搜档网
当前位置:搜档网 › 紫外光谱-资料

紫外光谱-资料

紫外光谱-资料
紫外光谱-资料

紫外光谱-资料

问题讨论

1问:苯酚的紫外吸收光谱中210nm、270nm的吸收峰是由哪类价电子跃迁产生的?

答:苯酚的紫外吸收光谱中210nm是由跃迁n→σ*产生的;270nm是由π→π*跃迁产生的。

苯酚在紫外光区的最大吸收波长λmax=270nm。对苯酚溶液进行扫描时,在270nm处有较强的吸收峰。

最大吸收波长的选择。在标准系列溶液中任取一种,以水为参比,分别在波长200~300nm之间以10为间隔测定其吸收波长,在吸光度最大值附近以间隔2为单位测定,直至找到最大吸收波长。

多光谱图像

多光谱图像 图像理解是在数字图像处理、计算机技术和人工智能不断发展的基础上产生的一种模拟人的图像识别机理的理论,它与计算机视觉理论有许多共同的部分,或者说有许多交叉的部分,它与人工智能、专家系统也有着一些共同的地方。 图像理解主要包括三个层次,其低层为一般图像处理;中层为图像中特征的符号化组织过程;高层为抽象的符号推理。因此,计算机视觉主要与其低层,人工智能主要与其高层产生重叠。目前,就图像理解这一理论的研究探讨有了专门的期刊;有关大学设置了专门的课程;有关专家学者写了专著。比如国防科技大学的王润生教授就系统地介绍和总结了图像理解的基本理论、方法和国内外研究现状等〔1〕。这一方面的基础理论和方法引起了有关学者和科研人员的注意和浓厚兴趣,他们结合自己的工作领域,进行了更深入的研究。应当说,有关的理论和方法已经被极大地丰富了。比如,有关图像纹理分析这方面的论文、论著数不胜数,其中,有关新理论新方法(如分形分维方法)的应用,更为这一理论注入了新内容;再如,我国数字摄影测量界已经将“双目”图像的分析理论和方法推向了具有世界先进水平的境界。 尽管如此,图像理解的理论与方法仍有严重不足之处。这并不是指这一理论尚未成熟,而是指它的理论与方法还存在着片面性,还没有成为一个完整的体系。因为图像理解的对象是各类图像,并没有限定是某一类图像,那么,现在的问题就是遥感图像理解(主要是多光谱图像理解)的理论十分贫乏。以人类生存环境及地球资源为主要研究目标获取的各种遥感图像已经得到越来越广泛的应用,丰富的光谱信息及其在时间空间域的分辨率的提高,配合着地理信息系统技术,全球定位系统技术和因特网技术的发展和普及,为图像信息的广泛应用创造了空前繁荣的局面,成为信息时代的显著特征,在信息高速公路和数字地球战略中占据着极其重要的地位。然而,现有的图像理解理论和方法在如此丰富的信息面前却显得苍白无力。应当说,面对丰富的遥感信息,人们一直在研究如何处理和应用,有关这方面的理论和方法的研究成果也是不少的,但似乎并没有从图像理解的角度加以总结、提练,有的方面甚至缺乏系统的研究。如对于多光谱图像边缘提取、区域分割等应以什么理论为基础,应采取什么方法;在纹理分析方面,多光谱图像的纹理具有怎样的意义,或者多光谱图像的纹理概念是什么,需要采取什么方法进行分析;时序多光谱图像又应当采取什么分析方法;针对多光谱图像的符号化工作应当如何进行,在此基础上如何利用知识进行推断,如何在模拟人的思维模式方面更深入地开展研究,等等,这些都是应当考虑的问题。这些问题在图像理解的理论与方法之中尚没有或很少有现成的答案。应该承认,对上述一些问题已有一些研究,至少我们自己就已经在一些方面作了初步的研究,但这些研究还不够,研究的成果还未加以总结。 在现实工作中,多光谱图像的分析具有非常重要的意义。丰富的光谱信息为地物的边界和地物目标的识别创造了良好的条件,比起单色图像,多光谱图像具有极大的优越性。随着多光谱图像空间分辨率的提高和地理信息系统技术的发展,人们的信心更加增强,对多光谱图像处理的要求也越来越高。比如,在地形图更新生产中,如果以多光谱图像为背景,就可以半自动地确定地物分布的边缘或跟踪线状地物的“骨架线”,从而大大减轻人工劳动强度,提高效率;又如,利用多光谱图像和各种背景数据如地貌、土壤信息,即将遥感与地理信息系统结合,引入人工智能方法,就象已有的图像理解系统那样,更好、更准确地提取地物目标信息,为土地利用分析、资源环境调查,提供更高质量的成果,已经是许

光谱仪的性能指标

光谱学测量的基础是测量光辐射与波长的对应关系。一般来说,光谱学测量的直接结果是由很多个离散的点构成曲线,每个点的横坐标(X轴)是波长,纵坐标(Y轴)是在这个波长处的强度。因此,一个光谱仪的性能,可以粗略地分为下面几个大类: 1. 波长范围(在X轴上的可以测量的范围); 2. 波长分辨率(在X轴上可以分辨到什么程度的信号变化); 3. 噪声等效功率和动态范围(在Y轴上可以测量的范围); 4. 灵敏度与信噪比(在Y轴上可以分辨到什么程度的信号变化); 5. 杂散光与稳定性(信号的测量是否可靠?是否可重现); 6. 采样速度和时序精度(一秒钟可以采集多少个完整的光谱?采集光谱的时刻是否精确?)1. 波长范围 波长范围是光谱仪所能测量的波长区间。最常见的光纤光谱仪的波长范围是400nm-1100nm,也就是可以探测可见光和一部分近红外的光。使用新型探测器可以使这个范围拓展至 200nm-2500nm,即覆盖紫外、可见和近红外波段。光栅的类型以及探测器的类型会影响波长范围。一般来说,宽的波长范围意味着低的波长分辨率,所以用户需要在波长范围和波长分辨率两个参数间做权衡。如果同时需要宽的波长范围和高的波长分辨率,则需要组合使用多个光谱仪通道(多通道光谱仪)。 2. 波长分辨率 顾名思义,波长分辨率描述了光谱仪能够分辨波长的能力,最常用的光谱仪的波长分辨率大约为1nm,即可以区分间隔1nm的两条谱线。Avantes公司可以提供的最高的波长分辨率为 0.025nm。波长分辨率与波长的取样间隔(数据的x坐标的间隔)是两个不同概念。一般来说,高的波长分辨率意味着窄额度波长范围,所以用户需要在波长范围和波长分辨率两个参数间做权衡。如果同时需要宽的波长范围和高的波长分辨率,则需要组合使用多个光谱仪通道(多通道光谱仪)。 3. 噪声等效功率和动态范围 当信号的值与噪声的值相当时,从噪声中分辨信号就会非常困难。一般用与噪声相当的信号的值(光谱辐照度或光谱辐亮度)来表征能一个光谱仪所能够测量的最弱的光强(Y轴的最小值)。噪声等效功率越小,光谱仪就可以测量更弱的信号。狭缝的宽度、光栅的类型、探测器的类型等等参数都会影响噪声等效功率。因为这些参数也会影响波长范围和波长分辨率,用户需要在这些指标间做出取舍。对探测器制冷(Avantes公司的制冷型光谱仪)有助于减小探测器的热噪音,优化探测器检测弱光的能力。 动态范围描述一个光谱仪所能够测量到的最强的信号与最弱的信号的比值。最强的信号为光谱仪在信号不饱和情况下,所能测量的最大信号值,最弱的信号用上述的噪声等效功率衡量。动态范围主要受制于探测器的类型。传统上,动态范围是影响测量方便性的一个很关键的指标,但目前大部分光纤光谱仪都可以通过调整积分时间的方式等效地扩大动态范围,因此,动态范围一般不会对用户的测量带来困扰。 4. 灵敏度与信噪比 灵敏度描述了光谱仪把光信号变成电子学信号的能力,高的灵敏度有助于减小电路本身的噪声对结果影响。狭缝的宽度、光栅的类型、探测器的类型以及电路的参数都会影响灵敏度。衍射效率高的光栅和量子效率高的探测器都有利于提高光谱仪的灵敏度。人为地调高前置放大电路的放大倍数也会提高名义上的灵敏度,但并不一定有助于实际的测量。宽的狭缝会改善灵敏度,但也会降低分辨率,因此,需要用户综合考虑和权衡。

实验6.3钼阳极X射线特征谱线的精细结构

实验6.3 钼阳极X 射线特征谱线的精细结构 一、实验目的 1. 通过Mo 阳极X 射线在单晶NaCl 上的第5级布拉格反射谱研究其特征谱线的精细 结构; 2. 测定钼元素特征谱K α、K β 及K γ谱线; 3. 解析K α谱线的双线结构,测定其双线结构的波长间隔; 二、实验原理 我们已经知道,Mo 阳极X 射线特征谱K α和K β线都是双线结构,可以通过其在NaCl 单晶上的高阶布拉格衍射谱观测出来,然而它们的物理本质是不一样的。 K β是由纯K β线——M 壳层到K 壳层的原子跃迁和K γ线——N 壳层到K 壳层的原子跃迁组成的,两条谱线的波长差为1.2 pm (见表1),所以只能在高阶衍射谱上分辨开来。 表1 钼特征谱K 、K 及K 线跃迁能量、波长和相对强度 K α的精细结构源于L 壳层的精细结构,即电子的自旋轨道特性。在X 射线谱上,L 壳层实际上是由三个子层L I 、L II 和L III 组成,这些子层向K 壳层的跃迁要遵从选择定则: ?l =±1,?j =0,±1 (1) ?l 为跃迁中轨道角动量l 的变化量,?j 为总角动量j 的变化量。这样一来,只有两种从L 壳层到K 壳层的跃迁:K α1 和K α2 (见图1)。表2中给出了钼元素这两条谱线的参考值,可以看出K α双线的波长间隔?λ=0.43 pm 。 表2 钼元素K 的波长及相对强度 本实验中,通过布拉格反射在NaCl 晶体上的高阶衍射解析出钼X 光谱的精细结构。 按照布拉格反射定理,入射光特征谱线的波长和掠射角存在下列关系时,接受到的反射光强度最大: n ?λ=2?d ?sin θ (2) n : 衍射阶数,d =282.01 pm :NaCl 晶面间距。 可以看出,双线的波长间距?λ 决定布拉格衍射时双线之间的角间距?θ 图1 特征谱K α的精细结构

紫外可见吸收光谱习题集及答案(20200925103547)

专业资料 值得拥有 一、选择题(共85题) 1. 2 分(1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 () (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分(1019) 用比色法测定邻菲罗啉-亚铁配合物时 ,配合物的吸收曲线如图 1所示,今有a 、b 、 c 、 d 、 e 滤光片可供选用,它们的透光曲线如图 2所示,你认为应选的滤光片为 () 3. 2 分(1020) 欲测某有色物的吸收光谱,下列方法中可以采用的是 () (1) 比色法 (2) 示差分光光度法 (3)光度滴定法 (4) 分光光度法 4. 2 分(1021) 按一般光度法用空白溶液作参比溶液,测得某试液的透射比为 10% ,如果更改参 比溶液,用一般分光光度法测得透射比为 20%的标准溶液作参比溶液,则试液的透 光率应等于 () (1) 8% (2) 40% (3) 50% ⑷ 80% 5. 1 分(1027) 邻二氮菲亚铁配合物,其最大吸收为 510 nm ,如用光电比色计测定应选用哪一种 滤光片? () (1)红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分(1074) 下列化合物中,同时有 n →d , τ→d , C →

各种光谱仪的区别及应用

各种光谱仪的区别及应用 ICP光谱仪, 火花直读光谱仪, 光电直读光谱仪, 原子发射光谱仪, 原子吸收光谱仪, 手持式光谱仪, 便携式光谱仪, 能量色散光谱仪, 真空直读光谱仪? 随着ICP-AES的流行使很多实验室面临着再增购一台ICP-AE S,还是停留在原来使用AAS上的抉择。现在一个新技术ICP-MS 又出现了,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GF-AAS)更低的检出限的优势。因此,如何根据分析任务来判断其适用性呢? ICP-MS是一个以质谱仪作为检测器的等离子体,ICP-AES和I CP-MS的进样部分及等离子体是极其相似的。ICP-AES测量的是光学光谱(120nm~800nm),ICP-MS测量的是离子质谱,提供在3~250amu范围内每一个原子质量单位(amu)的信息。还可测量同位素测定。尤其是其检出限给人极深刻的印象,其溶液的检出限大部份

为ppt级,石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1~10ppb,一些元素也可得到亚ppb级的检出限。但由于ICP-MS的耐盐量较差,ICP-MS的检出限实际上会变差多达50倍,一些轻元素(如S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,其实际检出限也很差。下面列出这几种方法的检出限的比较: 这几种分析技术的分析性能可以从下面几个方面进行比较: ★★容易使用程度★★ 在日常工作中,从自动化来讲,ICP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。ICP-MS 的操作直到现在仍较为复杂,尽管近年来在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。GF-AAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。 ★★分析试液中的总固体溶解量(TDS)★★ 在常规工作中,ICP-AES可分析10%TDS的溶液,甚至可以高至30%的盐溶液。在短时期内ICP-MS可分析0.5%的溶液,但在大多情况下采用不大于0.2%TDS的溶液为佳。当原始样品是固体时,与ICP-AES,GP-AAS相比,ICP-MS需要更高的稀释倍数,折算到原始固体样品中的检出限就显示不出很大的优势了。 ★★线性动态范围(LDR)★★ ICP-MS具有超过105的LDR,各种方法可使其LDR开展至1 08。但不管如何,对ICP-MS来说:高基体浓度会使分析出现问题,

光谱信息数据库的建立研究

光谱信息数据库的建立研究 【摘要】光谱库是存储各类地物的数据库。地面或大气光谱库的建立对于成像光谱仪的应用来说是十分重要的,也是十分费时和费力的。一旦建立了光谱库,我们就能够从图像立方体中提取出光谱曲线并根据其光谱特性与光谱库中检索到的类似的光谱做匹配处理,找到最接近的光谱,达到像元分类的目的;同时也为地物光谱重建及重建光谱的比较分析提供了依据。本文就光谱库的建立引入数据库技术进行了分析和研究。 【关键字】数据库技术;红外光谱仪;红外光谱仪数据库的设计。 1.数据库技术概述 数据库技术是现代计算机技术中的一个重要的组成部分、是人们处理数据的有效的工具。 计算机的应用技术也已从用户模式逐步向客户机/ 服务器网络模式发展,企事业单位对于一些数据库资源共享、数据的集中处理与分布式处理要求越来越高,而Microsoft 的SQL Server 作为一个优秀的大型关系型数据库管理系统(DBMS) ,已成为许多数据库应用程序首选的数据存储和检索的后台支持,同时VisualC+ + 6. 0 作为前台开发工具,具有对数据库应用支持全面,访问速度快,占用资源少等优,并且广泛应用于基于数据库应用程序中。 2.红外光谱仪和红外光谱 红外光谱与质谱、核磁共振光谱不同,它是连续的曲线谱,数字化处理困难,因此,尽管在六十年代中期就已出现第一个早期的计算机检索系统,然而,知道最近几十年,出现了使用计算机的傅立叶(Fouricr)变换红外光谱仪后,才有了比较好的红外全光谱谱图信息处理系统。 红外光谱仪可分为色散型红外光谱仪及傅里叶变换红外光谱仪两大类型:①棱镜和光栅光谱仪。属于色散型,它的单色器为棱镜或光栅,属单通道测量。②傅里叶变换红外光谱仪。它是非色散型的,其核心部分是一台双光束干涉仪。当仪器中的动镜移动时,经过干涉仪的两束相干光间的光程差就改变,探测器所测得的光强也随之变化,从而得到干涉图。经过傅里叶变换的数学算后,就可得到入射光的光谱。这种仪器的优点:①多通道测量,使信噪比提高。②光通量高,提高了仪器的灵敏度。③波数值的精确度可达0.01cm-1。④增加动镜移动距离,可使分辨本领提高。⑤工作波段可从可见区延伸到毫米区,可以实现远红外光谱的测定。当前色散型红外光谱仪均采用双光束自动记录仪器。按波数范围、精度和某些功能的不同,一般可分为简易型、中等型、和大型三种。简易型:波数范围一般为4000~650 cm-1,分辨串与读数精度较低,功能较少,但易于维护,操作简便。中型:波数范围为4000~400 cm.1,分辨率及精度较高,功能也较多(如具备坐标扩大及改善性能等功能)。大型:波数范围为4000~200 cm.1,分辨率高,读数精度较好,功能比较齐全,大多均为数字化读数,可与计算机连接

原子物理学碱金属原子光谱的精细结构

§ 碱金属原子光谱的精细结构 一.碱金属光谱的精细结构 碱金属光谱的每一条光谱是由二条或三条线组成,如图所示。 二、定性解释 为了解释碱金属光谱的精细结构,可以做如下假设: 1.P 、D 、F 能级均为双重结构,只S 能级是单层的。 2.若l 一定,双重能级的间距随主量子数n 的增加而减少。 3.若n 一定,双重能级的间距随角量子数l 的增加而减少。 4.能级之间的跃迁遵守一定的选择定则。 根据这种假设,就可以解释碱金属光谱的精细结构。 § 电子自旋同轨道运动的相互作用 一、电子自旋角动量和自旋磁矩 1925年,荷兰的乌伦贝克和古德史密特提出了电子自旋的假设: 每个电子都具有自旋的特性,由于自旋而具有自旋角动量S 和自旋磁矩s ,它 们是电子本身所固有的,又称固有矩和固有磁矩。 自旋角动量: 2*2)1(h s h s s p s ,2 1 s 外场方向投影: 2h m S s z , 2 1 s m 共2个, 自旋磁矩:s s p m e 外场方向投影: 共两个?偶数,与实验结果相符。 1928年,Dirac 从量子力学的基本 方程出发,很自然地导出了电子自旋的 性质,为这个假设提供了理论依据。 二、电子的总角动量 电子的运动=轨道运动+自旋运动 轨道角动量: 2*2)1(h l h l l p l 12,1,0 n l 自旋角动量: 2*2)1(h s h s s p s 21 s 总角动量: s l j p p p 2*2)1(h j h j j p j s l j ,1 s l ,……s l

当s l 时,共12 s 个值 当s l 时,共12 l 个值 由于 2 1 s 当0 l 时,2 1 s j ,一个值。 当 3,2,1 l 时,2 1 l j ,两个值。 例如:当1 l 时,23211 j 21211 j l p 和s p 不是平行或反平行,而是有一定的夹角 当s l j 时 0)1() 1(cos s s s l l l ,o 90 ,称l p 和s p “平行” 当s l j 时 0)1()1(1 cos s s s l l l ,o 90 ,称l p 和s p “反平行” 原子的角动量=电子轨道运动的角动量+电子自旋运动角动量+核角动量。 原子的磁矩=电子轨道运动的磁矩+电子自旋运动磁矩+核磁矩。 三、电子轨道运动的磁矩 电子轨道运动的闭合电流为:T e i “-”表示电流方向与电子运动方向相反 面积:dt r rd r dA 22 121 一个周期扫过的面积: 2)1(h l l p l 是量子化的 B l l l m he l l p m e )1(4)1(2 量子化的。 223102740.94m A m he B ? 玻尔磁子 2h m L l z 空间取向量子化 四、自旋—轨道相互作用能 电子由于自旋运动而具有自旋磁矩: 具有磁矩的物体在外磁场中具有磁能: 电子由于轨道运动而具有磁场: 考虑相对论效应后,再乘以因子2 1做修正 r 是一个变量,用平均值代替:

光谱仪基础知识

第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled & Holographic Handbook). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。 定义单位 α - (alpha) 入射角度 β - (beta) 衍射角度 k - 衍射阶数整数

定义单位 n - 刻线密度刻线数每毫米 D V - 分离角度 μ - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ 0 = λ/μ 1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定, (1-2) 对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为: (1-3) 假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

紫外可见吸收光谱习题集和答案

五、紫外可见分子吸收光谱法(277题) 一、选择题 ( 共85题 ) 1. 2 分 (1010) 在紫外-可见光度分析中极性溶剂会使被测物吸收峰 ( ) (1) 消失 (2) 精细结构更明显 (3) 位移 (4) 分裂 2. 2 分 (1019) 用比色法测定邻菲罗啉-亚铁配合物时,配合物的吸收曲线如图1所示,今有a、b、 c、d、e滤光片可供选用,它们的透光曲线如图2所示,你认为应选的滤光片为 ( ) 3. 2 分 (1020) 欲测某有色物的吸收光谱.下列方法中可以采用的是 ( ) (1) 比色法 (2) 示差分光光度法 (3) 光度滴定法 (4) 分光光度法 4. 2 分 (1021) 按一般光度法用空白溶液作参比溶液.测得某试液的透射比为 10%.如果更改参 比溶液.用一般分光光度法测得透射比为 20% 的标准溶液作参比溶液.则试液的透 光率应等于 ( ) (1) 8% (2) 40% (3) 50% (4) 80% 5. 1 分 (1027) 邻二氮菲亚铁配合物.其最大吸收为 510 nm.如用光电比色计测定应选用哪一种 滤光片? ( ) (1) 红色 (2) 黄色 (3) 绿色 (4) 蓝色 6. 2 分 (1074) 下列化合物中.同时有 n→*.→*.→*跃迁的化合物是( ) (1) 一氯甲烷 (2) 丙酮 (3) 1,3-丁二烯 (4) 甲醇 7. 2 分 (1081) 双波长分光光度计的输出信号是 ( ) (1) 试样吸收与参比吸收之差 (2) 试样在1和2处吸收之差 (3) 试样在1和2处吸收之和 (4) 试样在1的吸收与参比在2的吸收之差8. 2 分 (1082) 在吸收光谱曲线中.吸光度的最大值是偶数阶导数光谱曲线的 ( ) (1) 极大值 (2) 极小值 (3) 零 (4) 极大或极小值 9. 2 分 (1101) 双光束分光光度计与单光束分光光度计相比.其突出优点是 ( ) (1) 可以扩大波长的应用范围 (2) 可以采用快速响应的检测系统 (3) 可以抵消吸收池所带来的误差 (4) 可以抵消因光源的变化而产生的误差

光谱仪技术交流资料(GS1000)解析

CCL ENTERPRISE INC. 北京超谱公司 仪器名称 : 真空直读光谱仪 仪器型号 : 德国OBLF 公司GS1000型 技术交流资料 用户名称:新疆米泉嘉盛铝业有限公司报价日期: 2005-10-26 地 址:新疆米泉市 北京超谱斯派克仪器开发有限公司 目录 一、德国二、超谱公司简介三、中国市场概况四、仪器技术指标五、仪器技术特点六、仪器报价配臵七、售后服务条款八、安装要求及验收标准九、用户名录十、用户应用报告 OBLF 公司简介 一、德国OBLF 公司简介 德国OBLF 公司位于德国中部的多特蒙德,成立于1975年,是德国最早生产光电直读光谱仪的高科技公司,公司采取了走专业化生产的道路,公司成立至今一直潜心从事光电直读光谱仪的研究和生产,在固体样品快速分析领域独树一臶,向用户提供多种型号的、满足各种用户使用要求的直读光谱仪。 德国OBLF 公司宗旨为向用户提供“精品仪器”。

德国OBLF 公司可向用户提供: 金属材料分析用的火花直读光谱仪及制样设备。包括:GS1000直读光谱仪QSN750直读光谱仪 QSG750直读光谱仪 Automatic Lines 全自动直读光谱仪 ASM 1800 全自动磨样机 GS1000 二、超谱公司简介 超谱公司是在中国注册成立的,专业从事光谱分析仪器销售、技术支持、售后服务的有限公司,自1994年公司成立以来已经向中国用户提供了大约500多台各种光谱分析仪器,用户遍及海陆空三军、冶金、铸造、机械、电子、化工、电力、石油、铁路等各个行业。目前在中国的北京和上海设立了两个分公司,以利于更好的为用户服务。

超谱公司作为提供光谱分析仪器的专业公司,拥有多名从事光谱仪生产及技术服务工作经验的专业工程师,超谱公司技术服务工程师全部经过国外生产厂商专业技术培训,作为产品的售后服务以及技术支持,在向您提供先进仪器的同时, 还将向您提供优质的服务。 为了更好的向中国用户提供国际上最先进的仪器,更好的提供性价比极佳的光谱分析仪,为此,超谱公司在2001年3月与德国OBLF 公司签约,设立中国技术服务中心,引进推广各种型号实验室及炉前用真空直读光谱仪及相关的制样设备。 三、中国市场概况 近年来,德国OBLF 公司十分重视中国市场的发展和潜力,其产品于九十年代初随当时的合资企业逐步进入中国市场,一汽大众、上海大众、无锡小天鹅、大连冰山集团等单位先后采用了OBLF 公司的光谱仪,2001年在超谱公司设立了中国技术服务中心,由超谱公司全权代理德国OBLF 公司仪器在中国的一切事物,在北京、上海、济南、广州、青岛、沈阳等地设有咨询服务机构,形成完善的销售与售后服务网络,方便中国用户在采购仪器及备品备件时可以直接用人民币购买,现已与全国广大OBLF 用户建立了深厚的友谊和良好的合作关系。 在短短的二年时间内,在中国已经有超过200家企业选用了OBLF 公司的直读光谱仪,得到了用户的一致好评,同时为中国用户提供了一个更好的选择机会。 四、仪器技术指标 分析基体数 : 最多二个分析基体。 测定元素 : 可以同时快速测定固体样品中的C 、Si 、Mn 、P 、S 、Cr 、Ni 、Mo 、

光谱灯谱线轮廓和超精细结构的测定

实验四 扫描Fabry-Perot标准具及其在塞曼效应等高分辨率光谱检测中的应用 一、实验目的 了解F-P标准具的原理;掌握其调整、使用方法;利用气压扫描法测定标准具的主要技术指标;应用该仪器测定塞曼效应等。 二、实验仪器、材料 气压扫描Fabry-Perot标准具、单频He-Ne激光器及其电源、硅光电池探测器、函数记录仪或PC机、扩束平行光管、电磁铁及其电源、特斯拉计、笔形汞灯及其电源、聚光透镜。 三、原理 1.F-P干涉仪的简要描述 F-P干涉仪的核心是两个平面性和平行性极好的高反射光学镜面,它可以是一块玻璃或石英平行平板的两个面上镀制的镜面,也可以是两块相对平行放置的镜片,即为空气间隔,如图1所示。前一种形式结构简单,使用时无需调整,比较方便,体积也小,但由于材料的均匀性和两面加工平行度往往达不到很高水平,故性能不如后者优良。用固定间隔来定位的F-P干涉仪又常称为F-P标准具。间隔圈常用热膨胀系数小的石英材料(或零膨胀微晶玻璃)。它在三个点上与平镜接触,用三个螺丝调节接触点的压力,可以在小范围内改变二镜面的平行度,使之达到满意的程度。使用时常在干涉仪的前方加聚光透镜,后方则用成象透镜把干涉图成象于焦平面上,如图2所示。 图 1 F-P干涉仪的多光束干涉

实验四 扫描Fabry-Perot 标准具及其应用 图 2 法布里-珀罗标准具的使用 F -P 干涉仪采用多光束干涉原理,关于多光束干涉的详细理论可参阅有关专著,我们在此就直接利用有关的一些关系式。 设每一镜面的反射率都为R ,透射率为Τ,吸收散射等引起的损耗率为τ,则有 1T R =τ++ ----------------------------------------------------- (1) 图1中相邻两光束的光程差为 α-=β=?22sin n h 2cos nh 2 ------------------------------------ (2) 其中h 为镜面间隔距离,n 为镜间介质折射率,α为入射光束投射角,β为光束在镜面间的投射角。干涉条纹定域在无穷远,在反射中光强分布由下式决定: ()()[]()()()[]()2sin R 14R 112 sin T R 14T R 11R I I 22220R Φ τ-+τ--Φ+τ-++τ--= ------------------- (3) 在透射光中光强分布为 ()()[]()2 sin R 14R 11T 1I I 222 0T Φτ-+τ--τ-= ------------------------------ (4) 其中0I 为入射角为α的入射光强;而Φ为相邻光束的相位差,来自由(2)式表示的光程差?和两次反射时的相位差变1δ、2δ: 212δ+δ+λ ?π=Φ ------------------------------------------------ (5) 其中1δ、2δ对金属膜可认为常数,对介质膜来说它们是零,下面我们不予考虑。所以对一定波长的单色光,Φ因入射角α而变。可见干涉极大的角分布是以镜面法线为轴对称分布的。在图1的成象透镜焦面上得到一套同心环。干涉图的圆心位置在通过透镜光心的F -P 镜面法线上。 当镜面的吸收率可 忽略时,(3)、(4)式简化为:

光谱图像与高光谱图像的区别介绍

光谱图像与高光谱图像的区别介绍 光谱分辨率在10l数量级范围内的光谱图像称为高光谱图像(Hyperspectral Image)。遥感技术经过20世纪后半叶的发展,无论在理论上、技术上和应用上均发生了重大的变化。其中,高光谱图像技术的出现和快速发展无疑是这种变化中十分突出的一个方面。通过搭载在不同空间平台上的高光谱传感器,即成像光谱仪,在电磁波谱的紫外、可见光、近红外和中红外区域,以数十至数百个连续且细分的光谱波段对目标区域同时成像。在获得地表图像信息的同时,也获得其光谱信息,第一次真正做到了光谱与图像的结合。与多光谱遥感影像相比,高光谱影像不仅在信息丰富程度方面有了极大的提高,在处理技术上,对该类光谱数据进行更为合理、有效的分析处理提供了可能。因而,高光谱图像技术所具有的影响及发展潜力,是以往技术的各个发展阶段所不可比拟的,不仅引起了遥感界的关注,同时也引起了其它领域(如医学、农学等)的极大兴趣。 高光谱图像:是指一系列包含一些列可见/近红外光谱,一般有400-1000 nm,已经包含了可见光(400-780 nm)和近红外(780-1000nm)。 多光谱图像简介多光谱图像是指包含很多带的图像,有时只有3个带(彩色图像就是一个例子)但有时要多得多,甚至上百个。每个带是一幅灰度图像,它表示根据用来产生该带的传感器的敏感度得到的场景亮度。在这样一幅图像中,每个像素都与一个由像素在不同带的数值串,即一个矢量相关。这个数串就被称为像素的光谱标记。 1.用不相关或独立的其他带替换当前带;这个问题特别与遥感应用有关,但在一般的图像处理中,如果要从多光谱图像生成一幅单带灰度图像也与此有关。 2.使用一个像素的光谱标记来识别该像素所表示的目标种类。这是一个模式识别问题,它取决于下列图像处理问题的解:消除一个像素的光谱标记对图像采集所用光谱的依赖性。这是一个光谱恒常性问题。 3.处理多光谱图像的特定子集,它包括在电磁谱里仅光学部分的3个带,它需要以或者替换或者模仿人类感知颜色的形式来进行处理。 4.在特定应用中使用多光谱图像,并对它们进行常规的操作。这里的一个问题是,现在

光谱测量仪中的光谱信息 高分二号 水文遥感 地质遥感

光谱测量仪中的光谱信息 由野外光谱仪测得的原始数据是16位的,对应于VNIR探测器的每一探测元素在 SWIR 范围内的采样间隔是2nm。光谱采集数据格式有:反射、透射、辐射及辐射照度,这些数据都是利用软件计算原始数据得到的。原始数据是被测光场及仪器本身特征的综合函数。例如前视透射、光纤透射、光电效应、探测器灵敏度等都是波长的变化参数,这就决定了原始谱线的形状与被测光电场的辐射谱线有差异,并且这些物理参数并不随时间和粗糙度的变化而变化,所以在原始谱线与被测光电场的密度间存在线性关系。 反射是人射光被接触表面反射的部分,透射是人射光透过物体的那部分,反射和透射是物质的固有属性,并且独立于照射在样品上的光源。因为仪器只能通过空间中的点来测量光场的强度,反射和发射通过未知材料和已知发射及透射性质的标准物质计算得出,这种标准反射物质是“反射板”或“反射标准”,在整个光谱段内具有约100%发射率的材料可以称之为“白色反射板”或“白色反射标准”,这种光谱比率在某-一时间可以运用野外光谱测试模型来计算。在分割时可以除去发射源的性质影响,对未知物质及白色参考体的照射儿何模型是一样的,光谱测量时光源要稳定,任何的不稳定都将导致不稳定数据的产生。 绝对反射是野外光谱实际测量的物理量,实际校准参考标准的反射光谱得到反射因子光谱,利用计算机过程把反射因子与相对反射相乘即可得到绝对反射值。另外必须要考虑到观视几何学,因为即使是最好的反射标准也不是完会的朗伯体(例如全反射,任意方向的均辐射) 。如果用户有校正参考板,可以考虑进步描述测量数据的相对应资料。对大多数测量目

的,未校准的参考板(例如未校准的9%具有反射数据采集所需要的近似性质。

光谱仪的工作原理

光谱仪的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

光谱仪的工作原理元素的原子在激发光源的作用下发射谱线,谱线经光栅分光后形成光谱,每种元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。 表面轮廓仪介绍 表面轮廓仪 - 简介 表面轮廓仪LK-200M型表面轮廓仪采用广精精密最新的基于windows版本的测量软件,具有强大卓越的数据处理分析功能。测量时,零件装夹位置即使任意放置,也能得到满意的测量结果;即使需要测量长度为220mm的工件,测量软件也能保证其1μm的采样步长。 LK-200H型表面轮廓仪采用耐用可靠的16位A/D功能板,其极高的分辨率量程比(1/65536),用户即使需要大量程测量,仍能保持极高的测量精度。 LK-200M型表面轮廓仪采用工控计算机处理测量数据及仪器控制操作。其高质量、高可靠性及突出的防尘、防振、防油、防静电能力使广精精密用户将使用维护成本降至最低。 表面轮廓仪 - 原理 表面轮廓仪LK-200M型表面轮廓仪采用直角坐标法,传感器移动式。直线运动导轨采用高精度气浮导轨,作为测量基准; 电器部分由高级计算机组成;测量软件采用基于中文版Windows操作系统平台的系统测量软件,完成数据采集、处理及测量数据管理等工作。 表面轮廓仪 - 功能 角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到点距离 圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离线处理:直线度、凸度、LG凸度、对数曲线 表面轮廓仪 - 技术规格 表面轮廓仪测量长度:≤200mm

最新原子物理学——碱金属原子光谱的精细结构

§4.3 碱金属原子光谱的精细结构 一.碱金属光谱的精细结构 碱金属光谱的每一条光谱是由二条或三条线组成,如图所示。 二、定性解释 为了解释碱金属光谱的精细结构,可以做如下假设: 1.P 、D 、F 能级均为双重结构,只S 能级是单层的。 2.若l 一定,双重能级的间距随主量子数n 的增加而减少。 3.若n 一定,双重能级的间距随角量子数l 的增加而减少。 4.能级之间的跃迁遵守一定的选择定则。 根据这种假设,就可以解释碱金属光谱的精细结构。 §4.4 电子自旋同轨道运动的相互作用 一、电子自旋角动量和自旋磁矩 1925年,荷兰的乌伦贝克和古德史密特提出了电子自旋的假设: 每个电子都具有自旋的特性,由于自旋而具有自旋角动量S 和自旋磁矩s μ ,它们是电子 本身所固有的,又称固有矩和固有磁矩。 自旋角动量:ππ2*2)1(h s h s s p s =+=,2 1=s

外场方向投影:π2h m S s z =, 21±=s m 共2个, 自旋磁矩:s s p m e -=μ B s s h s s m e p m e μπ μ32)1(-=+-=- = 外场方向投影: B z z S m e μμ±=-= 共两个?偶数,与实验结果相符。 1928年,Dirac 从量子力学的基本方程出发,很自然地导出了电子自旋的性质,为这个假设提供了理论依据。 二、电子的总角动量 电子的运动=轨道运动+自旋运动 轨道角动量:π π2*2)1(h l h l l p l =+= 12,1,0-=n l 自旋角动量:ππ2*2)1(h s h s s p s =+= 2 1=s 总角动量: s l j p p p += π π2*2)1(h j h j j p j =+= s l j +=,1-+s l ,……s l - 当s l >时,共12+s 个值 当s l <时,共12+l 个值 由于 2 1=s 当0=l 时,2 1==s j ,一个值。 当 3,2,1=l 时,2 1±=l j ,两个值。 例如:当1=l 时,23211=+=j 2 1211=-=j π π222)1(h h l l p l =+= ππ2232)1(h h s s p s =+=

紫外可见光谱分析

1、冬枣果皮红色素的紫外可见光谱分析 由图可以看出,在冬枣红色素提取液光谱图上共有7个吸收峰。随着波长的增加,吸光值呈现逐渐减小的趋势。花色苷类化合物在紫外区270~280 nm和465~550 nm之间有明显的吸收峰,类黄酮类色素在250~350 nm之间有明显的吸收峰。通过特征性反应检验,可以初步判定冬枣色素是花色苷类和类黄酮类化合物。 2、番茄红素的紫外可见光谱分析

番茄红素在不同极性的溶剂中的紫外光谱的吸收峰的位置、强度、形状常常发生变化是溶质-溶剂分子之间相互作用的结果。番茄红素主吸收带的产生是由其共轭π电子从基态跃迁到第二激发态引起,番茄红素分子所处的介质环境对吸收带波长以及吸收强度有较大影响,由图和表分析得到:番茄红素在具有较低折光率的溶剂-非极性溶剂(正己烷、石油醚)和极性中等的溶剂(丙酮、乙酸乙酯)中特征吸收带波长非常接近,但在较高折光率的溶剂苯、二硫化碳中特征吸收带波长明显红移,可能是高折光率的溶剂对番茄红素激发态的稳定作用比基态强的结果。 用苯和二硫化碳作为溶剂时,与丙酮相比,番茄红素的溶解速度快,颜色变深,番茄红素的3个吸收峰发生明显红移,同时还发现在二硫化碳中,番茄红素吸收光谱的谱带变宽,475nm处的峰值变得模糊。当番茄红素溶于极性溶剂时产生溶剂化,由于激发态和基态的电荷分布不同而使这两种状态的溶剂化程度不同,溶剂的极性愈大,有机分子的成键π轨道向反键π*轨道的跃迁波长愈长,说明激发态的极性比基态大,能级降低的比基态多,从而发生红移效应。溶剂化还限制了分子的自由转动,因而转动光谱表现不出来,如果溶剂的极性很大,分子的振动也受到了限制因而振动引起的精细结构消失。番茄红素溶解在苯和二硫化碳两种溶剂极性不一样的溶剂,产生红移的大小也不一样。由于二硫化碳的极性比苯大,番茄红素的二硫化碳溶液吸收峰的位置红移最为显著。 3、TiO2 纳米膜紫外可见光谱 图1 为膜A05 和膜A′05 的紫外可见光谱,从图上可看出,热处理温度对膜的紫外可见光谱有一定的影响,热处理温度高,膜的可见区的透射率明显下降,这可能是由于高的热处理温度可形成较大的粒子,从而引起较大的光散射. 两种膜未见明显光干涉作用. 图2 为膜B10 和膜B′10 的紫外可见光谱,从图上可看出,膜B′10 的透光率小,最大吸收波长发生红移,这是由于膜B′10 是一次提拉形成的膜,粒子间间隔大,膜较厚,所以透光率就小.膜B10 分两次成膜,粒子间距小、重叠密,膜的厚度相对就小,透光率大. 两种膜在可见区光的干涉作用均较强,且干涉模式不一样. 图3为膜C10和膜C10 的紫外可见光谱,从图上可看出,膜C10和膜C’10 的透光率基

光谱仪的原理、功能以及分类【详尽版】

光谱仪的原理光谱仪的主要功能以及具体的分类 内容来源网络,由SIMM深圳机械展整理 更多相关展示,就在深圳机械展! 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。 光谱仪的主要功能 它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。 (2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 主要分类 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。本设计是一套利用光栅分光的光谱仪,其基本结构如

图。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)。 探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测

相关主题