搜档网
当前位置:搜档网 › 勾股定理专题复习

勾股定理专题复习

勾股定理专题复习
勾股定理专题复习

第一章《勾股定理》专项练习

专题一:勾股定理

考点分析:

勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题

典例剖析

例1.(1)如图1是一个外轮廓为矩形的机器

零件平面示意图,根据图中的尺寸(单位:mm ),计算两圆 孔中心A 和B 的距离为______mm .

(2)如图2,直线l 上有三个正方形a b c ,,, 若a c ,的面积分别为5和11,则b 的面积为( )

A.4 B.6

C.16

D.55

分析:本题结合图中的尺寸直接运用勾股定理计算即可.

解:(1)由已知得:AC=150-60=90,BC=180-60=120,由勾股定理得: AB 2

=902

+1202

=22500,所以AB=150(mm )

(2)由勾股定理得:b=a+c=5+11=16,故选C .

点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第三边时,往往要借助于勾股定理来解决.

例2.如图3,正方形网格的每一个小正方形的边长都是1,试求

122424454A E A A E C A E C ++∠∠∠的度数.

解:连结

32A E .32122222A A A A A E A E ==Q ,,32212290A A E A A E ∠=∠=o , 322122Rt Rt A A E A A E ∴△≌△(SAS ).322122A E A A E A ∴∠=∠.

图1

l

图2

1A

2A

3A 4A 5A 5E 2E 1E 1D 1C 1B 4C

1

A 2A 3A

4A 5A 5E

2E

1E

1D 1C 1B 4C 3C

2C

图3

由勾股定理,得:4532C E C E =

==,4532A E A E ===,

44332A C A C ==Q ,445332A C E A C E ∴△≌△(SSS ).323454A E C A E C ∴∠=∠ 122424454324424323224A E A A E C A E C A E C A E C A E C A E C ∴∠+∠+∠=∠+∠+∠=∠.

由图可知224E C C △为等腰直角三角形.22445A E C ∴∠=o

. 即12242445445A E A A E C A E C ∠+∠+∠=o

点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.

(2)利用正方形的性质,我们很容易知道一些特殊的角,如450

、900

、1350

,便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力. 专练一:

1、△ABC 中,∠A :∠B :∠C=2:1:1,a ,b ,c 分别是∠A 、∠B 、∠C 的对边,则下列各等式中成立的是( )

(A )222a b c +=;(B )222a b =; (C )222c a =; (D )22

2b a = 2、若直角三角形的三边长分别为2,4,x ,则x 的可能值有( ) (A )1个; (B )2个; (C )3个; (D )4个

3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )

(A )10.5米; (B )7.5米; (C )12米; (D )8米 4、下列说法中正确的有( )

(1)如果∠A+∠B+∠C=3:4:5,则△ABC 是直角三角形;(2)如果∠A+∠B=∠C ,那么△ABC 是直角三角形;(3)如果三角形三边之比为6:8:10,则ABC 是直角三角形;(4)如果三边长分别是2

2

1,2,1(1)n n n n -+>,则ABC 是直角三角形。 (A )1个; (B )2个; (C )3个; (D )4个

A

B

C

图7

5、如图4是某几何体的三视图及相关数据,则判断正确的是( ) A . a >c B .b >c C .4a 2

+b 2

=c 2

D .a 2

+b 2

=c 2

6、已知直角三角形两边长分别为3、4,则第三边长为 .

7、已知直角三角形的两直角边之比为3:4,斜边为10,则直角三角形 的两直角边的长分别为 .

8、利用图5(1)或图5(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .

9、一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米, ∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为 米(答案可保留根号).

10、如图6,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数), 那么第8个正方形的面积8S =_______。

11、如图7,在ΔABC 中,AB=AC=10,BC=8.用尺规作图

作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明), 并求AD 的长.

图4

图5(1)

图6

图5(2)

12、已知一个等腰三角形的底边和腰的长分别为12 cm和10 cm,求这个三角形的面积.

13、在△ABC中,∠C=90°,AC=2.1 cm,BC=2.8 cm

(1)求这个三角形的斜边AB的长和斜边上的高CD的长.

(2)求斜边被分成的两部分AD和BD的长.

14、如图8:要修建一个育苗棚,棚高h=1.8 m,棚宽a=2.4 m,棚的长为12 m,现要在棚顶上

覆盖塑料薄膜,试求需要多少平方米塑料薄膜?

图8

15、如图9,已知长方形ABCD中AB=8 cm,BC=10 cm,在边CD上取一点E,将△ADE折叠使点

D恰好落在BC边上的点F,求CE的长.

专题二:能得到直角三角形吗

考点分析:

本部分内容是勾股定理及其逆定理的应用,它在中考试卷中不单独命题,常与其它知识综合命题

典例剖析

例1.如图10,A 、B 两点都与平面镜相距4米,且A 、B 两点相距6米,一束光线由A 射向平面镜反射之后恰巧经过B 点,求B 点到入射点的距离.

分析:此题要用到勾股定理,全等三角形,轴对称及物理上的光的反射的知识.

解:作出B 点关于CD 的对称点B ′,连结AB ′,交CD 于点O ,则O 点就是光的入射点,因为B ′D =DB ,所以B ′D =AC ,∠B ′DO =∠OCA =90°,∠B ′=∠CAO 所以△B ′DO ≌△ACO (SSS ),则OC =OD =

21AB =2

1

×6=3米,连结OB ,在Rt △ODB 中,OD 2+BD 2=OB 2,所以OB 2

=32

+42

=52

,即OB =5(米),所以点B 到入射点的距离为5米.

评注:这是以光的反射为背景的一道综合题,涉及到许多几何知识,由此可见,数学是学习物理的基础

图9

图10

例2.如果只给你一把带刻度的直尺,你是否能检验∠MPN 是不是直角,简述你的作法. 分析:只有一把刻度尺,只能用这把刻度尺量取线段的长度,若∠P 是一个直角,∠P 所在的三角形必是个直角三角形,这就提示我们把∠P 放在一个三角形中,利用勾股定理的逆定理来解决此题.

作法:①在射线PM 上量取PA=3㎝,确定A 点, 在射线PN 上量取PB=4㎝,确定B 点.

②连结AB 得△PAB . ③用刻度尺量取AB 的长度,

如果AB 恰为5㎝,则说明∠P 是直角,否则∠P 不是直角.

理由:PA=3㎝,PB=4㎝,PA 2+PB 2=32+42=52,

若AB=5㎝,则PA 2+PB 2=AB 2,根据勾股定理的逆定理得△PAB 是直角三角形,∠P 是直角.

说明:这是一道动手操作题,是勾股定理的逆定理在现实生活中的一个典型应用.学生既要会动手操作,又必须能够把操作的步骤完整的表述出来,同时要清楚每个操作题的理论基础. 专练二:

1.做一做:作一个三角形,使三边长分别为 3 cm,4 cm,5 cm,哪条边所对的角是直角?为什么?

2.断一断:设三角形的三边分别等于下列各组数:

①7,8,10 ②7,24,25 ③12,35,37 ④13,11,10 (1)请判断哪组数所代表的三角形是直角三角形,为什么?

(2)把你判断是Rt △的哪组数作出它所表示的三角形,并用量角器来进行验证.

3算一算:.一个零件的形状如图12,已知AC=3㎝,AB=4㎝,BD=12㎝,

图11

求:CD 的长.

4.一个零件的形状如图13所示,工人师傅按规定做得AB =3,BC =4,AC =5,CD =12,AD =13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?

5.如图14,等边三角形ABC 内一点P ,AP =3,BP =4,CP =5,求∠APB 的度数.

6.若△ABC 的三边长为a ,b ,c ,根据下列条件判断△ABC 的形状.

(1)a 2

+b 2

+c 2

+200=12a +16b +20c (2)a 3

-a 2

b +ab 2

-ac 2

+bc 2

-b 3

=0

7.请在由边长为1的小正三角形组成的虚线网格中,画出1 个所有顶点均在格点上,且至少有一条边为无理数的等腰三角形.

图12

A

B

图13

图14

8.为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图15,已知圆筒高108㎝,其截面周长为36㎝,如果在表面缠绕油纸4圈,应裁剪多长油纸.

专题三:蚂蚁怎样走最近

考点分析:

勾股定理在实际生活中的应用较为广泛,它常常单独命题,有时也与方程、函数,四边形等知识综合在一起考查,在中考试卷中的常见题型为填空题、选择题和较简单的解答题典例剖析

例1.如图16(1)所示,一个梯子AB长2.5米,

顶端A靠在墙AC上,这时梯子下端B与墙角C距离

为米,梯子滑动后停在DE位置上,如图10(2)所示,

测得得BD=米,求梯子顶端A下落了多少米?

分析:梯子顶端A下落的距离为AE,

即求AE的长.已知AB和BC,根据勾股定理可求AC,只要求出EC即可。

解:在Rt△ACB中,AC2=AB2-BC2=,

∴AC=2,∵BD=,∴CD=2

∴EC=,,所以,梯子顶端下滑了0.5米.

图16(2)图

16

图15

点评:在实际生活、生产及建筑中,当人们自身高度达不到时,往往要借助于梯子,这时对梯子的选择,及梯子所能达到的高度等问题,往往要用到勾股定理的知识来解决.但要注意:考虑梯子的长度不变.

例2.有一根竹竿, 不知道它有多长. 把竹竿横放在一扇门前, 竹竿长比门宽多4尺;把竹竿竖放在这扇门前, 竹竿长比门的高度多2尺;把竹竿斜放,,竹竿长正好和门的对角线等长.问竹竿长几尺?

分析:只要根据题意,画出图形,然后利用勾股定理,列出方程解之

解:设竹竿长为x尺。则:(x―4)2+(x―2)2=x2 x1=10 ,x2=2(不合题意舍去)

答:竹竿长为10尺。

评注:本题是勾股定理与方程的综合应用问题,它综合考查了同学们的建模思想和方法的理解和运用,符合新课程标准的理念,请注意这类问题!

例3.如图17,客轮在海上以30km/h的速度由B向C航行,

在B处测得灯塔A的方位角为北偏东80o,测得C处的方位角为南

偏东25o,航行1小时后到达C处,在C处测得A的方位角为北

偏东20o,则C到A的距离是()

A

.;B

.;C

.km;D

.km

分析:本题是一道以航海为背景的应用题,由已知条件分析易知△ABC

不是直角三角形,这就需要作三角形的高,将非直角三角形转化为直角三角形,问题便可得到解决.

解:由条件易得:∠C=450,∠ABC=750,则∠A=600,过B作BD⊥AC,

垂足为D,∴△BCD是等腰直角三角形,又∵BC=30km,由勾股定理得:

2CD2=302,∴

CD=

BD=AD=x,则AB=2x,由勾股定理得:

,∴

=

x=

AC=

D.

点评:在航海中,有时需要求两船或船与某地方的距离,以保证航海的安全,有时就需要用勾股定理及判定条件来加以解决,熟练应用勾股定理是解题的关键.

图17

专练三:

1.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6

分钟到达书店(如图18),已知书店距离邮局640米,那么小明家距离书店 米.

2.一根新生的芦苇高出水面1尺,一阵风吹过,芦苇被吹倒一边,

顶端齐至水面,芦苇移动的水平距离为5尺,则水池的深度和芦苇的长度各是 . 3.小明叔叔家承包了一个矩形养鱼池,已知其面积为48m 2,其对角线长为10m ,为建起栅栏,要计算这个矩形养鱼池的周长,你能帮助小明算一算,周长应该是 . 4.求图19所示(单位mm )矩形零件上两孔 中心A 和B 的距离(精确到0.lmm ).

5.假期,小王与同学们在公园里探宝玩游戏,按照游戏中提示的方向,他们从A 出发先向正东走了800米,再向正北走了200米,折向正西走300米,再向正北走600米,再向正东走100米,到达了宝藏处B ,问A 、B 间的直线距离是 米. 6.如图20所示,为修铁路需凿通隧道AC ,测得∠A=53°, ∠B=37°.AB=5km ,BC=4km ,若每天凿0.3km , 试计算需要几天才能把隧道AC 凿通.

图18

图19

图20

7.如图21,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD 折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?

图21

8.观察下列表格:

请你结合该表格及相关知识,求出b、c的值。

9.如图22所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.

图22

参考答案

专练一:

1.

3200

3

;2.12,13; 3.28; 5、1000

6. 解:因为∠A=53°,∠B=37°∴∠ACB=90°,

在Rt △ABC 中,AC 2=AB 2-BC 2=52-42=9,所以AC=3,需要的时间3

100.30.3

AC t === (天) 答:需要10天才能把隧道AC 凿通。

7.由勾股定理得:AB=10,设CD=x ,则DE=x ,BD=8-x ,BE=4,由勾股定理得: 42

+x 2

=(8-x)2

,解得x=3,即CD=3 8.12,5

9.连结AC ,在Rt △ADC 中, , ,在△ABC 中,AB 2

=1521 ,

答:这块地的面积是216平方米。 专练二:

1.做一做:5 cm 所对的角是直角,因为在直角三角形中直角所对边最长. 2.断一断:(1)②③ ∵72

+242

=252

, 122

+352

=372

(2)略

3.解:在直角三角形ABC 中,根据勾股定理:BC 2=AC 2+AB 2=32+42

=25,在直角三角形CBD 中,根据勾股定理:CD 2=BC 2+BD 2=25+122

=169,∴CD=13. 4.∵42

+32

=52

,52

+122

=132

,即AB 2

+BC 2

=AC 2

,故∠B =90°,同理,∠ACD =90° ∴S 四边形ABCD =S △ABC +S △ACD =

21×3×4+2

1

×5×12=6+30=36. 5.解:如图,以AP 为边作等边△APD ,连结BD .则∠1=60°-∠BAP = ∠2,

在△ADB 和△APC 中,

AD =AP .∠1=∠2,AB =AC

∴△ADB ≌△ADC (SAS ) ∴BD =PC =5,又PD =AP =3,BP =4 ∴BP 2

+PD 2

=42

+32

=25=BD 2

∴∠BPD =90°

∴∠APB =∠APD +∠BPD =150°

6.(1)∵a 2

+b 2

+c 2

+100=12a +16b +20c ,∴(a 2

-12a +36)+(b 2

-16b +64)+(c 2

-20c +100)=0,

即(a -6)2

+(b -8)2

+(c -10)2

=0

∴a -6=0,b -8=0,c -10=0,即a =6,b =8,c =10,而62

+82

=100=102

,∴a 2

+b 2

=c 2

, ∴△ABC 为直角三角形.

(2)(a 3

-a 2

b )+(ab 2

-b 3

)-(ac 2

-bc 2

)=0,a 2

(a -b )+b 2

(a -b )-c 2

(a -b )=0,∴(a -b )(a 2

+b 2

-c 2

)=0

∴a -b =0或a 2

+b 2

-c 2

=0,∴此三角形ABC 为等腰三角形或直角三角形. 7.解:本题答案不惟一,只要符合要求都可以,以下答案供参考.

8.解:将圆筒展开后成为一个矩形,如图, 整个油纸也随之分成相等4段只需求出AC 长 即可,在Rt △ABC 中,AB=36,BC=

274

108

= ∴由勾股定理得AC 2

=AB 2

+BC 2

=362

+272

∴AC=45,故整个油纸的长为45×4=180(㎝). 专练三:

1、C ;

2、B ;

3、B ;

4、C ;

5、D ;

6、5

;7、6,8;8、勾股定理,222

a b c +=;9

4+;10、128;

11、(1)作图略;

(2)在△ABC 中,AB=AC ,AD 是△ABC 的中线,∴AD⊥BC,11

8422

BD CD BC ===?=.在Rt△ABD 中,AB =10,BD =4,2

2

2

AD BD AB +=,

AD ∴==.

12、如图:等边△ABC 中BC =12 cm ,AB =AC =10 cm

作AD ⊥BC ,垂足为D ,则D 为BC 中点,BD =CD =6 cm 在Rt △ABD 中,AD 2

=AB 2

-BD 2

=102

-62

=64 ∴AD =8 cm ∴S △ABD =

21BC ·AD =2

1

×12×8=48(cm 2) 13、解:(1)∵△ABC 中,∠C =90°,AC =2.1 cm ,BC =2.8 cm

∴AB 2

=AC 2

+BC 2

=+=

∴AB = cm ,∵S △ABC =

21AC ·BC =2

1

AB ·CD ,∴AC ·BC =AB ·CD , ∴CD =AB

BC AC ?=5.38.21.2?=(cm)

(2)在Rt △ACD 中,由勾股定理得:AD 2

+CD 2

=AC 2

, ∴AD 2

=AC 2

-CD 2

=-=+- =×=2××2×=22

×9××,

∴AD =2×3×=(cm),∴BD =AB -AD =-=(cm)

14、解:在直角三角形中,由勾股定理可得:直角三角形的斜边长为 3 m,所以矩形塑料薄膜的面积是:3×12=36(m 2

)

15、解:根据题意得:Rt △ADE ≌Rt △AEF ,∴∠AFE =90°,AF =10 cm,EF =DE ,设CE =x cm ,则DE =EF =CD -CE =8-x ,在Rt △ABF 中由勾股定理得:AB 2

+BF 2

=AF 2

,即82

+BF 2

=102

,∴BF =6 cm ,∴CF =BC -BF =10-6=4(cm),在Rt △ECF 中由勾股定理可得:EF 2

=CE 2

+CF 2

,即(8-

x )2=x 2+42,∴64-16x +x 2=x 2+16,∴x =3(cm),即CE =3 cm

勾股定理专项练习题

150° 20m 30m 勾股定理专项练习 知识梳理: 1、勾股定理适用前提:直角三角形 2、勾股定理内容:a 2+b 2=c 2 (字母C 并不必然代表斜边) 3、勾股定理作用:已知直角三角形两边求第三边 数学思想: 1、数形结合思想 2、方程思想 一.填空题: 1. 已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为_______. 2.在Rt △ABC 中, ∠C=90°,AB=15,BC:AC=3:4,则BC=_________. 3.已知:如图,在Rt △ABC 中,∠B=90°,D 、E 分别是 边AB 、AC 的中点,DE=4,AC=10,则AB=____________. 4.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是_____m 。 5.已知两条线段的长为9cm 和12cm,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形. 6.如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D,且AB=5,BC=4,AC=6,则DE 的 长为_______. 7.如图,所有的四边 形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形 的边和长为7cm,则正 方形A ,B ,C ,D 的面积之和为__ _cm 2 。 8.在一棵树的10米高 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处。另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高 。 9.有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢 飞到另一棵树的树梢,至少飞了 米. 10.四边形ABCD 中,AD ⊥DC ,AD=8,DC=6,CB=24,AB=26.则四边形ABCD 的面积为____________. 11.如图是一个三级台阶, 它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是________. 二.选择题: 1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A 、25 B 、14 C 、7 D 、7或25 2.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A 、a=1.5,b=2,c=3 B 、a=7,b=24,c=25 C 、a=6,b=8,c=10 D 、a=3,b=4,c=5 3.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( ) A 、60∶13 B 、5∶12 C 、12∶13 D 、60∶169 4.如果Rt △的两直角边长分别为n 2 -1,2n (n>1),那么它的斜边长是( ) A 、2n B 、n+1 C 、n 2-1 D 、n 2 +1 5.已知Rt △ABC 中,∠C=90°,a+b=14,c=10,则Rt △ABC 的面积是( ) A 、24 B 、36 C 、48 D 、60 6.等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A 、56 B 、48 C 、40 D 、32 7.三角形的三边长满足(a+b )2=c 2 +2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. 8.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草 皮至少需要( ) A 、450a 元 B 、225a 元 C 、150a 元 D 、300a 元 9.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△AB E 的面积为( ) A 、6cm 2 A B E D C A E D B C A B C D 7cm A B C D 20 3 2A B A B E F D C 第9题图

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类 一.知识归纳 1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++,所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形; c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理公开课教案

课题:18.1 勾股定理(1) --直角三角形三边的关系 一、教学目标 (一)知识目标 1、创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣。 2、让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题。 (二)能力目标 1、培养学生学数学、用数学的意识和能力。 2、能把已有的数学知识运用于勾股定理的探索过程。 3、能熟练掌握勾股定理及其变形公式,并会根据图形找出直角三角形及其三边,从而正确运用勾股定理及其变形公式于图形解决相关问题。 (三)情感目标 1、培养学生的自主探索精神,提高学生合作交流能力和解决问题的能力。 2、让学生感受数学文化的价值和中国传统数学的成就,激发学生的爱国热情,培养学生的民族自豪感,教育学生奋发图强、努力学习。 二、教学重点 通过图形找出直角三角形三边之间的关系,并正确运用勾股定理及其变形公式解决相关问题。 三、教学难点 运用已掌握的相关数学知识探索勾股定理。 四、教学过程 (一)创设情境,引出问题 想一想: 小明妈妈买了一部29英寸(74厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?你能解释这是为什么吗? 要解决这个问题,必须掌握这节课的内容。这节课我们要探讨的是直角三角形的三边有什么关系。(二)探索交流,得出新知

探讨之前我们一起来回忆一下直角三角形的三边: 如图,在Rt △ABC 中,∠C=90° ∠C 所对的边AB :斜边c ∠A 所对的边BC :直角边a ∠B 所对的边AC :直角边b 问题:在直角三角形中,a 、b 、c 三条边之间到底存在着怎样的关系呢? (1)我们先来探讨等腰直角三角形的三边之间的关系。 这个关系2500年前已经有数学家发现了,今天我们把当时的情景重现, 请同学们也来看一看、找一找。 如图 数学家毕达哥拉斯的发现:S A +S B =S C 即:a 2 +b 2 =c 2 也就是说:在等腰直角三角形中,两直角边的平方和等于斜边的平方。 议一议:如果是一般的直角三角形,两直角边的平方和是否还会等于斜边的平方? 如图 分析: S A +S B =S C 是否成立? (1)正方形A 中含有 个小方格,即S A = 个单位面积。 (2)正方形B 中含有 个小方格,即S B = 个单位面积。 (3)由上可得:S A +S B = 个单位面积 问题:正方形C 的面积要如何求呢?与同伴进行交流。 方法一: “补”成一个边长为整数格的大正方形,再减去四个直角边为整数格的三角形 方法二:分割成四个直角边为整数格的三角形,再加上一个小方格。 综上: 我们得出:S A +S B =S C 即:a 2 +b 2 =c 2 也就是说:在一般的直角三角形中,两直角边的平方和等于斜边的平方。 概括: 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方 A c a C B b A c a C B b

(完整版)勾股定理应用题专项练习(经典)

勾股定理应用题 1.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架 2.5米长的 梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A.0.6米 B.0.7米 C.0.8米 D.0.9米 2.如图1所示,有一块三角形土地,其中∠C =90°,AB =39米,BC =36米,则其面积 是( ) A.270米2 B.280米2 C.290米2 D.300米 2 3.有一个长为40cm ,宽为30cm 的长方形洞口,环卫工人想用一个圆盖盖住此洞口,那么 圆盖的直径至少是( ) A.35cm B.40cm C.50cm D.55cm 4.下列条件不能判断三角形是直角三角形的是 ( ) A.三个内角的比为3:4:5 B.三个内角的比为1:2:3 C.三边的比为3:4:5 D.三边的比为7:24:25 5.若三角形三边的平方比是下列各组数,则不是直角三角形的是( ) A. 1:1:2 B. 1:3:4 C. 9:16:25 D. 16:25:40 6.若三角形三边的长分别为6,8,10,则最短边上的高是( ) A.6 B.7 C.8 D.10 7.如图2所示,在某建筑物的A 处有一个标志物,A 离地面9米,在离建筑物12米处有一 个探照灯B ,该灯发出的光正好照射到标志物上,则灯离标志物____米 8.小芳的叔叔家承包了一个长方形鱼塘,已知其面积是48平方米, 其对角线长为10米.若要建围栏,则要求鱼塘的周长,它的周长 是____米. 9.公园内有两棵树,其中一棵高13米,另一棵高8米,两树相距 12米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少 要飞_____米. 10.若把一个直角三角形的两条直角边同时扩大到原来的3倍,则斜边扩大到原来的____倍. 11.若△ABC 的三边长分别是2,2,2===c b a ,则∠A =____,∠B =____,∠C =____. 12.某三角形三条边的长分别为9、12、15,则用两个这样的三角形所拼成的长方形的周长 是______,面积是_____. 13.如图4所示,AB 是一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐桃子,一只猴子从D 往上爬到树顶A ,又沿滑绳AC 滑到C 处,另一只猴子从D 处下滑到B ,又沿B 跑到C ,已知两只猴子所通过的路程均为15米,求树高AB . C B 图1 B C 图4 A C 图3

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理提高经典练习

勾股定理专题复习 类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 举一反三 【变式】:如图∠B=∠ACD=90°,AD=13,CD=12,BC=3,则AB的长是多少? 类型二:勾股定理的构造应用 2、如图,已知:在中,,,.求:BC的长. 举一反三【变式1】如图,已知:,,于P.求证:. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。

类型三:勾股定理的实际应用 (一)用勾股定理求两点之间的距离问题 3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。 (1)求A、C两点之间的距离。 (2)确定目的地C在营地A的什么方向。 (二)用勾股定理求最短问题 4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程. 类型四:利用勾股定理作长为的线段 5、作长为、、的线段。 【变式】在数轴上表示的点。

6、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。 举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形. 【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。请问FE与DE是否垂直?请说明。 类型一:勾股定理及其逆定理的基本用法 1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。 【变式1】等边三角形的边长为2,求它的面积。

勾股定理练习题及答案

一、 选择题 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是 ( ) A 、2abc 2 D 、2ab ≤c 2 2、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、15 3、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个 4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、2 5、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定 6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或360 7、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、 4.5 8、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线的长是_____________。 10.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。 二.解答题 1.如图,某沿海开放城市A 接到台风警报,在该市正南方向260km 的B 处有一台风中心,沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=100km ,那么台风中心经过多长时间从B 点移到D 点?如果在距台风中心30km 的圆形区域内都将有受到台风的破坏的危险,正在D 点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险? A B D C 第7题图 A C D B E 第8题图 A B C D 第1题图 A D B C B ′ A ′ C ′ D ′ 第9题图

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

勾股定理及其逆定理专题练习

勾股定理及其逆定理专题练习 (一)几何法证明勾股定理. 1、如图所示, 90=∠=∠BCE ADE ,a CE AD ==,b BC DE ==,c BE AE ==,利用面积法证明勾股定理. (二)勾股定理的应用. 一、勾股定理的简单计算: 1、直角三角形的三边长为连续偶数,则这三个数分别为__________. 2、已知一个直角三角形的两边长分别为3和4,则第三边长是__________. 3、直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 4、在△ABC 中,∠C=90°,AB =5,则2AB +2AC +2BC =_______. 二、勾股定理与实际问题: 1、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有_____米. 2、如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达点B 200m ,结果他在水中实际游了520m ,求该河流的宽度为____________m . 3、如图,从电线杆离地面6m 处向地面拉一条长10m 的固定缆绳,这条缆绳在地面的固定点距离电线杆底部有__________m . b c c a a b D C A E B

4、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需___________米. 5、将一根长24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中(如图).设筷子露在杯子外面的长为hcm ,则h 的取值范围是___________. 三、勾股定理与图形变换: 1、如图,已知ABC ?中, 5.22=∠B ,AB 的垂直平分线交BC 于D ,26=BD ,BC AE ⊥于E ,求AE 的长. 2、如图,将长方形ABCD 沿直线AB 折叠,使点C 落在点F 处,BF 交AD 于E ,48==AB AD ,,求BED ?的面积.

勾股定理专题训练

勾股定理专题训练 一、填空题 1.填空: (1)一个直角三角形的三边从小到大依次为x ,16,20,则x =_______; (2)在△ABC 中∠C =90°,AB =10,AC =6,则另一边BC =________,面积为______,? AB 边上的高为________; (3)若一个矩形的长为5和12,则它的对角线长为_______. 2.三角形三边长分别为6、8、10,那么它最短边上的高为______. 3.已知一直角三角形两边长分别为3和4,则第三边的长为______. 4.若等腰直角三角形斜边长为2,则它的直角边长为_______. 5.测得一个三角形花坛的三边长分别为5c m ,12c m ,?13c m ,?则这个花坛的面积是________. 6.矩形纸片ABCD 中,AD =4c m ,AB =10c m ,按如图18-1方式折叠,使点B 与点D 重合,折痕为EF ,则DE =_______c m . 7.如图18-2,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个正方形中,与众不同的是_________,不同之处:_________. 8.一轮船以16海里/时的速度从A 港向东北方向航行,另一艘船同时以12海里/时的速度从A 港向西北方向航行,经过1.5小时后,它们相距________海里. 9.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m ,当他把绳子的下端拉开5m ?后,发现下端刚好接触地面,你能帮助他把旗杆的高度求出来是__________. 10.如图18-3,△ABC 中,CD ⊥AB 于D ,若AD =2BD ,AC =6,BC =3,则BD 的长为( ) A .3 B . 1 2 C .1 D .4 11.等腰三角形底边上的高为8,周长为32,则该等腰三角形面积为_______. 12.△ABC 中,∠C =90°,c =10,a :b =3:4,则a =______,b =_______. 13.等腰三角形的腰长为5,底边长为8,则它底边上的高为_____,面积为____. D B C A D https://www.sodocs.net/doc/4a11955207.html, 图18-3

勾股定理测试题(含答案)

18.2 勾股定理的逆定理 达标训练 一、基础·巩固 1.满足下列条件的三角形中,不是直角三角形的是( ) A.三内角之比为1∶2∶3 B.三边长的平方之比为1∶2∶3 C.三边长之比为3∶4∶5 D.三内角之比为3∶4∶5 2.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是________ cm (结果不取近似值). 图18-2-4 图18-2-5 图18-2-6 3.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长为_________. 4.如图18-2-6,已知正方形ABCD 的边长为4,E 为AB 中点,F 为AD 上的一点,且AF= 4 1AD ,试判断△EFC 的形状. 5.一个零件的形状如图18-2-7,按规定这个零件中∠A 与∠BDC 都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗? 图18-2-7 6.已知△ABC 的三边分别为k 2-1,2k ,k 2+1(k >1),求证:△ABC 是直角三角形.

二、综合·应用 7.已知a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么? 8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD. 求证:△ABC是直角三角形. 图18-2-8 9.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论. 图18-2-9 10.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC 的形状. 解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC 是直角三角形. 问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号_______; ②错误的原因是______________ ; ③本题的正确结论是_________ _.

勾股定理 公开课获奖教案

17.1勾股定理第1课时勾股定理 1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点) 2.掌握勾股定理,并运用它解决简单的计算题;(重点) 3.了解利用拼图验证勾股定理的方法.(难点) 一、情境导入 如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗? 二、合作探究 探究点一:勾股定理 【类型一】直接运用勾股定理 如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求: (1)AC的长; (2)S△ABC; (3)CD的长. 解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD. 解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm; (2)S△ABC= 1 2CB·AC= 1 2×5×12=30(cm2); (3)∵S△ABC= 1 2AC·BC= 1 2CD·AB,∴CD = AC·BC AB= 60 13cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可. 【类型二】分类讨论思想在勾股定理中的应用 在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论. 解:此题应分两种情况说明: (1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5 +9=14,∴△ABC的周长为15+13+14=42; (2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=

勾股定理精华专题训练

D C A 勾股定理专题训练 专题一、勾股定理的应用 1、在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______. 2、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有__米. (2)题 (3)题 (4)题 3、如图,90,4,3,12C ABD AC BC BD ?∠=∠====,则AD= ; 4、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2米,梯子的顶端B 到地面的 距离为7米.现将梯子的底端A 向外移动到A ’,使梯子的底端A ’到墙根O 的距离等于3米,同时梯子的顶端 B 下降至 B ’,那么 BB ’的值: ①等于1米;②大于1米5;③小于1米.其中正确结论的序号是 . 5、如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 . 专题二、分类讨论思想 1、三角形的两边长分别为3和5,要使这个三角形是直角三角形,则第三条边长是 2、若ΔABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为( )

S 3S 2 S 1 C B A 第19题图 第3题图 A :14 B :4 C :14或4 D :以上都不对 专题三、等积法 1、已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ; 2、ΔABC 中∠B=90°,两直角边AB=7,BC=24,在三角形内有一点P 到各边的距离相等,则这个距离是 专题四、平移思想 如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上 铺地毯,已知地毯每平方米18元,铺完这个楼道至少需要 元钱 专题五、整体思想 1、如图所示,以Rt △ABC 的三边向外作正方形, 其面积分别为123,,S S S ,且1234,8,S S S ===则 ; 2、已知Rt △ABC 中,∠C=90°,若a+b=14,c=10,则Rt △ABC 的面积是_____ 3.如图,Rt △ABC 的面积为20cm 2 ,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为 . 专题六、转化思想(立体图形转化成平面展开图)最短路径问题 1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm ,?A 和B 是这 个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路程是 ; 2、一只蚂蚁从长为4cm 、宽为3 cm ,高是5 cm 的长方体纸箱的A 点沿 纸箱爬到B 点,那么它所行的最短路线的长是____________cm 。 专题七、.方程思想 1、.如图,一棵树高4.5米,被大风刮断,树尖着地点B 距树底部C 为1.5米,求折断点A 离地高度多少米? 5m 13m A B C

《勾股定理》教案课程

17.1 勾股定理 教学目标: 知识与技能 1.掌握勾股定理,了解利用拼图验证勾股定理的方法. 2.运用勾股定理解决一些实际问题. 过程与方法 1.经历用拼图的方法验证勾股定理,?培养学生的创新能力和解决实际问题的能力. 2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识. 情感态度与价值观 1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,?借助此过程对学生进行爱国主义的教育. 2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点:经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值. 教学难点:经历用不同的拼图方法证明勾股定理. 教具准备:方格纸、4个全等的三角形,多媒体课件演示. 教学过程: 一、知识回顾(活动1) 上节课我们已经认识的勾股定理,请大家说说勾股定理的内容。 二、探索研究(活动2) 我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下

(2) ,化简可证。 ⑶发挥学生的想象能力拼出不同的图形,进行证明。 这个古老的精彩的证法,出自我国

形. 议一议: 观察上图,用数格子的方法判断图中两个三角形的三边关系是否满足a2+b2=c2. 设计意图: 前面已经讨论了直角三角形三边满足的关系,那么锐角三角形或钝角三角形三边是否也满足这一关系呢?学生通过数格子的方法可以得出:如果一个三角形不是直角三角形,那么它的三边a,b,c不满足a2+b2=c2.通过这个结论,学生将对直角三角形的三边的关系有进一步的认识. 师生行为: 学生分小组讨论交流,得出结论: 教师提出问题后,组织讨论,启发,引导. 此活动教师应重点关注: ①能否积极参与数学活动; ②能否进一步体会到直角三角形非常重要的三边关系. 师:上图中的△ABC和△A′B′C′是什么三角形? 师:△ABC的三边上“长”出三个正方形,?谁为帮我数一个每个正方形含有几个小格子.

专题训练(一)利用勾股定理解决问题

专题训练(一)利用勾股定理解决问 题 ?类型一利用勾股定理解决平面图形问题 1.如图1-ZT-1,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,则CD=________. 图1-ZT-1 2.如图1-ZT-2,在等腰直角三角形ABC中,AB=AC,D是斜边BC上的中点,E,F分别为AB,AC上的点,且DE⊥DF. (1)若设BE=a,CF=b,且a-12+|b-5|=m-2+2-m,求BE及CF的长; (2)求证:BE2+CF2=EF2. 图1-ZT-2 ?类型二利用勾股定理解决立体图形问题 3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何.”题意是:如图1-ZT-3所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则葛藤的最短长度是________尺. 图1-ZT-3图1-ZT-4 4.2019·南宁期末如图1-ZT-4,一只蚂蚁从棱长为4 cm的正方体纸箱的A点沿纸箱表面爬到B点,那么它爬行的最短路线的长是

________cm. ?类型三利用勾股定理解决折叠问题 5.如图1-ZT-5,在Rt△ABC中,∠ABC=90°,AB=3,AC =5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________. 图1-ZT-5 6.[2019·重庆]如图1-ZT-6,把三角形纸片折叠,使点B,点C都与点A重合,折痕分别为DE,FG,得到∠AGE=30°,若AE =EG=2 3厘米,则△ABC的边BC的长为________厘米. 图1-ZT-6 ?类型四利用勾股定理解决实际问题 7.如图1-ZT-7,A市气象站测得台风中心在A市正东方向300千米的B处,以10 7千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的 区域. (1)A市是否会受到台风的影响?请说明理由; (2)如果A市会受到这次台风的影响,那么受台风影响的时间有多长? 图1-ZT-7 教师详解详析 1.3[解析] 如图,过点D作DE⊥AB于点E. ∵∠C=90°,AC=6,BC=8,

(完整版)勾股定理专题复习(经典一对一教案哟)

卓越教育教案专用 学生姓名授课时间:授课科目:数学 教学课题勾股定理知识点解析(二) 重点、难点能准确证明勾股定理,并能将以灵活运用。 教师姓名年级:初二课型:复习课 一、作业检查 作业完成情况:优□良□中□差□ 二、课前回顾 对上次家庭作业进行检查并评讲 三、知识整理 知识点1.勾股定理 (1)勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用a,b和c分别表示直角三角形的两直角边和斜边(即:a2+b2=c2) 注意:○1勾股定理揭示的是直角三角形三边关系的定理,只适用于直角三角形。○2应用勾股定理时,要注意确定那条边是直角三角形的最长边,也就是斜边,在Rt△ABC中,斜边未必一定是c,当∠A=90时,a2=b2 +c2 ;当∠B=90时,b2=a2 +c2 例1.(1)如图1所示,在Rt△ABC中,∠C=90,AC=5,BC=12,求AB的长; (2)如图2所示,在Rt△ABC中,∠C=90,AB=25,AC=20,求BC的长 (3)在Rt△ABC中,AC=3,BC=4,求AB2的值 A C B 图1 C B A 图2

知识点2.勾股定理的证明 (1)勾股定理的证明方法很多,可以用测量计算,可以用代数式的变形,可以用几何证明,也可以用面积(拼图)证明,其中拼图证明是最常见的一种方法。 思路: ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可 证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 知识点3.直角三角形的判别条件 (1)如果三角形的三边长啊a ,b ,c ,满足a 2+b 2=c 2足,那么这个三角形为直角三角形(此判别条件也称为勾股定理的逆定理) 注意:○1在判别一个三角式是不是直角三角形时,a 2+b 2是否等于c2时需通过计算说明,不能直接写成a 2+b 2=c 2。○2验证一个三角形是不是直角三角形的方法是:(较小边长)+(较长边长)=(最大边长)时,此三角形为直角三角形;否则,此三角形不是直角三角形. 例1. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( ) c b a H G F E D C B A b a c b a c c a b c a b

勾股定理单元测试题及答案

第十七章勾股定理单元测试题 一、相信你的选择 1、如图,在Rt △AB C中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为( ). A.16π B .12π C.10π D .8π 2、已知直角三角形两边的长为3和4,则此三角形的周长为( ). A .12 B .7+7 C.12或7+7 D .以上都不对 3、如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B到地面的距 离为7m,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O的距离等于3m.同时 梯子的顶端B 下降至B ′,那么BB ′( ). A.小于1m B .大于1m C .等于1m D .小于或等于1m 4、将一根24cm 的筷子,置于底面直径为15cm,高8c m的圆柱形水杯中,如图所示,设筷子 露在杯子外面的长度为h cm ,则h 的取值范围是( ). A .h ≤17cm B .B.h ≥8cm C .15cm ≤h ≤16cm D.7c m≤h≤16cm 二、试试你的身手 5、在Rt △AB C中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____. 6、如图,矩形零件上两孔中心A 、B 的距离是_____(精确到个位). 7、如图,△ABC 中,AC =6,A B=BC =5,则BC 边上的高AD =______. 8、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要 元. 三、挑战你的技能 9、如图,设四边形AB CD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去. (1)记正方形AB CD的边长为a 1=1,按上述方法所作的正方形的边长依次为a 2,a3, a 4,……,a n ,请求出a 2,a 3,a 4的值; (2)根据以上规律写出an 的表达式. 150o 20米30米

山东省优质课比赛一等奖---《勾股定理》教学设计

义务教育课程标准实验教科书(人教版) 18.1.1勾股定理 (说案) 临沂市苍山县实验中学 宋宁

课题:18.1.1 勾股定理 临沂市苍山县实验中学 宋 宁 一、教材分析 1、地位和作用 本节课选自人教版《数学》八年级下册第十八章第一节勾股定理第一课时 爱国主义教育的良好素材。 2、 学习目标 【知识技能】 1、经历勾股定理的探索过程,理解并掌握勾股定理; 2、学会运用勾股定理进行简单的计算。 【数学思考】 1、让学生切实经历“观察-探索-猜想-验证-归纳”的探索过程; 2、发展合情推理能力,并体会数形结合、由特殊到一般、转化的思想方法。 【问题解决】 1、通过拼图活动,体验解决问题方法的多样性; 2、在探索活动中,培养学生的自主性与合作性。 【情感态度】 激发学生热爱祖国悠久文化的情感。 3、重点、难点 重点:勾股定理的探索过程; 难点:面积法(拼图法)发现勾股定理。 二、教法与学法分析 几何直观 引导 实验 思想方法 探索 验证 直角三角形三边之间数量关系 解直角三角形 广泛应用 形 数 几何 代数 教学方法

学法指导 动手实践、自主探索、合作交流三、教学过程 活动1:等腰入手发现新知 等腰直角三角形三边满足 什么关系?

方案二: 4、学生总结归纳勾股定理, 板书勾股定理并给出字母表示。 教师对“勾股弦”的含义以及

2、求下列直角三角形中未知边的长. 3、台风来袭,一棵大树在离地面9米处断裂,树的顶部

四、评价分析 五、设计说明 1、探究体验贯穿始终 2、展示交流贯穿始终 3、习惯养成贯穿始终 4、情感教育贯穿始终 5、文化育人贯穿始终

相关主题