic reticulum,ER)是真核细胞内蛋白质合成、脂质生成和钙离子贮存的主要场所。多种蛋白需要在内质网中折叠、组装、加工、包装及向高尔基体转运,这是一个需要细胞精确调控的过程。ER 含有一种免疫球蛋白结合蛋白(immunoglobulin-bind-ing protein,BIP)和蛋白二硫键异构酶(protein disulfide isomerase,PDI),可以帮助与促进蛋白质的正确折叠。不能正确折叠的畸形肽链或未组装成寡聚体的蛋白质亚单位,无论是在内质网腔内还是在内质网膜上,一般不能进入高尔基体,主要通过泛素依赖性降解途径被蛋白酶体所降解。当内质网中未折叠或错误折叠蛋白累积,就会造成内质网应激,引发未折叠蛋白质反应(unfolded protein response,UPR)。 1内质网应激 内质网应激(endoplasmic reticulum stress,ERS)是指细胞受到内外因素的刺激时,内质网形态、功能的平衡状态受到破坏后发生分子生化的改变,蛋白质加工运输受阻,内质网内累积大量未折叠或错误折叠的蛋白质,细胞会采取相应的应答措施,缓解内质网压力,促进内质网正常功能的恢复[1]。引发ERS的因素很多,缺血低氧、葡萄糖或营养物匮乏、钙离子紊乱等可造成急性应激损伤;而病毒感染、分子伴侣或其底物的基因突变等能引发慢性应激损伤。 根据诱发原因,可将ERS分为以下3种类型:①未折叠或者错误折叠蛋白质在内质网腔内蓄积引发的UPR;②正确折叠的蛋白质在内质网腔内过度蓄积激活细胞核因子κB(NF-κB)引发的内质网过度负荷反应(ER over-load response,EOR);③胆固醇缺乏引发的固醇调节元件结合蛋白质(sterol regulatory element binding protein,SREBP)通路调节的反应。 ERS是细胞对内质网蛋白累积的一种适应性应答方式,细胞通过减少蛋白质合成,促进蛋白质降解,增加帮助蛋白质折叠的分子伴侣等方式缓解内质网压力[2]。但ERS过强或持续时间过长,超过细胞自身的调节能力,就会伤害细胞,引起细胞代谢紊乱[3]和凋亡[1]等。 2未折叠蛋白质反应 目前对UPR的机制研究较为深入。如果新合成的蛋白质在N末端糖基化、二硫键形成以及蛋白质由内质网向高尔基体转运等过程受阻时,未折叠或错误折叠的新合成蛋白质就会在内质网中大量堆积,细胞就会启动UPR[2]。UPR与内质网膜上的跨膜蛋白PERK(PKR-like ER1kinase)、IRE1(inositol requiring enzyme1)和ATF6(activating transcription factor-6)介导的信号通路有关[4,5],这三种膜蛋白也被称为内质网感受器(ER stress sensors)[2]。 2.1内质网感受器蛋白的激活BIP(immunoglobulin -binding protein)是ER腔内的一种分子伴侣,为热休克蛋白70(heat shock protein of70kDa,HSP70)家族成员,又称为葡萄糖调节蛋白78(glucose-regulated pro-tein of78kDa,GRP78),由N端的ATP酶结构域和C 端的待折叠蛋白结合结构域组成,从酵母到高等哺乳动物高度保守。BIP能结合未折叠蛋白质富含疏水氨基酸区域,利用ATP水解释放能量帮助蛋白质折叠,并阻止未折叠、错误折叠的蛋白质聚集。非应激状态时GRP78/BIP与PERK、IRE1及ATF6这三种感受器的ER腔部分结合在一起,此情况下感受器蛋白没有活性。当ER内蛋白聚集,内质网处于应激状态时,与未折叠蛋白结合能力较强的BIP就解离释放到ER腔内,执行蛋白质折叠功能。此时内质网感受器被激活,产生PERK-eIF2α、IRE1-XBP1s和ATF6-ERSE三条主要的信号通路,进行UPR[2,6]。内质网应激条件下,BIP/GRP78表达上调明显,因而BIP/GRP78的诱导表达可作为ERS和UPR的激活标志[7]。 2.2信号通路PERK-eIF2α的应答反应PERK是内质网单次跨膜蛋白,胞质区有激酶结构域。内质网应激时,与BIP/GRP78解偶联的PERK蛋白形成同源二聚体,胞质区结构域自身磷酸化被激活,与真核生物起始因子2(eukaryotic initiation factor2,eIF2)的α亚单位(eIF2α)结合并促使eIF2α上的N端第51位丝氨酸磷酸化。磷酸化的eIF2a蛋白能抑制翻译起始复合物中GDP与GTP的交换,阻断了翻译起始复合物eIF2-GTP-tRNAMet的组装,从而抑制蛋白质的翻译与合成,减少新生蛋白质向内质网的内流,减少未折叠蛋

内质网应激

2.2 内质网应激 2.2.1 内质网及内质网应激概述 内质网(endoplasmic reticulum,ER)是哺乳动物细胞中一种重要的细胞器,其膜结构占细胞内膜的二分之一,是细胞内其它膜性细胞器的重要来源,在内膜系统中占有中心地位。ER 的功能包括:①ER 是细胞的钙储存库,内质网的钙离子浓度高达 5.0mmol/L,而胞浆中为 0.1ummol/L。并能调节维持细胞内钙平衡。②ER 是分泌性蛋白和膜蛋白的合成、折叠、运输以及修饰的场所。ER 通过内部质量调控机制筛选出正确折叠的蛋白质,并将其运至高尔基体,将未折叠或错误折叠的蛋白质扣留以进一步完成折叠或进行降解处理。③ER 还参与固醇激素的合成及糖类和脂类代谢,内质网膜上含有固醇调节元件结合蛋白,对固醇和脂质合成起调节作用。 ER对影响细胞内能量水平、氧化状态或钙离子浓度异常的应激极度敏感。当细胞受到某些打击(如缺氧、药物毒性等)后,内质网腔内氧化环境被破坏,钙代谢失调,ER功能发生紊乱,突变蛋白质产生或者蛋白质二硫键不能形成,引起未折叠蛋白或错误折叠蛋白在内质网腔内积聚以及钙平衡失调的状态,即内质网应激(endoplasmic reticulumstress,ERS)。内质网巨大的膜结构为细胞内活性物质的反应提供了一个广阔的平台,在许多信号调控中起到关键作用。最近的研究表明,内质网是细胞凋亡调节中的重要环节[39]。ERS可以介导与死亡受体和线粒体途径不同的一条新的凋亡通路。当细胞遭到毒性药物、感染、缺氧等刺激时,内质网腔未折叠蛋白增多和细胞内钙离子超载,引起caspase 12活化,继而激活下游的caspase,导致细胞凋亡。早期的ERS是机体自身代偿的 过程,对细胞具有保护作用;如果这种失衡超过了机体自身调节的能力,最终的结局将是细胞的死亡。ERS的确切机制目前尚不明确。深入研究ER及ERS,对于完善细胞损伤和凋亡理博具有重要意义,有助于进一步认识疾病发生发展的机制,为临床疾病预防和治疗提供新的理博依据。 2.2.2 内质网应激的信号通路 ER 内环境的稳态一旦被打破,将激活一系列的级联反应通路,包括PERK/eIF2α通路、IRE1/XBP1 通路及 ATF6 介导的通路。内质网应激激活的信号通路主要有[40]:①未折叠蛋白反应(unfolded protein response,UPR);

第八章 应激来源与影响

第八章应激来源及影响 (一)应激与应激源 简单运用: 结合实际说说什么样的刺激会成为应激源 (负性事件不可控性不确定性模糊性挑战极限)→ 生理/心理/社会性应激源领会: 1.应激研究的意义 应激源是引发反应的实际事件。对应激源的研究可以帮助我们确定哪些事件更容易引起应激。 2.应激的性质 应激有时是不好的,而有时则是好的。分为烦恼与正应激。烦恼是指那些有破坏性的或不愉快的应激。正应激是一种积极的唤起,是一种挑战,可以加深意识,增加心理警觉,还经常会启发我们的高级的认知和行为表现。 3.应激源的类型及特征 类型: 1)生物性应激源: 这是借助于人的肉体直接发生刺激作用的刺激物,包括各种物理、化学刺激在内的生物性刺激。 2)心理性应激源: 这是主要来源于日常生活现实中经常发生的动机冲突、挫折情境、人际关系失调及预期的或回忆的紧张状态。 3)社会文化性应激源:

社会文化因素是造成人的应激状态的最普遍最重要的应激源,尤其是急剧的社会文化的大变动。 特征:1)负性事件2)不可控性3)不确定性4)模糊性5)挑战极限 识记 1.应激 i.应激被定义为使人感到紧张的事件或环境刺激,是一种有外界施予的压力,是外在的客观刺激。(物质力量的观点) ii.应激被定义为紧张或唤醒的一种内部心理状态。这就将应激视为一种特定压力性刺激的心理反应,偏重于应激事件之后的主观状态,特别是情绪体验。(心理学观点) iii.应激被定义为人体对需要或伤害侵入的一种生理反应(生理学观点)★综上所述: 应激既不是环境刺激,也不是个人的性格,更不仅仅是一种反应,而是在需求与不以疯狂或死亡为代价的处理需求的能力之间的关系。(综合的观点) 2.应激源 应激源是引发应激反应的实际事件。即日常所说的应激,往往是指客观存在的威胁和挑战。 (二)应激反应与健康影响 简单运用: 以案例分析创伤后应激障碍的症状特点 领会: 1.应激导致疾病的途径 1)直接路径:

内质网应激与心血管疾病

内质网应激与心血管疾病 摘要:应激是心血管疾病发生的机理之一,内质网应激是亚细胞器水平的应激。内质网内钙稳态失衡,错误折叠蛋白质聚集等都可引起内质网应激。研究发现内 质网应激参与动脉粥样硬化的形成;同时还介导组织缺血再灌注时的细胞损伤和 细胞死亡;预先诱发内质网应激可以通过改善再灌注损伤时细胞钙超载保护心肌 细胞。 关键词:内质网应激;细胞凋亡;心血管疾病 前言:内质网(endoplasmicreticulum,ER)是真核细胞蛋白质合成折叠、脂质合成以及 细胞内钙储存的亚细胞器,也是调节细胞应激与凋亡的重要场所。很多病理生理刺激,如氧 化应激、缺血缺氧、钙稳态紊乱及病毒感染等,能够引起内质网腔内未折叠与错误折叠蛋白 蓄积以及Ca2+平衡紊乱,称为内质网应激(endoplasmicreticulumstress,ERS)。适度的ERS 是一种保护性细胞机制,可通过促进内质网处理未折叠及错误折叠蛋白等降低损伤;持久或 严重的ERS可引起细胞凋亡。根据诱发ERS的原因不同,ERS可分为3种类型:未折叠/误折 叠蛋白在内质网内蓄积激发的未折叠蛋白反应(unfoldedproteinresponse,UPR),过多表达 的蛋白质经ER膜转运(如病毒感染产生大量病毒糖蛋白)激发的内质网过负荷反应,以及 ER膜上固醇剥夺激活的固醇级联反应。UPR是介导ERS的最重要的信号机制。ERS与很多心 血管疾病如动脉粥样硬化、缺血性心脏病、心肌肥大及心力衰竭等有关。 一、内质网应激反应的途径 内质网是一个动态的膜性细胞器,具有多种功能,包括:蛋白质的合成、修饰、折叠和 亚基的组合;类固醇合成;脂质合成;糖原合成;钙的储存以及钙稳态的维持等。感染性因素,环境中的毒性物质,不利的代谢条件以及蛋白质糖基化障碍、二硫键生成减少,蛋白质 从内质网到高尔基体的转运障碍,错误折叠蛋白的表达,内质网腔内的钙损耗等都可以干扰 内质网的功能,破坏内质网稳态,引发内质网应激。细胞为了生存产生针对内质网应激的反应,称内质网应激反应,迄今为止,至少已发现了四种功能上相互独立的反应途径。 1.1蛋白质生物合成的早期暂时性减缓: 蛋白质的不正确折叠引发的内质网应激反应称未折叠蛋白反应(unfoldedprote in response,UPR),在哺乳动物细胞中由三种内质网感应蛋白介导,即IRE-1 (type-I ER transmembrane prote in kinase),ATF-6 (activating transcription factor 6)和PERK(panc reatic eIF-2 kinase,pancreatic ER kinase)。此三种感应蛋白在未发生应激时都以无活性的状 态与GPR78 (glucose-regu-lated prote in78)/ B iP (immunoglobulin-binding prote in)结合。 未折叠蛋白的积聚使GRP78 / B ip与三种感应蛋白分离,引起它们的激活。其中PERK 自身聚合、自我磷酸化激活,将e IF-2α(α subunit of eukaryotic translation initiation factor 2)的 Ser51磷酸化,使之不能结合GTP,阻止了起始蛋氨酸..RNA与核糖体的结合,无法进行翻译 起始。这种保护性机制很快阻止了新生蛋白向内质网腔的转运,抑制了内质网的负荷过重。 2 某些基因的活化: 编码参与内质网蛋白质的折叠、转运、分泌、降解的基因在内质网应激时诱导表达,其 中包括内质网应激反应的标志性蛋白GRP78 / B ip。GRP78 / B ip是热休克蛋白家族H SP70的 成员之一,主要参与内质网中蛋白质的重新折叠和装配。 研究发现:内质网应激时诱导基因表达的通路有3条。 IRE-1是应激激活的有内切酶活性的内质网跨膜蛋白激酶,作为核酸内切酶对XBP-1 (X-box binding prote in 1)mR-NA进行选择性剪接,去除26bp的内含子序列,导致蛋白翻译移码,产生XBP..1 蛋白,转录活化含有上游ERSE (ERstress response e lement or the unfolded prote in response e lement(UPRE ))元件的基因。[1] ATF-6在内质网应激发生后,从内质网膜转移到高尔基体,其反式激活结构域被特异蛋白 酶(specific proteases )S1P和S2P从膜上水解下来,转移到胞核中,与ERSE 相互作用,激 活许多内质网应激反应蛋白的转录,包括GRP78 / B ip,CHOP(C /EBP homologous prote in)/ GADD153 (grow tharrestand DNA-dam ag e-induc ib le gene 153),XBP-1,ERp72 (ERprote in72)和H erp (H cy-induced ER prote in)。S1P和S2P同时识别、裂解、激活SREBPs

内质网应激调节的凋亡信号通路研究进展

CJCM 中医临床研究 2017年第9卷第5期 -147- 内质网应激调节的凋亡信号通路研究进展 A research of signaling pathways about apoptosis by ERS 戴婷婷1*程卉2苏婧婧2(1.安徽中医药大学,安徽合肥,230038;2.安徽中医药大学省部共建新安医学重点实验室,安徽合肥,230038)中图分类号:R331.3+8文献标识码:A文章编号:1674-7860(2017)05-0147-02 【摘要】内质网(ER)是细胞内具有重要功能的细胞器,广泛存在于真核细胞中,是蛋白质折叠、组装的重要场所。当内质网损伤引起内质网应激(ERS)时,细胞就会启动未折叠蛋白反应(UPR),缓解内质网应激对细胞造成的损伤。但持续、剧烈的内质网应激就会诱导细胞发生凋亡,清除受损细胞。内质网应激介导一系列凋亡信号通路,本文主要介绍了这些由内质网应激所介导的凋亡信号通路。 【关键词】内质网应激;细胞凋亡;凋亡信号通路 【Abstract】ER is an important organelles in the cell. It is widely found in eukaryotic cells and is an important place for protein folding and assembling. When ERS is caused by damaging ER, the UPR is activated to relieve damage to the cells caused by ERS. But sustained, intensive ERS can induce cell apoptosis and remove damaged cells. The signaling pathways about apoptosis by ERS was introduced. 【Keywords】Endoplasmic reticulum stress; Apoptosis; Signaling pathway about apoptosis doi:10.3969/j.issn.1674-7860.2017.05.076 细胞凋亡是细胞产生的一种程序性死亡过程,是细胞受损后积极主动发生的一种应对机体损伤的生理过程。细胞内经典的凋亡途径主要有死亡受体活化和线粒体途径,内质网应激介导的凋亡途径是近年来发现的新的凋亡途径。 内质网(ER)是细胞内由精细的膜系统组成的细胞器,是细胞内一些大分子物质如蛋白质和脂质合成的场所,可以调节胞内蛋白质的折叠和转运,同时也是细胞内钙离子水平调节的重要场所。蛋白质经过特定的信号路径在内质网内进行折叠、聚集和转运,维持着细胞内环境物质水平的动态平衡。蛋白质的折叠、聚集和转运过程又需要一系列内质网内环境的平衡因子,如糖基转化酶、适当的钙离子水平和氧化环境,但当外界的一些刺激扰乱内质网中这些平衡因子时就会中断蛋白质合成信号,造成内质网内未折叠蛋白或错误折叠蛋白的聚集,扰乱内质网稳态,最终导致内质网应激(ERS)[1]。此时,细胞就会启动未折叠蛋白反应(UPR)以应对内质网应激对细胞造成的损害。UPR的启动有利于暂缓ER内未折叠蛋白反应以及清除错误折叠蛋白反应。 1UPR反应 UPR主要包括三条蛋白信号转导通路:PERK-eIF2A信号通路、IRE1-XBP1信号通路和ATF6信号通路。PERK (the dsRNA-activated protein kinase (PKR)-like ER kinase)、IRE-1 (Inositol- Requiring Enzyme 1)和ATF6 (Activating Transcrip-tion Factor 6)是内质网上的三种跨膜蛋白。在正常条件下,这三种跨膜蛋白与内质网分子伴侣GRP78 (Glucose-Regulated Protein of 78kDa)结合,处于无活性状态,而在应激条件下,这三种蛋白与GRP78分离而处于激活状态。激活的PERK磷酸化抑制翻译起始因子eIF2α(eukaryotic translation Initiation Factor 2α),抑制蛋白质的合成;激活的IRE-1剪切XBP-1(X box-binding Protein)的mRNA,编码XBP-1;ATF6与GRP78分离后被高尔基体中的蛋白酶S1P和S2P降解,降解后的IRE-1调节内质网应激特异基因的表达[2]。内质网应激时,UPR通过上述三条激活的信号通路减少内质网内未折叠蛋白或错误折叠蛋白的聚集,减轻累积的蛋白质对细胞造成的损害,恢复内质网的稳态,使应激细胞得以存活。但持续剧烈的ERS发生时就会使UPR的促生存模式转向促凋亡模式。 2ERS介导的凋亡信号通路 ERS初期,UPR启动的PERK、IRE1和ATF6三条信号通路激活细胞的促生存模式,使细胞在应激状态下具有恢复正常的能力。但长时间剧烈的ERS则会促使这三条信号通路诱发促凋亡信号通路。 2.1 CHOP凋亡信号通路 GADD153/CHOP (Growth Arrest and DNA-damage-inducible Gene 153 或 C/EBP-homologous Protein)属于C/EBP 转录因子家族的成员。CHOP是内质网应激发生凋亡的标志性基因,参与内质网应激调节的凋亡并且CHOP基因表达缺陷的细胞显著地减少内质网应激诱导的细胞死亡。内质网应激发挥的促生存功能和促凋亡功能主要受GRP78和CHOP两种因子调节,内质网应激发挥其促生存模式时,GRP78含量占主导地位,抑制CHOP的转录表[3]。当内质网应激持续激烈发生时,CHOP基因转录被UPR三条通路大量激活,其中,

心理应激与心身疾病教学文稿

心理应激与心身疾病

心理应激与心身疾病一、什么是心理应激?心理应激,又称为心理压力,精神应激,或者精神压力。人是社会动物,不能离群独处。在共同的社会生活中,可以存在各种精神刺激事件,从而影响人们的生活质量。作为突如其来的自然灾害,如战争、洪水、地震、空难、海难、车祸,恐怖袭击,尤其是从未见过的可怕新的传染性疾病,更容易引起人们强烈的急性精神创伤。心理应激是最早由著名生理学家塞里提出为了说明较强烈的刺激,易引起身体内稳态的变化。有了心理刺激,就会有心理反应。弱刺激引起弱反应,强刺激引起强反应,呈现正相关,当刺激强度增加到某种程度,反应强度即达到了最高值,超过这个界限的刺激度称为超强刺激,此时身体出现反应的强度不再增加,甚至反而下降。在人类日常生活中也有此种现象,例如小的损失引起轻度不愉快,大的损失引起极度悲痛,而极大的损失却可引起情感麻木状态,而不是更强烈的情绪反应。动物实验表明,当面临新异的、不规则出现的、不能控制不能预测的、非常强烈的、不符合个体需要的厌恶刺激时,容易出现较强烈的心理应激反应。科学家曾经做过一个实验,让受试者皮肤接触荨麻叶时,立即出现荨麻疹,接触枫叶时不出现荨麻疹。令被试掩盖双目,皮肤上真正接触的是枫叶,但告诉他接触的是荨麻叶,结果局部出现了荨麻疹。这个例子说明言语刺激的作用胜过了物理刺激的作用,同时也证实了语言刺激可以直接引起身体生理反应。我国古代中医学对“心身关系”的精辟论述《内经》提出五脏常因情志大过而伤,引发疾病;而五脏虚实病变也可累及情志,导致心神失调。“人有五脏化五气,以生喜怒悲忧恐”,“喜怒不节则伤脏”则明确提出情志过极会伤及内脏。《素问》具体说明各种情志变化对相应脏器的影响,“怒伤肝,喜伤心,思

内质网应激的信号通路及其与细胞凋亡相关疾病关系的研究进展

山东医药2019年第59卷第17期 内质网应激的信号通路及其与细胞凋亡 相关疾病关系的研究进展 叶勇1,赵海霞2,张长城2 (1三峡大学第一临床医学院,湖北宜昌443000;2三峡大学医学院) 摘要:细胞凋亡是指生理性或者病理性因素触发细胞内预存的死亡程序,内质网应激(ERS)在细胞凋亡过程中发挥着重要作用。氧化应激、Ca"稳态失衡及缺氧等可引起蛋白质在内质网内的折叠受到抑制,促使未折叠蛋白聚集,引起ERS,激活未折叠蛋白反应,若此反应持续存在,则可诱发细胞凋亡。ERS包括PERK、IRE1、ATF6三条经典的信号通路,由PERK介导的信号通路能快速减少蛋白质的合成,减轻内质网的负荷;IRE1和ATF6介导的信号通路能增加内质网分子伴侣蛋白的合成,增加内质网蛋白的折叠、转运和降解的能力,减轻内质网的负荷。 ERS参与了心肌缺血再灌注损伤、衰老、骨质疏松、肝硬化、肿瘤等疾病的发生发展男十对ERS进行干预有望成为治疗凋亡相关疾病的重要靶点。 关键词:内质网应激;细胞凋亡;凋亡相关疾病 doi:10.3969/j.issn.1002-266X.2019.17.028 中图分类号:R329.2文献标志码:A文章编号:1002-266X(2019)174098-04 细胞凋亡又称为程序性死亡,是指生理性或者病理性因素触发细胞内预存的死亡程序,导致细胞自主有序的死亡。与坏死不同,凋亡是主动过程,涉及一系列信号通路的激活与调控,与细胞增殖共同 维持体内细胞数量的动态平衡。研究表明,内质网 应激(ERS)、线粒体通路、死亡受体通路及氧化应激等均参与了细胞凋亡的发生发展,其中ERS是目前的研究热点[1>2]o内质网是由细胞内膜构成的封闭网状管道系统,是真核细胞内重要的细胞器,主要负 通信作者:张长城(E-mail:greatwall@https://www.sodocs.net/doc/4a10280019.html,) [21]Su V,Lau AF.Connexins:Mechanisms regulating protein levels and intercellular communication[J].FEBS Lett,2014,88(8): 1212-1220. [22]Liu P,Xia L,Zhang WL,et al.Identification of serum microR- NAs as diagnostic and prognostic biomarkers for acute pancreatitis [J].Pancreatology,2014,14(3):159-166. [23]Bi Y,Wang G,Liu X,et al.Low-after-high glucose down-regula- ted Cx43in H9c2cells by autophagy activation via cross-regulation by the PI3K/Akt/mTOR and MEK/ERK(1/2)signal pathways [J].Endocrine,2017,56(2):336-345. [24]李靖华,张涛,张胜逆,等.水通道蛋白-1及核因子k B在大鼠 重症急性胰腺炎肺损伤中的表达及意义[J].中华消化外科杂 志,2016,15(8):830-835. [25]刘多谋,黄鹤光,周武汉,等.白细胞介素-1|3对人脐静脉内皮 细胞结构及水通道蛋白-1的影响[].中华肝胆外科杂志, 2014,20(2):142-145.责分泌型蛋白和膜蛋白的合成、折叠、修饰及运输,同时也是细胞内Ca2+的主要储存库。在某些生理和病理条件下(如氧化应激、Ca2+稳态失衡及缺氧等)可引起蛋白质在内质网内的折叠受到抑制,促使未折叠蛋白聚集,激活未折叠蛋白反应,引起ERS o ERS包括未折叠蛋白反应、内质网相关性死亡和整合应激反应三个相互联系的动态过程,其中未折叠蛋白反应起重要作用[]。一定程度的ERS 有利于激活细胞的保护性适应机制,而ERS过强或持续时间过长,导致内质网的内稳态严重失衡,无法修复,则引起细胞凋亡[,]。因此,受损细胞往往会 [26]Zhang Z,Chen Z,Song Y,et al.Expression of aquaporin5in- creases proliferation and metastasis potential of lung cancer[J].J Pathol,2010,221(2):210-220. [27]Cao C,Sun Y,Healey S,et al.EGFR-mediated expression of aquaporin-3is involved in human skin fibroblast migration[J]. Biochem J,2006,400(2):225-234. [28]Crockett SD,Wani S,Gardner TB,et al.American gastroenter- ological association institute guideline on initial management of a-cute pancreatitis[J].Gastroenterology,2018,154(4):1096-1101. [29]陈康部?乌司他汀治疗急性重症胰腺炎疗效观察[]?中国误 诊学杂志,011,1(30):7353-7353. [30]Xie Z,Chan E,Long LM,et al.High dose intravenous immuno- globulin therapy of the Systemic Capillary Leak Syndrome( Clark-son disease)J] .Am J Med,2015,128(1):91-95. (收稿日期:2019-01-21) 98

内质网应激氧化应激及JNK通路与2型糖尿病

内质网应激氧化应激及JNK通路与2型糖尿病 侯志强李宏亮李光伟 卫生部中日友好医院内分泌代谢病中心 胰岛β细胞功能受损和外周组织胰岛素抵抗是2型糖尿病(T2DM)发病中的两个重要方面。目前研究发现T2DM时内质网应激(endoplasmic reticulum stress,ERS)和氧化应激(oxidative stress)被激活,而且二者之间可相互作用相互影响,并共同活化了c-Jun氨基端激酶(c-Jun N-terminal kinasse,JNK)通路参与了T2DM的发生发展。本文将内质网应激、氧化应激及JNK通路在导致胰岛β细胞功能受损及外周胰岛素抵抗中的作用及机制作一综述。 1.内质网应激与2型糖尿病 内质网(endoplasmic reticulum,ER)是真核细胞中蛋白质翻译合成和细胞内钙离子的储存场所,对细胞应激反应起调节作用。ERS 是指由于某种原因使细胞内质网生理功能发生紊乱的一种亚细胞器病理状态。目前研究发现ERS在T2DM的胰岛β细胞功能受损、调亡及外周胰岛素抵抗中占据着重要的地位[1,2]。 1.1 内质网应激与胰岛β细胞 胰岛β细胞具有高度发达的内质网,在正常生理情况下,机体可通过ERS的PERK(RNA激活蛋白激酶的内质网类似激酶)-真核细胞翻译起始子(eIF2)磷酸化途径影响胰岛素的合成,调节β细胞胰岛素分泌功能[3]。但是,过度的ERS可能导致胰岛β细胞功能受损,甚至细胞调亡。 Scheuner D等[4]研究发现eIF2α突变纯合子鼠其胚胎和新生鼠体内均存在着严重的β细胞缺乏及胰岛素含量显著降低,杂合子突变鼠在高脂喂养后尽管胰岛的大小与野生型鼠无明显差别,但单个胰岛中胰岛素含量较野生型降低,而且葡萄糖和精氨酸刺激后胰岛素的分泌也明显减弱,从而提示e IF2α在高脂诱导的胰岛功能损伤中起到了保护作用。I型跨膜蛋白激酶/核糖核酸内切酶(IRE1)是ERS中另一条重要的调节β细胞胰岛素合成的途径。Lipson KL等[5]发现急性血糖升高可活化β细胞IRE1信号通路,从而促进胰岛素的合成,而阻断IRE1通路后可明显减低胰岛素的合成,说明IRE1信号通路参与了β细胞胰岛素合成,并可能成为改善β细胞功能的治疗靶点。ERS通过CHOP,JNK和Caspases途径介导的β细胞调亡是导致糖尿病发病另一重要机制[6]。研究发现杂合子Akita小鼠,由于胰岛素2基因突变干扰了胰岛素A,B链间的二硫键形成,使胰岛素蛋白错误折叠,加重内质网应激,诱导CHOP表达增强导致β细胞调亡,促进了Akita鼠自发性糖尿病的发生,而在CHOP敲除小鼠中诱导Akita突变后,可保护β细胞数目并使得高血糖发生被延迟[7]。此外,Fornoni A等[8]在体外应用JNK的抑制性多肽(L-JNKI)处理鼠的胰岛及β细胞,发现L-JNKI可提高胰岛β细胞的存活率。 1.2 内质网应激与胰岛素抵抗 ERS不仅参与调节胰岛β细胞功能衰竭及介导β细胞调亡,而且与T2DM外周胰岛素抵抗密切相关[9,10]。Ozcan U等[1]发现肝细胞发生ERS时胰岛素受体底物1(IRS-1)的酪氨酸磷酸化明显降低,而JNK依赖性的丝氨酸磷酸化是升高的;而给于合成抑制剂SP600125或抑制性多肽-JIP阻断JNK通路后,可逆转ERS引发的上述变化,提示ERS可通过促进JNK依赖性的IRS-1丝氨酸磷酸化而影响胰岛素的受体信号通路,导致胰岛素抵抗。X-盒结合蛋白-1(XBP-1)是一种调节多种基因表达的转录因子,是调控ERS的关键因子。Ozcan U等[1]还发现高脂喂养的XBP-1基因突变杂合子(XBP-1+/-)小鼠同XBP-1+/+鼠比较,肝脏中的PERK磷酸化水平和JNK活性均显著增加,IRS-1酪氨酸磷酸化和Akt丝氨酸磷酸化均降低。进一步说明ERS可通过JNK通路活化导致细胞胰岛素受体信号通路抑制。 氧调节蛋白150(ORP150)是一种内质网分子伴侣,研究表明ORP150可保护细胞免受ERS所致损伤。Nakatani Y等[11]给予 C57BL/KsJ-dbdb肥胖糖尿病鼠表达ORP150的腺病毒(Ad-ORP)后发现肝脏中ORP150表达明显增加,而且与表达绿色荧光蛋白(GFP)的腺病毒(Ad-GFP)处理者相比肝脏中ERS水平明显降低。采用正常血糖高胰岛素钳夹试验发现肝脏中ORP150过度表达可降低胰岛素抵抗,并可改善C57BL/KsJ-db/db鼠的葡萄糖耐量。此外,Ad-ORP处理鼠较Ad-GFP者IRS-1的酪氨酸磷酸化及Akt 丝氨酸磷酸化明显增加。这些结果表明ORP150过度表达可降低肝脏中ERS水平,增强胰岛素信号,改善胰岛素抵抗和糖耐量。

急性应激障碍的基本概念、临床表现、与其处理

急性应激障碍的基本概念 1.什么是急性应激障碍? 在灾害事件发生时,幸存者会很快出现极度悲哀、痛哭流涕,进而出现呼吸急促,甚至短暂的意识丧失。幸存者初期为“茫然”阶段,以茫然、注意狭窄、意识清晰度下降、定向困难、不能理会外界的刺激等表现为特点。随后,幸存者可以出现变化多端、形式丰富的症状,包括对周围环境的茫然、激越、愤怒、恐惧性焦虑、抑郁、绝望,以及自主神经系统亢奋症状,如心动过速、震颤、出汗、面色潮红等。这种异常的心理反应,称为急性应激障碍。 急性应激障碍又称为急性应激反应(Acute Stress Reaction),是指以急剧、严重的精神打击作为直接原因,患者在受刺激后立即(1小时之内)发病,表现有强烈恐惧体验的精神运动性兴奋,行为有一定的盲目性,或者为精神运动性抑制,甚至木僵。如果应激源被消除,症状往往历时短暂,预后良好,缓解完全。 多数病人发病在时间上与精神刺激有关,症状与精神刺激的内容有关,其病程与预后也与及早消除精神因素有关。本症不包括癔症、神经症、心理因素所致生理障碍和精神病性障碍。可发生在各年龄期,多见于青壮年,男女发病率无明显差异。 急性应激障碍的流行病学研究很少。仅有的个别研究指出,严重交通事故后的发生率大约为13%-14%;暴力伤害后的发生率大约为19%。集体性大屠杀后的幸存者中发生率为33%。严重的灾害事件(如地震、海啸、空难、大型火灾等)的幸存者中发生率可高达50%以上。 2.病因和发病机制 决定急性应激障碍的发生发展、病程和临床表现的因素有:生活事件和生活处境,如剧烈的超强精神创伤或生活事件,或持续困难处境,均可成为直接病因;社会文化背景;人格特点、教育程度、智力水平,以及生活态度和信念等。强烈或持久的精神刺激因素是导致本病发生的直接原因。这些因素既可以是火灾、地震、交通事故、亲人死亡等,也可以是持久而沉重的情感创伤,如家庭不睦、邻里纠纷、工作严重挫折、长期处于外界隔离等。当精神刺激因素达到一定的强度,超过个人的耐受阈值,即可造成强烈的情感冲击,使个人失去自控能力,产生一系列精神症状。 精神因素是否致病,除精神刺激本身的特征和程度外,还与个人当时的健康状态及造成内心冲突的严重程度有关。前者如慢性躯体疾病、月经期、产褥期、过度疲劳等,后者又与病人的心理社会背景,如所受教育、爱好、愿望、价值观念等有关。有家族精神病遗传史及个人易感素质者,在遭受强烈刺激时,较易发生本病。

相关主题