搜档网
当前位置:搜档网 › 点 线 面之间的位置关系知识易错点及例题合集

点 线 面之间的位置关系知识易错点及例题合集

点 线 面之间的位置关系知识易错点及例题合集
点 线 面之间的位置关系知识易错点及例题合集

点、线、面之间的位置关系知识易错点及例题合集

最近许多高二的同学问必修二点线面之间的知识点,普遍感觉这块非常难学,小数老师今天整理了易错点和例题给大家,作为参考!

[整合·网络构建]

[警示·易错提醒]

1、不要随意推广平面几何中的结论

平面几何中有些概念和性质,推广到空间中不一定成立.例如“过直线外一点只能作一条直线与已知直线垂直”、“垂直于同一条直线的两条直线平行”等性质在空间中就不成立.

2、弄清楚空间点、线、面的位置关系

解决这类问题的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体模型或实际空间位置(如课桌、教室)作出判断,要注意定理应用准确、考虑问题全面细致。

3、不要忽略异面直线所成的角的范围

求异面直线所成的角的时候,要注意它的取值范围是(0°,90°]。

两异面直线所成的角转化为一个三角形的内角时,容易忽略这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.

4、透彻理解直线与平面的关系

直线与平面位置关系的分类要清晰,一种分法是直线在平面内与直线在平面外(包括直线与平面平行和相交);另一种分法是直线与平面平行(无公共点)和直线与平面不平行(直线在平面内和直线与平面相交)。

5、使用判定定理时不要忽略条件

应用直线与平面垂直的判定定理时,要熟记定理的应用条件,不能忽略“两条相交直线”这一关键点。

专题1共点、共线、共面问题

(1)、证明共面问题

证明共面问题,一般有两种证法:一是先由某些元素确定一个平面,再证明其余元素在这个平面内;二是先分别由不同元素确定若干个平面,再证明这些平面重合。

(2)、证明三点共线问题

证明空间三点共线问题,通常证明这些点都在两个面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三个点是两个平面的公共点,当然必在两个平面的交线上。

(3)、证明三线共点问题

证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过该点,把问题转化为证明点在直线上的问题。

[例1]如图所示,在空间四边形ABCD中,E,F

分别为AB,AD 的中点,G,H分别在BC,CD上,且

BG∶GC=DH∶HC=1∶2,求证:

(1)、E,F,G,H四点共面;

(2)、EG与HF的交点在直线AC上。

证明:(1)、因为BG∶GC=DH∶HC,所以GH∥BD。

又因为E,F分别为AB,AD的中点,所以EF∥BD,所以EF∥GH,所以E,F,G,H四点共面。

(2)、因为G,H不是BC,CD的中点,所以EF∥GH,且EF≠GH,所以EG 与FH必相交。

设交点为M,而EG?平面ABC,HF?平面ACD,所以M∈平面ABC,且M ∈平面ACD。

因为平面ABC∩平面ACD=AC,所以M∈AC,即EG与HF的交点在直线AC 上。

归纳升华:证明共点、共线、共面问题的关键是合理地利用三个公理,做

到合理、恰当地转化。

[变式训练]三个平面α,β,γ两两相交于三条直线,即α∩β=c,β

∩γ=a,γ∩α=b,若直线a和b不平行,求证:a,b,c三条直线必相交于同一点。

证明:如图所示,因为α∩γ=b,β∩γ=a,

所以a?γ,b?γ。

因为直线a和b不平行,所以a,b必相交。

设α∩b=P,则P ∈a,P ∈b,

因为a ?β,b?α,所以P ∈β,P ∈α。

又α∩β=c,所以P ∈c,所以a,b,c三条直线必相交于同一点。

专题2空间中的位置关系

(1)、空间中两直线的位置关系:相交、平行、异面;

(2)、空间中直线与平面的位置关系:直线在平面内、直线与平面平行、直线与平面相交;

(3)、两个平面的位置关系:平行、相交。

[例2]已知m,n表示两条不同直线,α表示平面。下列说法正确的是()

A、若m∥α,n∥α,则m∥n

B、若m⊥α,n?α,则m⊥n

C、若m⊥α,m⊥n,则n∥α

D、若m∥α,m⊥n,则n⊥α

解析:若m∥α,n∥α,则m,n可能平行、相交或异面,A错;若m⊥α,n?α,则m⊥n,因为直线与平面垂直时,它垂直于平面内任一直线,B正确;若m⊥α,m⊥n,则n∥α或n?α,C错;若m∥α,m⊥n,则n与α可能相交,可能平行,也可能n?α,D错.

答案:B

归纳升华:若要否定一个结论,则只要举出一个反例即可;若要肯定一个结论,则需要进行严密的逻辑推理.

[变式训练]

下列命题正确的有()

①若一直线a与平面α内一直线b平行,则a∥α;②若直线a在平面α外,则a∥α;③垂直于同一条直线的两条直线平行;④垂直于同一条直线的两个平面平行.

A.0个B.1个C.2个D.3个

解析:由a∥b,b?α,可得出a?α,或a∥α,①不正确.a?α有两种情况,即a∥α和a与α相交,②不正确.垂直于同一条直线的两条直线可能相交、平行或异面,③不正确.④正确.故选B。

答案:B

专题3平行问题和垂直问题

线线、线面、面面的平行与垂直是本章的重点,它包含了相关平行与垂直的证明,利用平行与垂直解决线、面等问题.其判定与性质之间并非孤立的,而是存在线线、线面、面面间平行与垂直关系的相互转化。在高考中,常以解答题形式出现,其中线面平行和垂直是重中之重。

[例3]如图所示,在四棱锥P-ABCD中,AB∥CD,AB

⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点.求证:

(1)、PA⊥底面ABCD;

(2)、BE∥平面PAD;

(3)、平面BEF⊥平面PCD。

证明:(1)、因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD。

(2)、因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE。所以四边形ABED为平行四边形,所以BE∥AD。

又因为BE?平面PAD,AD?平面PAD,所以BE∥平面PAD。

(3)、因为AB⊥AD,而且四边形ABED为平行四边形,所以BE⊥CD,AD ⊥CD。

由(1),知PA⊥底面ABCD,所以PA⊥CD,所以CD⊥平面PAD,所以CD ⊥PD。

因为E和F分别是CD和PC的中点,所以PD∥EF,所以CD⊥EF。

又因为CD⊥BE,EF∩BE=E,所以CD⊥平面BEF,所以平面BEF⊥平面PCD。

归纳升华

1、平行关系的转化.

面面平行的性质是线线平行的判定

要判定某一平行的过程就是从一平行出发不断转化的过程,在解题时把握这一点,灵活确定转化的思想和方向

2、垂直关系的转化.

面面垂直的性质是线线垂直的判定

在证明两平面垂直时一般从现有直线中寻找平面的垂线,若这样的垂线不存在,则可通过作辅助线来解决.当有面面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,进一步转化为线线垂直.

[变式训练]如图所示,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC

=CC1.设AB1的中点为D,B1C∩BC1=E。

求证:(1)、DE∥平面AA1C

(2)、BC1⊥AB1

证明:(1)、由题意知,E为B1C的中点,又D为AB1

的中点,因此DE∥AC。

因为DE?平面AA1C1C,AC?平面AA1C1C,所以DE

∥平面AA1C1C。

(2)、因为棱柱ABC-A1B1C1是直三棱柱,所以CC1

⊥平面ABC,所以AC⊥CC1。

又AC⊥BC,BC∩CC1=C,所以AC⊥平面BCC1B1,所以BC1⊥AC.。

因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C。

因为AC∩B1C=C,所以BC1⊥平面B1AC。

又AB1?平面B1AC,所以BC1⊥AB1。

专题4空间角的求解

空间角一般指两异面直线所成的角、直线与平面所成的角、平面与平面所成的角.

[例4]如图所示,正方体的棱长为1,B′C∩BC′=O,求:

(1)、AO与A′C′所成角的度数;

(2)、AO与平面ABCD所成角的正切值;

(3)、平面AOB与平面AOC所成角的度数。

解:(1)、因为A′C′∥AC,

所以AO与A′C′所成的角就是∠OAC.

因为OC⊥OB,AB⊥平面BC′,

所以OC⊥AB且AB∩BO=B.

所以OC⊥平面ABO.

又OA?平面ABO,所以OC⊥OA.

在Rt△AOC中,OC=,AC=,sin∠OAC=ACOC

=21,所以∠OAC=30°,即AO与A′C′所成角的度数

为30°。

(2)、如图所示,作OE⊥BC于点E,连接AE,

因为平面BC′⊥平面ABCD,所以OE⊥平面ABCD,

∠OAE为OA与平面ABCD所成的角。

在Rt△OAE中,OE=21,

(3)、因为OC⊥OA,OC⊥OB,所以OC⊥平面AOB。

又因为OC?平面AOC,所以平面AOB⊥平面AOC,即平面AOB与平面AOC 所成角的度数为90°。

归纳升华:求空间角的问题,无论哪种情况,最终都归结到两条相交直线

所成的角的问题.求空间角的解题步骤:①找出这个角;②说明该角符合题意;

③构造出含这个角的三角形,解三角形,求出角。

[变式训练]

如图1所示,平面角为锐角的二面角α-EFβ,A∈EF,AG?α,∠GAE=45°,若AG与β所成角为30°,求二面角α-EF-β的大小。

解:作GH⊥β于H,作HB⊥EF于B,连接GB,如图2.

则GB⊥EF,∠GBH是二面角的平面角,又∠GAH是AG与β所成的角,

专题5转化与化归思想在立体几何中的应用

立体几何中最重要、最常用的思想就是转化与化归思想.

(1)、线线、线面、面面的位置关系,通过转化,使它们建立联系,如面面平行、线面平行、线线平行、面面垂直、线面垂直、线线垂直等,有关线面位置关系的论证往往就是通过这种联系和转化得到解决的。

(2)、通过平移,将一些线面关系转化为平面内的线线关系,通过线面平行,将空间角最终转化为平面角,并构造三角形,借助于三角形的知识解决问题。

(3)、通过添加辅助线,将立体问题转化为平面问题。

[例5]如图1所示,四边形ABCD是平行四边形,PB⊥平面ABCD,MA∥PB,PB=2MA.在线段PB上是否存在一点F,使平面AFC∥平面PMD?若存在,请确定点F的位置;若不存在,请说明理由。

解:当点F是PB的中点时,平面AFC∥平面PMD.

证明如下:如图2,连接BD和AC交于点O,连接FO,那么PF=21PB。

因为四边形ABCD是平行四边形,所以O是BD的中点,所以OF∥PD。

又OF?平面PMD,PD?平面PMD,所以OF∥平面PMD。

又AM綊21PB,所以PF綊MA,所以四边形AFPM是平行四边形,所以AF ∥PM。

又AF?平面PMD,PM?平面PMD,所以AF∥平面PMD。

又AF∩OF=F,AF?平面AFC,OF?平面AFC,所以平面AFC∥平面PMD.

归纳升华:证明垂直关系时,注意面面垂直、线面垂直与线线垂直的相互

转化.一般地,面面垂直问题可转化为线面垂直问题,线面垂直问题可转化为线线垂直问题.

[变式训练]

在四棱锥P-ABCD中,底

面ABCD是正方形,侧棱PD⊥底面ABCD,

PD=DC,E是PC的中点,过E作EF⊥PB于

点F。

(1)求证:PA∥平面EDB;

(2)、求证:PB⊥平面EFD.

证明:(1)、连接AC,交BD于点O,连

接EO。

因为底面ABCD是正方形,所以O是AC的中点,所以在△PAC中,EO是中位线,所以PA∥EO。

又因为EO?平面EDB,PA?平面EDB,所以PA∥平面EDB。

(2)、因为PD⊥底面ABCD,且DC?底面ABCD,所以PD⊥DC。

因为PD=DC,所以△PDC是等腰直角三角形。

又因为DE是斜边PC的中线,所以DE⊥PC。

因为PD⊥底面ABCD,所以PD⊥BC。

因为底面ABCD是正方形,所以DC⊥BC,所以BC⊥平面PDC。

又因为DE?平面PDC,所以BC⊥DE,所以DE⊥平面PBC。

又因为PB?平面PBC,所以DE⊥PB。

又因为EF⊥PB,且DE∩EF=E,所以PB⊥平面EFD。

点、线、面之间的位置关系练习题

点、线、面之间的位置关系及线面平行应用练习 1、 平面L =?βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =?,过 A 、 B 、 C 三点确定的平面记作γ,则γβ?是( ) A .直线AC B .直线B C C .直线CR D .以上都不对 2、空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个 4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD , 且BD AC ⊥,则四边形EFGH 为 6、下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面内的两条直线叫异面直线 7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有 公共点,则这两条直线是异面直线,以上两个命题中为真命题的是 8、过直线L 外两点作与直线L 平行的平面,可以作( ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面内 10、直线与平面平行的条件是这条直线与平面内的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( ) A .相交 B .α//b C .α?b D .α//b 或α?b 12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 14、已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面

高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】 1、异面直线所成的角:(1)范围:(0,]2π θ∈; (2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。 (I )若D 为BC 的中点,E 为AD 上不同于 A 、D 的任意一点,证明EF ⊥FC 1; (II )试问:若AB =2a ,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ)证明:BC ⊥侧面PAB; (Ⅱ)证明: 侧面PAD ⊥侧面PAB; (Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C D P

空间中点线面的位置关系练习题

1、下列有关平面的说法正确的是( ) A 一个平面长是10cm ,宽是5cm B 一个平面厚为1厘米 C 平面是无限延展的 D 一个平面一定是平行四边形 2、已知点A 和直线a 及平面α,则: ①αα???∈A a a A , ② αα∈??∈A a a A , ③αα????A a a A , ④αα???∈A a a A , 其中说法正确的个数是( ) A.0 B.1 C.2 D.3 3、下列图形不一定是平面图形的是( ) A 三角形 B 四边形 C 圆 D 梯形 4、三个平面将空间可分为互不相通的几部分( ) A.4、6、7 B.3、4、6、7 C.4、6、7、8 D.4、6、8 5、共点的三条直线可确定几个平面 ( ) A.1 B.2 C.3 D.1或3 6、正方体ABCD-A 1B 1C 1D 1中,P 、Q 、R 分别是AB 、AD 、1B 1C 1的中点, 则,正方体的过P 、Q 、R 的截面图形是( ) A 三角形 B 四边形 C 五边形 D 六边形 7、三个平面两两相交,交线的条数可能有———————————————— 8、不共线的四点可以确定——————————————————个平面。 9、下列说法①若一条直线和一个平面有公共点,则这条直线在这个平面内②过两条相交直线的平面有且只有一个③若两个平面有三个公共点,则两个平面重合④两个平面相交有且只有一条交线⑤过不共线三点有且只有一个平面,其中正确的有——————————— 10、空间两条互相平行的直线指的是( ) A.在空间没有公共点的两条直线 B.分别在两个平面内的两条直线 C.分别在两个不同的平面内且没有公共点的两条直线 D.在同一平面内且没有公共点的两条直线 11、分别和两条异面直线都相交的两条直线一定是( ) A 异面直线 B 相交直线 C 不平行直线 D 不相交直线 12、正方体ABCD-A 1B 1C 1D 1中,与直线BD 异面且成600角的面对角线有( )条。 A 4 B 3 C 2 D 1 13、设A 、B 、C 、D 是空间四个不同的点,下列说法中不正确的是( ) A.若AC 和BD 共面,则AD 与BC 共面 B.若AC 和BD 是异面直线,则AD 与BC 是异面直线 C.若AB =AC ,DB =DC ,则AD =BC D.若AB =BC =CD =DA ,则四边形ABCD 不一定是菱形 14、空间四边形SABC 中,各边及对角线长都相等,若E 、F 分别为SC 、AB 的中点, 那么异面直线EF 与SA 所成的角为( ) A 300 B 450 C 600 D 900 15、和两条平行直线中的一条是异面直线的直线,与另一条直线的位置关系是———————————————————— 16、设c b a 、、表示直线,给出四个论断:①b a ⊥②c c ⊥③c a ⊥④c a //,以其中任意两个为条件,另外的某一个为结论,写出你认为正确的一个命题—————————————————— 17、ABCDEF 是正六边形,P 是它所在平面外一点,连接PA 、PB 、PC 、PD 、PE 、PF 后与正六边形的六条边所在直线共十二条直线中,异面直线共有——————————对。 18、点E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点,且BD =AC ,则四边形EFGH 是————————————。 A Q B 1 R C B D P A 1 C 1 D 1 ? ? ? S C A B E F

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A ∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该 点的公共直线。 符号表示为:P ∈α∩β =>α∩β=L ,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么L A · α C · B · A · α P · α L β

2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c ∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 共面直线 =>a ∥c 2

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明:AC⊥平面BCDE; (Ⅱ)求直线AE与平面ABC所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=BC=2,AD=CD=7,PA =3,∠ABC=120°,G为线段PC上的点. (1)证明:BD⊥平面APC; (43 3 ) (2)若G为PC的中点,求DG与平面APC所成的角的正切值; (3)若G满足PC⊥平面BGD,求PG GC 的值.(3/2) 直线与直线垂直直线与平面垂直平面与平面垂直

空间中点线面的位置关系测试题

空间中点、线、面的位置关系 一、 选择题: 1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A ) 1个或3个(B ) 1个或4个 (C ) 3个或4个 (D ) 1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7. 下列命题正确的是( ) A.经过三点确定一个平面B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面 8. 下列命题中正确的个数是( ) ①若直线l 上有无数个点不在平面α内,则l α∥. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行. ③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.

点线面位置关系例题与练习(含答案)

点、线、面的位置关系 ● 知识梳理 (一).平面 公理1:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理2:不共线... 的三点确定一个平面. 推论1:直线与直线外的一点确定一个平面. 推论2:两条相交直线确定一个平面. 推论3:两条平行直线确定一个平面. 公理3:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线 (二)空间图形的位置关系 1.空间直线的位置关系:相交,平行,异面 1.1平行线的传递公理:平行于同一条直线的两条直线互相平行。 1.2等角定理:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补。 1.3异面直线定义:不同在任何一个平面内的两条直线——异面直线; 1.4异面直线所成的角:(1)范围:(]0,90θ∈??;(2)作异面直线所成的角:平移法. 2.直线与平面的位置关系: 包含,相交,平行 3.平面与平面的位置关系:平行,相交 (三)平行关系(包括线面平行,面面平行) 1.线面平行:①定义:直线与平面无公共点. ②判定定理:////a b a a b αα α???????? ③性质定理:////a a a b b αβαβ??????=?

2.线面斜交: ①直线与平面所成的角(简称线面角):若直线与平面斜交,则平面的斜线与该斜线在平面内射影的夹角。范围:[]0,90θ∈?? 3.面面平行:①定义://αβαβ=??; ②判定定理:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面互相平行; 符号表述:,,,//,////a b a b O a b ααααβ?=? 判定2:垂直于同一条直线的两个平面互相平行.符号表述:,//a a αβαβ⊥⊥?. ③面面平行的性质:(1)////a a αββα????? ; (2)////a a b b αβαγβγ? ? =???=? (四)垂直关系(包括线面垂直,面面垂直) 1.线面垂直①定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 符号表述:若任意,a α?都有l a ⊥,且l α?,则l α⊥. ②判定:,a b a b O l l l a l b ααα?? ?=? ???⊥??⊥? ⊥?? ③性质:(1) ,l a l a αα⊥??⊥; (2),//a b a b αα⊥⊥?; 3.2面面斜交①二面角:(1)定义:【如图】,OB l OA l AOB l αβ⊥⊥?∠-是二面角-的平面角 范围:[0,180]AOB ∠∈?? ②作二面角的平面角的方法:(1)定义法;(2)三垂线法(常用);(3)垂面法. 3.3面面垂直(1)定义:若二面角l αβ--的平面角为90?,则αβ⊥; (2)判定定理: a a ααββ?? ?⊥?⊥?

线线角-线面角-二面角的一些题目.

B 1 D 1 A D C 1 B C A 1 线线角与线面角习题 新泰一中 闫辉 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο ,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 4 6 (B). 36 (C).62 (D).6 3 3.平面α与直线a 所成的角为 3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο ,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο 角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要 有严格的推理论证过程,还要有合理的步骤. 例2.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置. A C B A D C 1D 1 A 1 B 1C B D B P C D A C B F E

点线面之间的位置关系基础练习练习题复习.doc

精品 文 档 点、线、面之间的位置关系及线面平行应用练习 1、 平面L =?βα,点βαα∈∈∈C B A ,,,且L C ∈,又R L AB =?,过 A 、 B 、 C 三点确定的平面记作γ,则γβ?是( ) A .直线AC B .直线B C C .直线CR D .以上都不对 2、空间不共线的四点,可以确定平面的个数是( ) A .0 B .1 C .1或4 D .无法确定 3、在三角形、四边形、梯形和圆中,一定是平面图形的有 个 4、正方体1111D C B A ABCD -中,P 、Q 分别为11,CC AA 的中点,则四边形PBQ D 1是( ) A .正方形 B .菱形 C .矩形 D .空间四边形 5、在空间四边形ABCD 中,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若AC=BD , 且BD AC ⊥,则四边形EFGH 为 6、下列命题正确的是( ) A . 若βα??b a ,,则直线b a ,为异面直线 B . 若βα??b a ,,则直线b a ,为异面直线 C . 若?=?b a ,则直线b a ,为异面直线 D . 不同在任何一个平面内的两条直线叫异面直线 7、在空间中:①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有 公共点,则这两条直线是异面直线,以上两个命题中为真命题的是 8、过直线L 外两点作与直线L 平行的平面,可以作( ) A .1个 B .1个或无数个 C .0个或无数个 D .0个、1个或无数个 9、b a //,且a 与平面α相交,那么直线b 与平面α的位置关系是( ) A .必相交 B .有可能平行 C .相交或平行 D .相交或在平面内 10、直线与平面平行的条件是这条直线与平面内的( ) A .一条直线不相交 B .两条直线不相交 C .任意一条直线不相交 D .无数条直线不相交 11、如果两直线b a //,且//a 平面α,则b 与平面α的位置关系是( ) A .相交 B .α//b C .α?b D .α//b 或α?b 12、已知直线a 与直线b 垂直,a 平行于平面α,则b 与平面α的位置关系是( ) A .α//b B .α?b C .b 与平面α相交 D .以上都有可能 13、若直线a 与直线b 是异面直线,且//a 平面α,则b 与平面α的位置关系是( ) A .α//b B .b 与平面α相交 C .α?b D .不能确定 14、已知//a 平面α,直线α?b ,则直线a 与直线b 的关系是( ) A .相交 B .平行 C .异面 D .平行或异面

点线面位置关系(知识点加典型例题)

2.1空间中点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系 1、教学重点和难点 重点:空间直线、平面的位置关系。 难点:三种语言(文字语言、图形语言、符号语言)的转换 2、三个公理: (1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为 A ∈L B ∈L => L α ,A∈α ,B ∈α 公理1作用:判断直线是否在平面内 (2)公理2:过不在一条直线上的三点,有且只有一个平面。 符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。 公理2作用:确定一个平面的依据。 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 符号表示为:P∈α∩β =>α∩β=L,且P ∈L 公理3作用:判定两个平面是否相交的依据 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等. 2、空间两条不重合的直线有三种位置关系:相交、平行、异面 L A · α C · B · A · α P · α L β

3、异面直线所成角θ的范围是 00 <θ≤900 2.1.2 空间中直线与直线之间的位置关系 1 空间的两条直线有如下三种关系: 相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点; 异面直线: 不同在任何一个平面内,没有公共点。 2 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线 a ∥ b c∥b 强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。 公理4作用:判断空间两条直线平行的依据。 3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4 注意点: ① a'与b'所成的角的大小只由a 、b的相互位置来确定,与O的选择无关,为简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0,); ③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形; ⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。 2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系 1、直线与平面有三种位置关系: (1)直线在平面内 —— 有无数个公共点 共面直线 =>a ∥c 2

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

点线面位置关系练习题

点线面位置关系知识点总结 【空间中的平行问题】 (1)直线与平面平行的判定及其性质 ①线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。 (线线平行→线面平行) ②线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。(线面平行→线线平行) (2)平面与平面平行的判定及其性质 两个平面平行的判定定理: ①如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行) ②如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行) ③垂直于同一条直线的两个平面平行 两个平面平行的性质定理: ①如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行) ②如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行) 【空间中的垂直问题】 (1)线线、面面、线面垂直的定义 ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。 ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。 ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。 (2)垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理 判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。 性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ②面面垂直的判定定理和性质定理 判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。 【空间角问题】 (1)直线与直线所成的角 ①两平行直线所成的角:规定为 ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。 ③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。 (2)直线和平面所成的角 ①平面的平行线与平面所成的角:规定为 0 ,a b ''0

2.1《空间点、直线、平面之间的位置关系》练习题

2.1空间点、直线、平面之间的位置关系练习题 一、 选择题: 1.下面推理过程,错误的是( ) (A ) αα??∈A l A l ,// (B ) ααα??∈∈∈l B A l A ,, (C ) AB B B A A =??∈∈∈∈βαβαβα,,, (D ) βαβα=?∈∈不共线并且C B A C B A C B A ,,,,,,,, 2.一条直线和这条直线之外不共线的三点所能确定的平面的个数是( ) (A ) 1个或3个 (B ) 1个或4个 (C ) 3个或4个 (D ) 1个、3个或4个 3.以下命题正确的有( ) (1)若a ∥b ,b ∥c ,则直线a ,b ,c 共面; (2)若a ∥α,则a 平行于平面α内的所有直线; (3)若平面α内的无数条直线都与β平行,则α∥β; (4)分别和两条异面直线都相交的两条直线必定异面。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 4.正方体的一条体对角线与正方体的棱可以组成异面直线的对数是( ) (A ) 2 (B ) 3 (C ) 6 (D ) 12 5.以下命题中为真命题的个数是( ) (1)若直线l 平行于平面α内的无数条直线,则直线l ∥α; (2)若直线a 在平面α外,则a ∥α; (3)若直线a ∥b ,α?b ,则a ∥α; (4)若直线a ∥b ,α?b ,则a 平行于平面α内的无数条直线。 (A ) 1个 (B ) 2个 (C ) 3个 (D )4个 6.若三个平面两两相交,则它们的交线条数是( ) (A ) 1条 (B ) 2条 (C ) 3条 (D )1条或3条 7. 下列命题正确的是( ) A.经过三点确定一个平面 B.经过一条直线和一个点确定一个平面 C.四边形确定一个平面 D.两两相交且不共点的三条直线确定一个平面 8. 下列命题中正确的个数是( ) ①若直线l 上有无数个点不在平面α内,则l α∥. ②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行. ③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行.

(完整版):平面直角坐标系经典例题解析

【平面直角坐标系重点考点例析】 考点一:平面直角坐标系中点的特征 例1 在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.思路分析:根据第一象限的点的坐标,横坐标为正,纵坐标为正,可得出m的范围. 解:由第一象限点的坐标的特点可得: 20 m m > ? ? -> ? , 解得:m>2. 故答案为:m>2. 点评:此题考查了点的坐标的知识,属于基础题,解答本题的关键是掌握第一象限的点的坐标,横坐标为正,纵坐标为正. 例1 如果m是任意实数,则点P(m-4,m+1)一定不在() A.第一象限B.第二象限C.第三象限D.第四象限 思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5, ∴点P的纵坐标一定大于横坐标, ∵第四象限的点的横坐标是正数,纵坐标是负数, ∴第四象限的点的横坐标一定大于纵坐标, ∴点P一定不在第四象限. 故选D. 点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).例2 如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是() A.(2,0)B.(﹣1,1)C.(﹣2,1)D.(﹣1,﹣1) 分析:利用行程问题中的相遇问题,由于矩形的边长为4和2,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答. 解答:解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知: ①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;

(精编)点线面之间的位置关系测试题)

点、直线、平面之间的位置关系 一、选择题 1. 若是平面外一点,则下列命题正确的是( ) ( A )过只能作一条直线与平面相交 ( B )过可作无数条直线与平面 垂直 (C )过只能作一条直线与平面平行 (D )过可作无数条直线与平面平行 2.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题 ① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题... 的序号是 ( ) A.①②③ B.①②④ C.②③④ D.①③④ 3.设正四棱锥S —ABCD 的侧棱长为2,底面边长为3,E 是SA 的中点,则异面直线BE 与SC 所成的角是 ( ) A .30° B .45° C .60° D .90° 4.如图所示,在正方形ABCD 中, E 、 F 分别是AB 、BC 的中点.现在沿DE 、DF 及EF 把△ADE 、△CDF 和△BEF 折起,使A 、B 、C 三点重合,重合后的点记为P .那么,在四面体P —DEF 中,必有 ( ) 5.下列说法正确的是( ) A .若直线平行于平面内的无数条直线,则 B .若直线在平面外,则 C .若直线,,则 D .若直线,,则直线就平行于平面内的无数条直线 6.在下列条件中,可判断平面与平面平行的是( ) A .、都垂直于平面 B .内存在不共线的三点到平面的距离相等 C .、是内两条直线,且, D .、是两条异面直线,且,,, 7.已知直线a ∥平面α,直线b ?α,则a 与b 的关系为( ) A .相交 B .平行 C .异面 D .平行或异面1.设M 表示平面,a 、b 表示直线,给出下列四个命题: ①M b M a b a ⊥????⊥// ②b a M b M a //????⊥⊥ ③????⊥⊥b a M a b ∥M ④????⊥b a M a //b ⊥M . 其中正确的命题是 ( ) A.①② B.①②③ C.②③④ D.①②④ 8.把正方形ABCD 沿对角线AC 折起,当点D 到平面ABC 的距离最大时, 直线BD 和平面ABC 所成角的大小为 ( ) A . 90 B . 60 C . 45 D . 30 第4题图

空间点、线、面位置关系(经典例题+训练)

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 * (1)位置关系的分类 ?? ? 共面直线????? 异面直线:不同在任何一个平面内 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的____________叫做异面直线a ,b 所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 } 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ] ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). : 【例题讲解】 1、平面的基本性质 例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB =CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH.

线面垂直面面垂直知识点总结经典例题及解析高考题练习及答案第次补课

直线、平面垂直的判定与性质 【知识梳理】 一、直线与平面垂直的判定与性质 1、 直线与平面垂直 (1)定义:如果直线l 与平面α内的任意一条直线都垂直,我们就说直线l 与平面α互相垂直,记作l ⊥α,直线l 叫做平面α的垂线,平面α叫做直线l 的垂面。如图,直线与平面垂直时,它们唯一公共点P 叫做垂足。 (2)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。 结论:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面,记作.//a b b a αα? ?⊥?⊥? (3)性质定理:垂直于同一个平面的两条直线平行。即,//a b a b αα⊥⊥?. 由定义知:直线垂直于平面内的任意直线。 2、 直线与平面所成的角 平面的一条斜线和它在平面上的射影所成的锐角或者直角叫做这条直线和这个平面所成的角。一条直线垂直于平面,该直线与平面所成的角是直角;一条直线和平面平行,或在平面内,则此直线与平面所成的角是0 0的角。 3、 二面角的平面角 从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。如果记棱为l ,那么两个面分别为αβ、的二面角记作l αβ--.在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的射线,则两射线所构成的角叫做叫做二面角的平面角。其作用是衡量二面角的大小;范围:0 0180θ≤≤. 二、平面与平面垂直的判定与性质 1、定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直. 2、判定:一个平面过另一个平面的垂线,则这两个平面垂直。简述为“线面垂直,则面面垂直”,记作 l l βαβα⊥? ?⊥??? . 3、性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直,记作l m m m l αβαββα⊥??=? ?⊥??? ?⊥? I . 【经典例题】 【例1】(2012浙江文)设l 是直线,a,β是两个不同的平面 ( ) A .若l ∥a,l ∥β,则a ∥β B .若l ∥a,l ⊥β,则a ⊥β C .若a ⊥β,l ⊥a,则l ⊥β D .若a ⊥β, l ∥a,则l ⊥β 【答案】B

空间点线面位置关系例题训练

空间点、线、面的位置关系 【基础回顾】 1.平面的基本性质 公理1:如果一条直线上的________在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,这些公共点的集合是经过____________的一条直线. 公理3:经过____________________的三点,有且只有一个平面. 推论1:经过____________________,有且只有一个平面. 推论2:经过________________,有且只有一个平面. 推论3:经过________________,有且只有一个平面. 2.直线与直线的位置关系 (1)位置关系的分类 (2)异面直线判定定理 过平面内一点与平面外一点的直线,和这个平面内______________的直线是异面直线. (3)异面直线所成的角 ①定义:设a,b是两条异面直线,经过空间任意一点O,作直线a′∥a,b′∥b,把a′与b′所成的____________叫做异面直线a,b所成的角. ②范围:____________. 3.公理4 平行于____________的两条直线互相平行. 4.定理 如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角 ________.

自我检测 1.若直线a与b是异面直线,直线b与c是异面直线,则直线a与c的位置关系是____________. 2.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线________对. 3.三个不重合的平面可以把空间分成n部分,则n的可能取值为________. 4.直三棱柱ABC—A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成角的大小为________. 5.下列命题: ①空间不同三点确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形; ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一直线的两直线平行; ⑦一条直线和两平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 其中正确的命题是________(填序号). 【例题讲解】 1、平面的基本性质 例1如图所示,空间四边形ABCD中,E、F、G分别在AB、BC、CD上,且满足AE∶EB=CF∶FB=2∶1,CG∶GD=3∶1,AH∶HD=3∶1,过E、F、G的平面交AD于H,连结EH. 求证:EH、FG、BD三线共点. 变式迁移1

相关主题