搜档网
当前位置:搜档网 › 2015-MSEA-linear friction welded joints betweenTC11 and TC17 dissimilar titanium alloys-线摩擦焊

2015-MSEA-linear friction welded joints betweenTC11 and TC17 dissimilar titanium alloys-线摩擦焊

2015-MSEA-linear friction welded joints betweenTC11 and TC17 dissimilar titanium alloys-线摩擦焊
2015-MSEA-linear friction welded joints betweenTC11 and TC17 dissimilar titanium alloys-线摩擦焊

Strain hardening behavior of linear friction welded joints between

TC11and TC17dissimilar titanium alloys

Pengkang Zhao,Li Fu n

State Key Laboratory of Solidi?cation Processing,Shaanxi Key Laboratory of Friction Welding Technologies,Northwestern Polytechnical University,

Xi’an710072,Shaanxi,PR China

a r t i c l e i n f o

Article history:

Received10September2014

Received in revised form

16October2014

Accepted17October2014

Available online23October2014

Keywords:

Linear friction welding(LFW)

Dissimilar titanium alloys

Strain hardening behavior

Strain rate sensitivity

a b s t r a c t

The in?uence of strain rate on the tensile properties and its distribution of linear friction welded

(LFWed)dissimilar joints between Ti–6.5Al–3.5Mo–1.5Zr–0.3Si(TC11)and Ti–4Mo–4Cr–5Al–2Sn–2Zr

(TC17)titanium alloys were studied in this paper.Furthermore,strain hardening behavior,strain rate

sensitivity and fracture characteristic of the LFWed joints have been evaluated.It was found that a great

deal of ultra-?ne grains appear on the TC11side of weld zone(WZ).The microstructure on the TC17side

of WZ is composed of coarsenedβphase,a lot of slip lines and dislocation networks within the

boundaries ofβgrains generate under high temperature deformation by transmission electron

microscope(TEM).A distinctive asymmetrical hardness pro?le is observed across the joint,with higher

hardness on the TC11side of WZ and lower hardness on the TC17side of WZ,respectively.While the

yield strength(YS),ultimate tensile strength(UTS)of the joint increase,both hardening capacity and

strain hardening exponent n-value decrease with increasing strain rate,meanwhile,the strain-hardening

rateθincreases at a given true stress.Strain rate sensitivity of the welding joint decreases with

increasing plastic strain.Moreover,the fracture location of the LFWed joints between TC11and TC17

titanium alloys almost locate at the regions with lower hardness.Additionally,ductile fractures and a

mixed cleavage fractures appear respectively at the center and edge area of the LFWed joints.

&2014Elsevier B.V.All rights reserved.

1.Introduction

Titanium and its alloys have been successfully and increasingly

used in the aerospace industrial area for their unique properties,

such as low density,high speci?c strength,wide operating

temperature range and superior corrosion-resistant ability[1–4].

At high temperatures,the metal reacts strongly with atmospheric

gases such as oxygen and nitrogen,thus the welding in air would

make the joint completely brittle.Therefore,only in a vacuum or a

protective atmosphere are Ti and its alloys weldable.The tradi-

tional fusion welding usually exist poor shielding of the welding

zone or impure shielding gas during the welding process,which

could lead to serious contamination[5].Therefore,the solidi?ca-

tion problems appear,e.g.porosity,hot cracking,segregation,etc.

To overcome these problems,linear friction welding(LFW)is

considered to be an ideal process to join titanium and its alloys.

LFW is a solid state process for joining materials together

through intimate contact of a plasticized interface,which is

generated by frictional heat produced as one component is moved

relatively to another under pressure[6–8].It is a complicated and

quick thermo-mechanically coupled physical process,which is

suitable for materials with low thermal conductivity and high

temperature mechanical properties[9].Therefore,the process is

considered to be particularly appropriate for joining of titanium

and nickel alloys[10–12].The development of LFW has been

driven by the aeroengine manufacturing industry to fabricate

integrally bladed disks(blisks)giving light weight and improved

performance over the existing slotted blade/disk assemblies[8].

There are some research works related with LFW of titanium alloys

in recent years.Vairis and Frost[13,14]systematically analyzed the

change laws in different phases of the Ti–6Al–4V alloy LFWed

joints at variable frequencies and amplitudes of oscillation.The

process is divided into four distinct phases:in the?rst phase,the

two materials are brought in contact under pressure and heat is

generated from solid friction;in the transition phase,heat affected

zone expands and the true contact area is considered to be100%of

the cross-sectional area,and the soft plasticized layer is no longer

able to support the axial load;in the equilibrium phase,axial

shortening increases sharply and heat is conducted away from the

interface and a plastic zone develops;in the deceleration phase,

the relative motion is stopped abruptly and forging pressure is

applied to consolidate the weld.Karadge et al.[15]examined the

microstructure and texture development in as-welded and post

weld heat treated Ti–6Al–4V LFWed joints.Frankel et al.[16]

Contents lists available at ScienceDirect

journal homepage:https://www.sodocs.net/doc/4212901315.html,/locate/msea

Materials Science&Engineering A

https://www.sodocs.net/doc/4212901315.html,/10.1016/j.msea.2014.10.044

0921-5093/&2014Elsevier B.V.All rights

reserved.

n Corresponding author.

E-mail address:fuli@https://www.sodocs.net/doc/4212901315.html,(L.Fu).

Materials Science&Engineering A621(2015)149–156

compared the residual stresses between Ti –6Al –4V and Ti –6Al –2Sn –4Zr –2Mo LFW.Romero et al.[6]examined the effect of the forging pressure on the microstructure and residual stress devel-opment in Ti –6Al –4V LFW.Refs.[17–19]investigated the micro-structure and mechanical properties of LFWed joints of Ti –6Al –4V alloy,such as impact toughness and fracture characteristics.

The strength,ductility,toughness and deformability of materi-als are intimately related to strain hardening characteristics [20].For this reason,many investigations have been carried out on the strain hardening behavior and physical mechanism of conven-tional metallic materials [21,22].Hitherto many studies have been reported on the strain hardening behavior of Ti alloys.For example,Bystrzanowski et al.[23]investigated the tensile ?ow behavior of Ti –46Al –9Nb sheet material and observed only stage III strain hardening at high temperatures.Honarmandi and Aghaie-Khafri [24]studied the strain hardening behavior of Ti –6Al –4V and TiAlx alloys,respectively,by means of compression testing at high temperatures and observed different stages of strain hardening.In spite of many studies focused on the strain hardening behavior of titanium alloys as well as the strain hard-ening behavior of welded joints,there were few reports about the dynamic mechanical behavior of LFWed dissimilar titanium alloy joints until now.However,for the reliable design of the gas turbine structural components,it was very important to understand the mechanical behavior of LFWed joints as well as the strain rate effect on it.Therefore,this study was aimed at evaluating the strain rate effects on the mechanical properties,deformation and fracture behavior of LFWed joints with TC11and TC17dissimilar alloys.Due to the different stress and environmental status of the blade and disk,for example,the disk bears large tensile stress on the low temperature and the blade bears small stress on the high temperature,therefore,dual alloy (TC11as blade and TC17as disk)–dual property blisk can play a greater extent their excellent performance,and work in a larger temperature gradient and stress gradient conditions.

2.Materials and methods

The materials used in the present study are forged TC11and TC17titanium alloys,and their chemical compositions were listed in Table 1.Both alloys were machined into the plates with a dimension of 130mm ?75mm ?20mm,and then mechanically and chemically cleaned before welding.The LFW machine was developed by Beijing Aeronautical Manufacturing Technology Research Institute (China)and was carried out with oscillation frequency of 40Hz,amplitude of 3mm,friction pressure of 50MPa,and friction time of 3.6s.

Metallographic samples of the welded joints cut perpendicular to the welding direction were prepared and examined via optical microscopy (OM),scanning electron microscopy (SEM)and trans-mission electron microscope (TEM).Vickers microhardness was determined using a load of 500g and a dwell time of 15s.All the microhardness values presented in this study were an average of three series of values taken on the same specimen.The center point of the WZ was determined carefully after observing the weld geometry under microscope and all the indentations were

adequately spaced to avoid any potential effect of strain ?eld caused by adjacent indentations.

Tensile tests were performed using ASTM-E8M subsized sam-ples on a fully computerized tensile testing machine at room temperature and strain rates from 10à5to 10à2s à1.Subsized tensile specimens of 100mm long with a gauge length of 25mm (or a parallel length of 32mm)and gauge width of 6mm were machined perpendicularly to the welding direction using electro-discharge machining (EDM).The gauge area was ground up to #1000SiC papers to remove the EDM cutting marks and to achieve a smooth and consistent surface.Three specimens in each case were tested to check the reproducibility of the test data.The 0.2%offset YS,UTS,ductility and the work hardening properties were evaluated.Fracture morphologies after tensile testing were exam-ined using SEM to identify the fracture mechanisms.

3.Results and discussion 3.1.Microstructure

The microstructures of the base metals (BM)are shown in Fig.1.It is seen that the BM consists of αtβphases.The microstructure of TC11alloy is composed of equiaxed prior-αphase and intergranular transformed βphase (mixture of lamellar αand βphases).The volume fraction of βphase is about 47.4%[25].TC17alloy is rich in βphase and is composed of basket-weave microstructure,and αphase precipitates uniformly within grains [26].After LFW,a remarkable change of microstructure occurs in the WZ and thermo-mechanically affected zone (TMAZ)as shown in Fig.2(a)-(d).It can be clearly seen that the welding interface between the TC11and TC17alloys.The microstructures of WZ between TC11and TC17alloys are different each other.The microstructure on the TC11side of WZ consists of acicular and ?ne martensites α0and α″during the thermo –mechanical proces-sing due to high thermal conductivity and fast cooling rate and a relatively short dynamic recrystallization (DRX)period [8,27,28],as shown in Fig.2(b)and (d).In contrast,the microstructure on the TC17side of WZ is composed of coarsened βphase (Fig.2b and c),which is attributed to more β-stabilizing alloying elements exist-ing in Table 1and long DRX period with low thermal conductivity.The results lead to the presence of a soft zone [29–31].The percentage of DRX increases with temperature above 10001C [32].For further to investigate the microstructural features in the WZ of LFWed joints,TEM test method was applied on the TC11and TC17sides of WZ as shown in Fig.2(e)and (f).Lots of slip lines and dislocation networks within the boundaries of βgrains are generated under high temperature deformation on the TC17side of WZ during the LFW process.The βgrain of the body-centered cubic (BCC)crystal structure is shown by the selected-area diffraction pattern (SADP)with a typical diffraction pattern of zone axis [001].Due to the high stacking fault energy (SFC)of titanium alloys,dislocations are hard to break down [33].During the deformation,the dislocations are tangled with the help of crossing and climbing,more dislocations gather and high-angle subgrain boundaries appear.On the TC11side of WZ,the marten-site α0of the hexagonal close packed (HCP)crystal with the SADP forms during the fast cooling and the certain dislocation density occurs due to the thermoplastic deformation [33–35].The micro-structures of TMAZ on both TC11and TC17sides become elongated along the ?ow direction of plasticized materials,which are almost parallel to the weld line and the streamline (Fig.2c and d).The microstructure of the joint at the edge zone is similar with the center zone.However,the width of the edge zone is wider than the central region due to more energy stored at the edge zone by the heat re ?ux of the ?ash after welding.The reason is that the

Table 1

Chemical composition (wt%)of TC11and TC17titanium alloys.elements Al Mo Cr Si Sn Zr Ti

TC11 5.8–7.0 2.8–3.8–

0.2–0.4–

1.0–

2.0Allowance TC17

4.5–

5.5

3.5–

4.5

3.5–

4.5

1.5–

2.5

1.5–

2.5

Allowance

P.Zhao,L.Fu /Materials Science &Engineering A 621(2015)149–156

150

heat loss by radiation and convection is less than conductivity.The detailed analysis has been described in our previous paper [8].3.2.Microhardness

Fig.3shows Vickers microhardness pro ?les along the center and edge area of the dissimilar LFWed joints between TC11and TC17alloys.It is seen that distinctive asymmetrical hardness pro ?les across the dissimilar weld are present with an average hardness value of $360HV for TC11BM and $390HV for TC17BM,https://www.sodocs.net/doc/4212901315.html,pared with the TC11BM,the higher hard-ness in the TC17BM is related to the overall higher alloying elements in the TC17alloy (Table 1)and basket-weave micro-structure (Fig.1b)where αphase precipitates uniformly within grains,offering a strong resistance to the motion of dislocations during plastic deformation.In the center zone of the joint,the appreciably higher hardness value on the TC11side of WZ which is obviously attributed to the grain re ?nement and ?ne

martensites

Fig.1.Microstructures of (a)TC11BM and (b)TC17

BM.

Fig.2.Microstructure of the LFWed joints between TC11and TC17alloys,(a)overall view of the cross section,(b)welding joint at higher magni ?cation,(c)TC17side of WZ,(d)TC11side of WZ,(e)TEM micrographs showing selected-area diffraction pattern (SADP)of βon the TC17side of WZ,(f)TEM micrographs showing the SADP of αon the TC11side of WZ.

P.Zhao,L.Fu /Materials Science &Engineering A 621(2015)149–156151

α0and α″,and lower hardness value on the TC17side of WZ,which is ascribed to relatively soft and coarse βphase as shown in Fig.2(b)and (c)[27,36].It is also observed that the hardness value declines gradually from the weld centerline to TC11BM due to dropping temperature and martensite from the welding line.However,the hardness of TC17side increases from the WZ boundary up to TC17BM with increasing distance,which can be explained by the reduction of coarse βphase through dropping temperature.The width of the joint in the edge is wider than the center zone (Figs.3and 4).The hardness in the TC17side of WZ is lower than the TC11BM,which can be ascribed to a longer time of heat treatment at the edge of the joint,more coarse βphase are formed.The phenomena can be also explained from the welding process on the basis of the simulation.The temperature evolution at the center and edge areas of the friction interface of TC11side is shown in the Fig.4.TC17side has the similar law.The temperature

of ?ash decreases more slowly than that of the interface center.More detailed results on the temperature evolution of the simula-tion has been reported in our earlier literature [8].3.3.Tensile properties

3.3.1.Effect of strain rate on the YS and UTS

Fig.5shows typical stress –strain curve of TC11and TC17BMs,and their dissimilar joints at a strain rate of 10à3s à1at room temperature.The smooth and continuous stress –strain curves occur on the BMs and joint [37].It is also seen from Fig.5that the TC11alloy is more ductile than the TC17alloy,despite its lower ?ow stress than that of TC17alloy.This is directly associated with the microstructure and grain morphology as shown in Fig.1.The lamellar microstructure is usually preferable for the strength,fracture toughness,fatigue crack propagation,and oxidation beha-vior,while the globular microstructure is better for the ductility and fatigue crack initiation [31,38,39].As seen from Fig.1,TC11alloy consists of more globular α,while TC17exhibits a lamellar microstructure as mentioned above.Therefore,the ductility of TC11alloy is higher than that of TC17alloy,and the strength of TC11alloy is lower than that of TC17alloy.

In the normal case,the strength of the BM is supposed to be higher than that of welded joint [40,41].However,a special or seemingly abnormal characteristic is observed in Fig.5.For example,the stress –strain curve of the LFWed joint lies in-between those of the two BMs of TC11and TC17alloys.Wen et al.[42]and Ma et al.[36]also found the similar phenomena on the LFWed joint of Ti –6Al –4V and Ti –6.5Al –3.5Mo –1.5Zr –0.3Si alloys.Fig.6shows the typical stress –strain curves tested under various strain rates at the different location of the LFWed joints with TC11and TC17alloys.As seen from Fig.6(a),the ?ow curves shift higher with increasing strain rate.Meanwhile,the lower strength and ductility happen at the edge area of the LFWed joints as shown in Fig.6(b).The phenomena correspond with the microstructure and the microhardness on the welding joint.More energy stored at the edge zone of the joint leads to the increasing width of coarse βphase zone and lower microhardeness on the TC17side of WZ compared with the TC11BM in Fig.3.This suggests a strong dependence of the ?ow behavior on the location during the LFW.In all the cases a small slope of the curves is present in the plastic range,which shows a relatively low strain-hardening rate in most titanium alloys [43].

Fig.7(a)gives the YS and UTS of TC11/TC17dissimilar joint under different tensile stain rate at the center zone of the joint at room temperature.As shown in Fig.7(a),the YS and UTS of the LFWed joint increase with the increasing of tensile strain rate,but the YS increase more quickly than the UTS.That suggests a

strong

Fig.3.Hardness pro ?le across the center and edge of the dissimilar welded joint between TC11and TC17

alloys.

Fig.4.Simulation temperature evolution at the center and edge of the friction interface on the TC11

side.Fig.5.Typical tensile stress –strain curve of TC11BM,TC17BM,and their joint,respectively,at a strain rate of 10à3s à1at room temperature.

P.Zhao,L.Fu /Materials Science &Engineering A 621(2015)149–156

152

strain rate dependence of both YS and UTS for LFWed joints with TC11and TC17alloys.The average YS of the LFWed joints increase from about 918MPa at a strain rate of 10à5s à1to about 1060MPa at a strain rate of 10à2s à1,and the corresponding average UTS also increase from about 1035MPa to about 1106MPa in the same strain range.The reason of strain rate dependent behavior can be ascribed to plastic deformation mechanism for dislocation slip at low strain rates and twinning at the high strain rate [44–47].Traces of plastic deformation occur during the yield process.Another reason for this is mainly determined by competing processes of strain hardening,strain rate of reinforcement and adiabatic tem-perature rise softening.The ?ow stress increases with the increas-ing of the strain rate,indicative of positive strain rate sensitivity.When the material happens plastic deformation,the dislocation rapidly proliferates and the density of the dislocation increases,the dislocation slips more and more dif ?cultly,which causes the strain hardening.At high strain rates,however,the plasticity deformation does not have enough time to proceed.So it shows lower plasticity [48].Fig.7(b)shows the effect of strain rate on the ductility of the welding joints at the center and edge zones.As seen from the ?gure,the ductility of the LFWed joints decline with the increasing of strain rate at the center area of the joints,and the ductility of the joints at edge area are lower than the center part.

3.3.2.Effect of strain rate on strain hardening behavior

The hardening capacity H C may be simply de ?ned as follows [49],

H C ?σUTS àσy σy ?σUTS

σy à1;e1T

where σy and σUTS are YS and UTS respectively.Fig.8shows the

hardening capacity of the dissimilar joint tested under various

strain rates at the different locations by Eq.(1).The results show that the hardening capacity of the joints decrease with increasing strain rate and the effect of the locations can be ignored.Based on Eq.(1),the hardening capacity of a material is related to its YS and UTS.As seen from Fig.7(a),the slope of the YS is slightly steeper than that of the UTS with the increasing of strain rate,therefore the H C decrease with increasing strain rates as shown in the Fig.8.For example,the YS increase from about 918MPa to about 1060MPa when the strain rate increase from 10à5s à1to 10à2s à1,and the corresponding value of H C decrease from 0.127to 0.043.The grain size and dislocation density of the material during plastic deforma-tion have important effects on the H C [49–52].

Fig.9shows the strain hardening exponent of the dissimilar joints with the strain rate by a modi ?ed relationship proposed

by

Fig.6.Tensile stress –strain curve of TC11/TC17dissimilar joints tested at (a)different strain rates at the center zone of the joints at room temperature,and (b)different locations at a constant strain rate of 10à3s à1

.

Fig.7.Effect of strain rate on (a)YS and UTS,(b)ductility of the dissimilar joints at room

temperature.

Fig.8.Effect of strain rate on the hardening capacity of the TC11/TC17dissimilar joints.

P.Zhao,L.Fu /Materials Science &Engineering A 621(2015)149–156153

Afrin et al.[49],σàσy ?K eεàεy Tn ;

e2T

where σy ,εy ,K and n are the YS,yield strain,constant and strain hardening exponent.In Eq.(2)the elastic component in both stress and strain is indeed excluded.It is seen that n-values decrease with the increasing of strain rate at room temperature.The phenomena can be explained on the basis of the following relationship between strain hardening exponent (n )and the strain

rate (_ε)[53],n ?n 0àblg _ε

;e3T

where n 0is a material constant,and b is the slope in the n vs.lg _ε

graph.Meanwhile,the n-value of the edge of the joint is very low,which can be attributed to the lower ductility and little strain-hardening.The change of strain hardening exponents with strain rates correspond well to that of hardening capacity (Fig.8).

Fig.10shows a typical Kocks –Mecking plot of strain-hardening rate (θ?d σ=d ε)versus true stress at the various strain rates for LFWed joint.No stage I hardening (depending on the crystal orientation)and stage II hardening (strain-hardening rate being constant)are not observed in the welded joint and only stage III hardening (strain-hardening rate decreasing almost linearly with increasing true stress)appears immediately after yielding.As can be seen from Fig.10,stage III is strongly strain-rate sensitive in welding joint.The strain-hardening rate θdecrease almost linearly with increasing ?ow stress,and the θincrease at a given true stress with increasing strain rate.This could be ascribed to the following

equation [22],θ?θo à

R d

1=q σ;e4T

where R d and q are temperature dependent constants,which are

independent of stress and strain rate,θis the strain-hardening rate in stage III,and θo is considered as a constant.It is clear that the strain-hardening rate θincrease with increasing strain rate.

3.3.3.Effect of strain rate on strain rate sensitivity

Strain rate sensitivity (SRS)is one of the key engineering parameters to accurately predict the deformation behavior of the materials during loading [54].The strain rate sensitivity of the ?ow stress is de ?ned as the following equation [55,56],m ??ln σ=?ln _ε

??log σ=?log _ε;e5T

where σand _ε

are the ?ow stress and the strain rate,respectively.A highly strain-rate sensitive material is expected to resist loca-lized deformation and hence may be ductile [57].The steady-state ?ow stress of the TC11/TC17welding joints at 1%,2%,3%and 5%plastic strain are plotted in logarithmic form as a function of the logarithmic form of the strain rate.As shown in Fig.11,the m value of the TC11/TC17welding joints at 1%,2%,3%and 5%plastic strain are 0.010,0.013,0.011and 0.009respectively.It is seen that the strain rate sensitivity m value of the welding joints decrease with the increasing of plastic strain [58].The reason for the strain rate sensitivity m decreasing with the increase of plastic strain can be explained by the increasing twin density on the microstructure and the competition between the rate of work hardening and the rate of thermal softening during deformation processes [59,60]

.

Fig.9.Effect of strain rate on the strain hardening exponent

n-value.

Fig.10.The strain-hardening rate vs.true stress at different strain rates at room

temperature.

Fig.11.Flow stress in logarithm vs.strain rate in logarithm at 1%,2%,3%and 5%

true strain at the center of the joint at room temperature.Strain rate sensitivity (m)is calculated from the

slope.

Fig.12.Fracture locations under various strain rates at the center and edge area of the joints.

P.Zhao,L.Fu /Materials Science &Engineering A 621(2015)149–156

154

3.4.Fracture morphology

On a macroscopic scale,the fracture locations between the center and edge area of the joints are shown in Fig.12.It shows that the LFWed joints in the center area always fail at the TC11BM and in the edge area fail on the TC17side of WZ.The fracture location of the LFWed joints almost locate at the lowest hardness regions shown in Fig.3.The reason can be explained from the microstructure and grain morphology at the center and edge areas of the LFWed joint.More detailed analysis has been discussed in Sections 3.2and 3.3.1.The fracture morphology of the tensile test specimens are characterized by using SEM.Fracture morphologies at the center area of the joints are similar under various strain rates and the strain rate of 10à3s à1is more commonly used in most cases,therefore,fracture morphologies in the center and edge area of LFWed joint at strain rate of 10à3s à1are presented in Fig.13.The fracture morphologies in the center area of the joint are characterized by the ductile fractures with a plenty of equiaxed and tearing dimples (Fig.13a and c).Fig.13(b)and (d)show quasi-cleavage and intergranular dimple fracture features with lots of cleavage steps,river patterns and tearing ridges at the edge area of the joint.As discussed above,the center area of the joints show better ductility than the edge area.

4.Conclusions

In summary,the following conclusions are reached:

1.On the TC11side of WZ,the microstructure consists of acicular and ?ne martensite,appreciably higher hardness value occurs;on the TC17side of WZ,the microstructure is composed of the coarsened βphase,and lower hardness value appears.

2.The stress –strain curve of the TC11/TC17LFWed joint lies in-between those of the two BMs.The TC11alloy is more ductile,despite it is lower ?ow stress than TC17alloy.The YS,UTS of the TC11/TC17LFWed joint increase and the ductility decline with the increasing of strain rate.

3.As the strain rate increases,the hardening capacity and strain hardening exponent decrease and strain-hardening rate θincreases at a given true stress,and θdecreases almost linearly with increasing ?ow stress.Meanwhile,the strain rate sensi-tivity m values decrease with increasing plastic strain.

4.The center area of the TC11/TC17LFWed joints always fail at the TC11BM,and fracture morphologies are ductile fracture with a plenty of equiaxed and tearing dimples.The edge area of the joints fail in WZ near the TC17side,and fracture morphologies show the quasi-cleavage and intergranular dimple fracture features.

Acknowledgments

This work was supported by the Project of Key areas of innovation team in Shaanxi Province (No.2014KCT-12),the Pro-gramme of Introducing Talents of Discipline to Universities (No.B08040)and Innovation Project of Shaanxi Province Overall Plan on Science and Technology (No.2012HBSZS021).References

[1]P.Peralta,T.Villarreal,I.Atodaria,A.Chattopadhyay,Scr.Mater.66(2012)

13–16.

[2]I.Bantounas,D.Dye,T.C.Lindley,Acta Mater.58(2010)3908–3918.[3]I.Bantounas,D.Dye,T.C.Lindley,Acta Mater.57(2009)3584–3595.[4]Y.Q.Zhao,S.W.Xin,W.D.Zeng,https://www.sodocs.net/doc/4212901315.html,pd.481(2009)190–194.

[5]N.Saresh,M.G.Pillai,J.Mathew,J.Mater.Process.Technol.192(2007)83–88.[6]J.Romero,M.M.Attallah,M.Preuss,M.Karadge,S.E.Bray,Acta Mater.57

(2009)5582–5592.

[7]J.Romero,A.Preuss,J.Q.da Fonseca,Acta Mater.57(2009)5501–5511.[8]P.K.Zhao,L.Fu,D.C.Zhong,Comp.Mater.Sci.92(2014)325–333.[9]A.W.E.Nentwig,L.Appel,Schweiss.Schneid.47(1995)648–653.[10]P.Wanjara,M.Jahazi,Metall.Mater.Trans.A 36A (2005)2149–2164.

[11]T.Mohandas,D.Banerjee,V.V.K.Rao,Mater.Sci.Eng.A 289(2000)70–82.[12]I.Bhamji,M.Preuss,P.L.Threadgill,A.C.Addison,Mater.Sci.Tech.–Lond.27

(2011)2–12.

[13]A.Vairis,M.Frost,Wear 217(1998)117–131.

[14]A.Vairis,M.Frost,Mater.Sci.Eng.A 271(1999)477–484

.

Fig.13.The tensile fracture morphologies at the center and edge area of the joints,(a)and (b)show overall view at lower magni ?cation;(c)and (d)correspond to the zone marked by red rectangle with high magni ?cation.

P.Zhao,L.Fu /Materials Science &Engineering A 621(2015)149–156155

[15]M.Karadge,M.Preuss,C.Lovell,P.J.Withers,S.Bray,Mater.Sci.Eng.A459

(2007)182–191.

[16]P.Frankel,M.Preuss,A.Steuwer,P.J.Withers,S.Bray,Mater.Sci.Tech.–Lond.

25(2009)640–650.

[17]W.Y.Li,T.J.Ma,S.Q.Yang,Q.Z.Xu,Y.Zhang,J.L.Li,et al.,Mater.Lett.62(2008)

293–296.

[18]T.J.Ma,W.Y.Li,S.Y.Yang,Mater.Des30(2009)2128–2132.

[19]R.R.Zope,Y.Mishin,Phys.Rev.B68(2003).

[20]X.H.Chen,L.Lu,Scr.Mater.57(2007)133–136.

[21]D.Chu,J.W.Morris,Acta Mater.44(1996)2599–2610.

[22]U.F.Kocks,H.Mecking,Prog.Mater.Sci.48(2003)171–273.

[23]S.Bystrzanowski,A.Bartels,H.Clemens,R.Gerling,Intermetallics16(2008)

717–726.

[24]P.Honarmandi,M.Aghaie-Khafri,Metall.Microstruct.Anal.2(2013)13–20.

[25]https://www.sodocs.net/doc/4212901315.html,ng,T.C.Zhang,X.H.Li,D.L.Guo,J.Mater.Sci.45(2010)6218–6224.

[26]A.B.Li,L.J.Huang,Q.Y.Meng,L.Geng,X.P.Cui,Mater.Des.30(2009)

1625–1631.

[27]G.D.Wen,T.J.Ma,W.Y.Li,S.Q.Wang,H.Z.Guo,D.L.Chen,Mater.Sci.Eng.A612

(2014)80–88.

[28]S.Q.Wang,J.H.Liu,Z.X.Lu,D.L.Chen,Mater.Sci.Eng.A598(2014)122–134.

[29]E.Eisenbartha,D.Veltena,M.Müllera,R.Thullb,J.Bremea,Biomater25(2004)

5705–5713.

[30]Y.X.Tong,B.Guo,Y.F.Zheng,C.Y.Chung,L.W.Ma,J.Mater.Eng.Perform.20

(2011)762–766.

[31]S.Q.Wang,J.H.Liu,D.L.Chen,Mater.Des.56(2014)174–184.

[32]R.Ding,Z.X.Guo,Comp.Mater.Sci.23(2002)209–218.

[33]T.J.Ma,T.Chen,W.Y.Li,S.W.Wang,S.Q.Yang,Mater.Charact.62(2011)

130–135.

[34]T.J.Ma,X.Chen,W.Y.Li,Adv.Manufact.Technol.314–316(Pts1–3)(2011)

979–983.

[35]W.Y.Li,J.D.Suo,T.J.Ma,Y.Feng,K.Kim,Mater.Sci.Eng.A599(2014)38–45.

[36]T.J.Ma,B.Zhong,W.Y.Li,Y.Zhang,S.Q.Yang,C.L.Yang,Sci.Technol.Weld.Join.

17(2012)9–12.

[37]H.Li,M.Q.Li,T.Han,H.B.Liu,Mater.Sci.Eng.A546(2012)40–45.[38]L.Facchini,E.Magalini,P.Robotti,A.Molinari,S.Hoges,K.Wissenbach,Rapid

Prototyp.J.16(2010)450–459.

[39]R.K.Nalla,B.L.Boyce,J.P.Campbell,J.O.Peters,R.O.Ritchie,Metall.Mater.

Trans.A33(2002)899–918.

[40]S.G.Wang,X.Q.Wu,Mater.Des.36(2012)663–670.

[41]G.Thomas,V.Ramachandra,R.Ganeshan,R.Vasudevan,J.Mater.Sci.28

(1993)4892–4899.

[42]G.D.Wen,T.J.Ma,W.Y.Li,J.L.Li,H.Z.Guo,D.L.Chen,Mater.Sci.Eng.A597

(2014)408–414.

[43]A.A.Salem,S.R.Kalidindi,R.D.Doherty,Acta Mater.51(2003)4225–4237.

[44]W.Zhou,K.G.Chew,J.Mater.Sci.37(2002)5159–5165.

[45]A.Jaworski,S.Ankem,J.Mater.Eng.Perform.14(2005)755–760.

[46]H.W.Song,S.H.Zhang,M.Cheng,Trans.Nonferrous Metal Soc.20(2010)

2168–2173.

[47]C.J.Boehlert,Z.Chen,A.Chakkedath,I.Gutierrez-Urrutia,J.Llorca,J.Bohlen,

et al.,Philos.Mag.93(2013)598–617.

[48]F.Feng,S.Y.Huang,Z.H.Meng,J.H.Hu,Y.Lei,M.C.Zhou,et al.,Mater.Des.57

(2014)10–20.

[49]N.Afrin,D.L.Chen,X.Cao,M.Jahazi,Scr.Mater.57(2007)1004–1007.

[50]X.H.Chen,F.S.Pan,J.J.Mao,J.F.Wang,D.F.Zhang,A.T.Tang,et al.,Mater.Des.

32(2011)1526–1530.

[51]T.T.Liu,F.S.Pan,X.Y.Zhang,Mater.Des.43(2013)572–577.

[52]H.L.Zhao,F.Qiu,S.B.Jin,Q.C.Jiang,Mater.Sci.Eng.A534(2012)22–25.

[53]B.D.Venkatesh,D.L.Chen,S.D.Bhole,Mater.Sci.Eng.A506(2009)117–124.

[54]G.Rajaram,S.Kumaran,S.Suwas,Mater.Sci.Eng.A528(2011)6271–6278.

[55]J.S.Lian,C.D.Gu,Q.Jiang,Z.H.Jiang,J.Appl.Phys.99(2006)076103.

[56]G.Y.Wang,J.S.Lian,Z.H.Jiang,L.Y.Qin,Q.Jiang,J.Appl.Phys.106(2009)

086105.

[57]A.T.Maung,L.Lu,https://www.sodocs.net/doc/4212901315.html,i,Mater.Sci.Eng.A528(2010)239–246.

[58]M.Jain,M.C.Chaturvedi,N.L.Richards,N.C.Goel,Mater.Sci.Eng.A138(1991)

205–211.

[59]Y.F.Shen,L.Lu,M.Dao,S.Suresh,Scr.Mater.55(2006)319–322.

[60]W.S.Lee,https://www.sodocs.net/doc/4212901315.html,m,J.Mater.Process.Technol.57(1996)233–240.

P.Zhao,L.Fu/Materials Science&Engineering A621(2015)149–156 156

y系列三相异步电动机技术数据

y系列三相异步电动机技术数据 Y系列技术数据: 型号功率 (KW) 额定电流 IN (A) 额定转速 nN (rpm) 效率 η (%) 功率因数 (cos) 堵转转矩堵转电流最小转矩最大转矩额定转矩 Tst/TN 额定电流 Lst/TN 额定转矩 Tmin/TN 额定转矩 Tmax/Tn 同步转速3000转/分rpm Y80M1-2 0.75 1.8 2830 75.0 0.84 2.2 6.5 1.5 2.3 Y80M2-2 1.1 2.5 77.0 0.86 7.0 Y90S-2 1.5 3.4 2840 78.0 0.85 Y90L-2 2.2 4.7 80.5 0.86 1.4 Y100L-2 3 6.4 2870 82.0 0.87 Y112M-2 4 8.2 2890 85.5 Y132S1-2 5.5 11 2900 0.88 2.0 1.2 Y132S2-2 7.5 15 86.2 Y160M1-2

11 22 2930 87.2 Y160M2-2 15 29 88.2 Y160L-2 18.5 36 89.0 0.89 1.1 2.2 Y180M2 22 43 2940 Y200L1-2 30 57 2950 90.0 Y200L2-2 37 70 90.5 Y225M-2 45 84 2970 91.5 1.0 Y250M-2 55 103 Y280S-2 75 140 92.0 0.9 Y280M-2 90 167 92.5 Y315S-2 110 200 2980 1.8 6.8 Y315M-2 132 237 93.0 Y315L1-2 160 286 93.5 Y315L2-2 200 356 0.8 型号功率 (KW) 额定电流 IN (A) 额定转速 nN (rpm) 效率 η (%) 功率因数 (cos) 堵转转矩堵转电流最小转矩

中国总代理协议完整版

中国总代理协议完整版 In the case of disputes between the two parties, the legitimate rights and interests of the partners should be protected. In the process of performing the contract, disputes should be submitted to arbitration. This paper is the main basis for restoring the cooperation scene. 【适用合作签约/约束责任/违约追究/维护权益等场景】 甲方:________________________ 乙方:________________________ 签订时间:________________________ 签订地点:________________________

中国总代理协议完整版 下载说明:本协议资料适合用于需解决双方争议的场景下,维护合作方各自的合法权益,并在履行合同的过程中,双方当事人一旦发生争议,将争议提交仲裁或者诉讼,本文书即成为复原合作场景的主要依据。可直接应用日常文档制作,也可以根据实际需要对其进行修改。 第一条总则本协议书于____年___月___日由下列双方共同签订:根据_________法律登记注册的abc有限公司,其地址_________________(以下称“委托人”),与根据_________法律登记注册的def有限公司,其地址_________________________(以下称“总代理人”)。鉴于:委托人欲从 ____________________xyz有限公司(以下称卖方)引进__________________ift技术(以下称“ift”技

国内经销代理商在经营管理中的十大难点以及解决办法

国内经销代理商在经营管理中的十大难点以及解决办法 纲要:一、经营方向:做产品专家,还是做渠道专家二、企业发展:以利取胜还是以量取胜三、管理架构:家族型管理如何转变四、人员管理:如何建立有效的绩效考核机制五、库存管理:如何应对厂家不合理的压货六、客户管理:如何建立起自己的分销渠道七、客户谈判:如何推卸商超系统不合理的收费。八、资源管理:如何争取厂方最大的费用支持九、资金管理:如何控制应收账款十、利润分析:如何实现利益最大化 国内传统的经销商实质在只是流通商。其主要功能主要定位上仓储和配送两个方面。 正因为经销商职能的弱化,部分企业更是将经销商定位为“搬运工”.对经销商功能的弱 化,一方面是企业很难选择到合适的经销商的无奈之举;另一方面是厂方加强对渠道的控 制力。在厂商搏奕的两端,两者之间是呈不对应性。有规模有实力的企业更是将经销商纳 入了自己的管理之下。经销商作为弱势群体,处于被动不可控状态。这就给经销商带来两 大课题。一是经销商如何取得自己的平等地位,维护自己的正当权利呢二是国内经销商的 未来之路如何走 国内市场呼唤“营销专家”式的经销商。但可惜这类经销商并未真正实现。其原因有两点:一是市场大环境,还难以造就出这类经销商。因厂商之间难以建立足够的信任,两 者之间既合作,又抑制。即使出现销售额十个亿以上的超大规模的经销商,难只是规模的 扩大,其职能并未发生根本性的改变。二是经销商不愿意将自己如此定位。替别人产品做 市场,总觉得是别人做嫁衣。所以一些经销商挖到了第一桶金后,不是往上游发展,自己 开发产品;就是往下游发展,自己开超市。立足于当下的少之又少。目前情况之下,国内 很难出现类似于“宝隆洋行”式的经销商。 立足于当前市场状况,现在的经销商日子也越发难过。以前那种店们一开,财源滚滚来的机会已一去不复返了。经销商在处于每天繁杂的工作中,遇到各种各样的经营管理中 的难点。归其类主要以下十大方面: 一、经营方向:做产品专家,还是做渠道专家 这个问题涉及到一个定位的话题。经销商如何充分利用自己的资源优势,将其转化成竞争优势。每一位经销商都在承受着市场的积压,同行的竞争。在与厂家,与同行间,与 零售终端,与分销商之间存在着利益的搏弈。在每一轮回的搏弈之中,都在拷问着经销商 你手上有多少张牌让你取得最终的胜利。这就要求经销商必须在行业中建立起自己的区域 优势。 经销商取得行业内的优势,基本方式有二:一是成为某一品项的专业户,销售专家。 就如我们平时在市场商常常见到的:牛奶大王,食用油大户等。做牛奶的经销商经营的牛 奶品种几乎攘括了国内所有的知名品牌和高中低价位的产品。客户想进牛奶,我这里应有 尽有。成为某一品类的专家。这种经营模式为许多经销商所推从。二是专做某一类渠道。 如专做餐饮渠道,专做商超渠道或专做流通渠道。把一类渠道做专做透,形成自己的渠道 优势。成为渠道专家。

中国总代理协议(完整版)

合同编号:YT-FS-5909-28 中国总代理协议(完整版) Clarify Each Clause Under The Cooperation Framework, And Formulate It According To The Agreement Reached By The Parties Through Consensus, Which Is Legally Binding On The Parties. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

中国总代理协议(完整版) 备注:该合同书文本主要阐明合作框架下每个条款,并根据当事人一致协商达成协议,同时也明确各方的权利和义务,对当事人具有法律约束力而制定。文档可根据实际情况进行修改和使用。 第一条总则本协议书于____年___月___日由下列双方共同签订:根据_________法律登记注册的abc有限公司,其地址_________________(以下称“委托人”),与根据_________法律登记注册的def有限公司,其地址_________________________(以下称“总代理人”)。鉴于:委托人欲从____________________xyz有限公司(以下称卖方)引进__________________ift技术(以下称“ift”技术)。委托人及总代理人双方同意,由委托人指定的其总代理人系独家全权代表,委托人授权其代表可根据本协议所列的条款和条件,与卖方洽谈欲引进技术的价格及其他有关事项。兹同意下列条款:第二条定义2.1.本协议内所用词汇的意义,明确阐述如下:“佣金”系按本协议所列的条款和条

Y系列电动机型号大全

Y系列电动机型号大全 Y系列电动机是一般用途的全封闭自扇冷式鼠笼型三相异步电动机。安装尺寸和功率等级符合IEC标准,外壳防护等级为IP44,冷却方法为IC411,连续工作制(S1)。适用于驱动无特殊要求的机械设备,如机床、泵、风机、压缩机、搅拌机、运输机械、农业机械、食品机械等。 Y系列电动机效率高、节能、堵转转矩高、噪音低、振动小、运行安全可靠。Y80~315电动机符合Y系列(IP44)三相异步电动机技术条件JB/T9616-1999。Y355电动机符合Y系列(IP44)三相异步电动机技术条件JB5274-91。Y80~315电动机采用B级绝缘。Y355电动机采用F级绝缘。额定电压为380V,额定频率为50Hz。功率3kW及以下为Y接法;其它功率均为△接法。电动机运行地点的海拔不超过1000m;环境空气温度随季节变化,但不超过40℃;最低环境空气温度为-15℃;最湿月月平均最高相对湿度为90%;同时该月月平均最低温度不高于25℃。 电动机有一个轴伸,按用户需要,可制成双轴伸,第二轴伸亦能传递额定功率,但只能用联轴器传动。 按用户需要,还可供应其他功率、电压、频率、湿热带型(TH)、防护等级等电动机。 型号额定 功率 额定 电流 转速效率 功率 因数 堵转转矩堵转电流最大转矩噪声振动 速度 重量 额定转矩额定电流额定转矩1级2级 kW A r/min%COSФ倍倍倍dB(A)mm/s kg 同步转速3000r/min 2 级 Y80M1-22830667117 Y80M2-22830667118 Y90S-22840707522 Y90L-22840707525 Y100L-232880747934 Y112M-242890747945 Y132S1-22900788367 Y132S2-2152900788372 Y160M1-21129308287115 Y160M2-21529308287125 Y160L-229308287145 Y180M-22229408792173 Y200L1-23029509095232 Y200L2-23729509095250 Y225M-2458429709097312 Y250M-25510329709297387 Y280S-27513929709499515 Y280M-29016629709499566 Y315S-2110203298099104922

中国手机销售渠道现状

目前,国内手机营销渠道可以分两大类:分销渠道和直销渠道。 分销渠道 分销渠道主要包括全国总代理商、区域代理商、网上代理商三类,概述如下: 1.全国总代理商: 全国总代理商指由产品厂家授权、能够直接从产品厂家批发获得大批产品、通过其分销网络向全国各地批发销售产品的代理商。全国总代理拥有遍及全国、成熟的销售网点,资金实力较强,能有效降低厂商资金风险、保证供货,根据手机市场中销售渠道格局的变化,总代理不断强化渠道渗透力和覆盖面,仍能发挥较好的产品铺货和销售能力。 目前,国内主要大型代理商有中邮普泰、深圳天音通信、上海蜂星国际、北京华松派普、广州鹰泰数码、深圳爱施德等6家。 2. 区域代理商: 省级、市级等区域代理商是从上级代理商或厂商处批发采购产品、但是只能在规定的区域内进行分销。区域代理商包括手机连锁销售商,例如中复、迪信通、中域,他们即进行手机分销,同时自身也有一定规模和数量的零售卖场,可以零售手机。区域代理商利用在当地更细致的销售网络,能够更有效开拓和扩大手机在地区市场上的铺货率、提高市场份额。 3. 网上代理销售商 随着电子商务的兴起和发展,网上营销手机的方式也开始在市场中出现。到目前为止,比较成熟、具备一定规模的网上代理销售商有北斗手机网、太平洋手机网等。 直销渠道 直销渠道主要包括自建销售网络、家电连锁商场(国美、苏宁、永乐、大中等)、手机连锁销售店(中复、迪信通、中域等)、电子商城(赛博、太平洋等)、大型超市(家乐福、沃尔玛、华联、物美或当地大超市等)、移动运营商营业厅、手机商城、手机一条街或通信专卖街、小型手机专卖店(只卖手机的小店,主要在县城、集镇)等。

Y系列三相异步电动机的特点

Y系列三相异步电动机的特点: Y系列三相异步电动机的特点 Y系列三相异步电动机不仅满足了国民经济各部门的配套需要,而且还提高了国内外同类产品的互换性,极大地方便了引进设备的配套和维修。Y系列三相异步电动机根据其外壳的防护等级不同,又可分为IP23(防护式)和IP44(封闭式)两个基本系列,现将这两个系列异步电动机的特点简介如下。 1、Y系列(IP23)三相异步电动机的特点 Y系列(IP23)为三相防护式笼型异步电动机,其防护结构型式不同于Y系列IP44的封闭式结构,但却比一般防滴式结构要优越。它能防止手指触及机壳内带电导体或转动部分;防止直径大于12毫米的小形固体异物进入;并防止沿垂直线成60度角或小于60度角的淋水滴入电动机。因此,Y系列(IP23)三相异步电动机的外壳防护等级较J2老系列有明显的提高,从而使其的运行更安全更可靠。该系列三相异步电动机的额定电压为380伏,额定频率为50赫兹,功率范围则以5.5千瓦→132千瓦,共有14个功率等级、6个机座号和45个规格。全系列电动机的功率等级、安装尺寸均符合IEC国际标准,电动机的同步转速有3000、1500、1000、750及600转/分,绕组采用B 级绝缘材料,电动机均为A形接法,其冷却方式为IC01。2、Y系列(IP44)三相异步电动机的特点Y系列(IP44)三相异步电动机是一般用途的全封闭自扇冷式笼型异步电动机,它适用于拖动无性能要求的各种机械设备,如鼓风机、空气压缩机、水泵和金属切削机床等。其额定电压为380伏,额定频率为50赫兹功率范围为0.55→160千瓦,共有22个功率等级。电动机的同步转速有3000、1500、1000、750及600转/分,其冷

中国地区总代理合同协议书范本 标准版

编号:_____________中国地区总代理合同 甲方:________________________________________________ 乙方:___________________________ 签订日期:_______年______月______日

甲方: 乙方: 甲方与乙方在互惠平等的原则上,经过友好协商,双方为其事业的发展,甲方出口的商品进入中国市场而签订以下合同。 第一条(总代理商) 甲方认可乙方为核心合作伙伴;甲方应协助乙方同时并分别与品牌持有方及实际生产厂方签署代理合同及供销合同,有关的订货合同应由乙方与实际生产厂方直接签订。订货合同货款由乙方直接支付给实际生产厂方。 甲方授权乙方为甲方自有品牌在中国(香港、台湾、澳门地区除外)独家经销商。本合同所指“甲方自有品牌”为含有商标的系列婴幼儿配方奶粉。 第二条(合同期限) 本合同有效期为自签订合同之日起____________年。 第三条(续签合同) 1、合同的续签在合同期满____________个月前,甲乙双方协商后决定是否续签; 2、本合同按照第十一条规定,在合同期满前,乙方在完成当初目标的进口销量下,合同将自动续签____________年。 第四条(知识产权) 1、甲方自有品牌的商标权,设计权等所有知识产权属于甲方;在合同有效期内,甲方自有品牌在中国大陆的使用权属于乙方。 2、合同到期后或解约时,乙方未经甲方认可不得使用的商标设计、包装设计等知识产权。

第五条(双方权利及义务) 1、乙方权利及义务 1)乙方作为甲方自有品牌产品的中国总代理商,为了提高销量需积极努力;按约定完成年度销售任务。 2)乙方作为甲方的总代理商,拥有该品牌在中国的招商权、广告权、销售权等全部商务活动权利。 2、甲方权利及义务 1)甲方认可乙方在中国地区内的独家代理商; 2)甲方在中国不得在任何情况下,将甲方自有品牌产品流通给乙方以外的人,甲方不得以类似品牌或形象在中国境内流通; 3)甲方积极配合乙方开拓市场,并提供其所需的物品及资料; 4)甲方支援乙方销售活动费用,支援金额和支援内容双方协商后决定。详见补充协议; 5)甲方在合同期限内未经过乙方同意,不能直接或间接在合同地区内销售产品; 6)由于双方组织机构的变更或解散、甲方自身的工作职责与内容的变更或转移,有责任向对方出具正式的书面材料说明,但不得对本合同的内容及法律效力有所改变。 第六条(产品上市) 甲方和乙方相互协商,在中国内持续销售相关商品,销售商品名为“____________”,以系列性产品为原则进行。 第七条(订单与发货) 1、乙方向甲方订货时,务必要明确记载产品名称、数量、装船日期要求等,订货单中还应包括包装、发票、装船等相关准确信息。订单在双方协商完毕前不具有约束力;产品的生产与订单的到货周期见补充协议。 2、除因灾难引起的情况外,甲方负有包装义务,使产品安全以及毫无破损的进行交接。 第八条(产品质量)

中国总代理协议简易版

It Is Necessary To Clarify The Rights And Obligations Of The Parties, To Restrict Parties, And To Supervise Both Parties To Keep Their Promises And To Restrain The Act Of Reckless Repentance. 编订:XXXXXXXX 20XX年XX月XX日 中国总代理协议简易版

中国总代理协议简易版 温馨提示:本协议文件应用在明确协议各方的权利与义务、并具有约束力和可作为凭证,且对当事人双方或者多方都有约制性,能实现监督双方信守诺言、约束轻率反悔的行为。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 第一条总则本协议书于____年___月 ___日由下列双方共同签订:根据_________法 律登记注册的abc有限公司,其地址 _________________(以下称“委托人”),与 根据_________法律登记注册的def有限公 司,其地址_________________________(以下 称“总代理人”)。鉴于:委托人欲从 ____________________xyz有限公司(以下 称卖方)引进__________________ift技术 (以下称“ift”技术)。委托人及总代理 人双方同意,由委托人指定的其总代理人系独 家全权代表,委托人授权其代表可根据本协议

所列的条款和条件,与卖方洽谈欲引进技术的价格及其他有关事项。兹同意下列条款:第二条定义2.1.本协议内所用词汇的意义,明确阐述如下:“佣金”系按本协议所列的条款和条件,由委托人按照6.1.条款支付给总代理人的佣金。“许可证协议”系指委托人与卖方所签订的技术转让或许可证协议,包括与技术有关的于任何时候所作的补充、修改和增补的技术,由卖方出售、转让该技术并向委托方予以报价。“价格”系指委托人为引进该项技术而支付给卖方的款额,包括许可证和特许权使用费及其他费用,由委托方向卖方支付的款额。2.2.各条款所列的标题仅为醒目而用,对本协议的解释无影响。 第三条总代理3.1.委托人指定其总

Y系列电动机安装参数与尺寸

Y系列三相异步电动机外形及安装尺寸

三相异步电动机的额定值刻印在每台电动机的铭牌上,一般包括下列几种: 1.型号:为了适应不同用途和不同工作环境的需要,电动机制成不同的系列,每种系列用各种型号表示。例如 Y 132 M- 4 Y →三相异步电动机,其中三相异步电动机的产品名称代号还有:YR为绕线式异步电动机;YB为防爆型异步电动机;YQ为高起动转距异步电动机。 132→机座中心高(mm) M →机座长度代号 4 →磁极数 2.接法:这是指定子三相绕组的接法。一般鼠笼式电动机的接线盒中有六根引出线,标有U1、V1 、W1、U2、V2、W2。其中:U1 U2是第一相绕组的两端;V1 V2是第二相绕组的两端;W1 W2是第三相绕组的两端。 如果U1、V1 、W1分别为三相绕组的始端(头) ,则U2、V2、W2是相应的末端(尾)。这六个引出线端在接电源之前,相互间必须正确联接。联接方法有星形(Y)联接和三角形()联接两种(下图所示)。通常三相异步电动机自3kW以下者,联接成星形;自4kW以上者, 联接成三角形。 3.额定功率PN:是指电动机在制造厂所规定的额定情况下运行时, 其输出端的机械功率,单位一般为千瓦(kW)。 对三相异步电机,其额定功率:PN=UNINηNcosN 式中ηN和cosN分别为额定情况下的效率和功率因数。 4.额定电压UN:是指电动机额定运行时,外加于定子绕组上的线电压,单位为伏(V)。 一般规定电动机的工作电压不应高于或低于额定值的5%。当工作电压高于额定值时,磁通将增大,将使励磁电流大大增加,电流大于额定电流,使绕组发热。同时,由于磁通的增大,铁损耗(与磁通平方成正比)也增大,使定子铁心过热;当工作电压低于额定值时,引起输出转矩减小,转速下降,电流增加,也使绕组过热,这对电动机的运行也是不利的。 我国生产的Y系列中、小型异步电动机,其额定功率在3kW以上的,额定电压为380 V,绕组为三角形联接。额定功率在3 kW及以下的,额定电压为380/220V,绕组为Y/联接(即电源线电压为380 V时,电动机绕组为星形联接;电源线电压为220 V时,电动机绕组为三角形联接)。 5.额定电流IN:是指电动机在额定电压和额定输出功率时,定子绕组的线电流,单位为安(A)。

中国地区总代理合同协议书范本标准版

编号:_______________ 中国地区总代理合同 甲方:________________________ 乙方:________________________ 签订日期:____ 年____ 月____ 日 甲方:

乙方: 甲方与乙方在互惠平等的原则上,经过友好协商,双方为其事业的发展,甲方岀口的商品进入中 国市场而签订以下合同。 第一条(总代理商) 甲方认可乙方为核心合作伙伴;甲方应协助乙方同时并分别与品牌持有方及实际生产厂方签署代 理合同及供销合同,有关的订货合同应由乙方与实际生产厂方直接签订。订货合同货款由乙方直接支付给实际生产厂方。 甲方授权乙方为甲方自有品牌在中国(香港、台湾、澳门地区除外)独家经销商。本合同所指“甲方自有品牌”为含有商标的系列婴幼儿配方奶粉。 第二条(合同期限) 本合同有效期为自签订合同之日起___________________ 年。 第三条(续签合同) 1、合同的续签在合同期满________________ 个月前,甲乙双方协商后决定是否续签; 2、本合同按照第十一条规定,在合同期满前,乙方在完成当初目标的进口销量下,合同将自动 续签______________ 年。 第四条(知识产权) 1、甲方自有品牌的商标权,设计权等所有知识产权属于甲方;在合同有效期内,甲方自有品牌 在中国大陆的使用权属于乙方。 2、合同到期后或解约时,乙方未经甲方认可不得使用的商标设计、包装设计等知识产权。 第五条(双方权利及义务)1、乙方权利及义务 1)乙方作为甲方自有品牌产品的中国总代理商,为了提高销量需积极努力;按约定完成年度销售任务。

Y系列三相异步电动机使用说明书

Y系列三相异步电动机使用说明书 l、电动机的安装 1.1安装前的准备工作 电动机开箱前应检查包装是否完整无损,有无受潮的现象,开罩后应小心清除电动机上的尘土和防锈层,仔细检查在运输过程中有无变形和损坏,紧固件有无松动或脱落,转子转动是否灵活,铭牌数据是否符合要求,并用500VMQ表测量高压电阻,绝缘电阻应不低于1MQ 否则应对绕组进行干燥处理,但是处理温度不超过J20℃。 1.2电动机的安装场地和安装基础 电动机的安装场地海拔高度应不超过100()m;一般用途的电动机的安装场地要干燥、洁净,电动机周围应通风良好,与其它设备要留有一定的间隔,以便于检查,监视和清扫,环境温度在40℃以下,并需防止强烈的辐射;安装基础要坚固、结实,有一定的刚度,安装面应平整,以保证电机的平衡运行。 I.3电动机的接线 1.3.1电动机应妥善接地,接线盒内右下方及机座外壳有接地装置,必要时亦可利用电动机底脚或法兰盘紧固螺栓接地,以保证电动机的安全运行。 1.4电动机与机械负载的联接 1.4.1电动机可采用联轴器,正齿轴或皮带与负载机械联接,双轴伸电动机的风扇端只允许采用联轴器传动。 1.4.2采用联轴器联接时,电动机轴中心线与负载机械的轴中心线要重合,以免电动机在动行中产生强烈振动,联轴动和不正常的声音等。器的安装偏差为:2极电动机允许偏差0.015mm,4、6、8极电动机偏差0.04mm。 1.4.3立式安装的电动机,轴伸只允许采用联轴器与机械负载联接。 2、电动机的起动 2.1电动机起动前的检查 2.1.1新安装或停用三个月以上的电动机起动前应检查绝缘电阻,测得绝缘电阻值不小于1MQ。 2.1.2检查电动机的紧固螺钉是否拧紧,轴承是否缺油,电动机的接线是否符合要求,外壳是否可靠接地或接零。 2.1.3检查联轴器的螺钉和销钉是否紧固,皮带联接处是否良好,松紧是否合适,机组转动是否灵活,有无卡位,窜动和不正常的声音等。 2.1.4检查熔断器的额定电流是否符合要求,安装是否牢固可靠。 2.1.5检查起动设备接线是否正确,起动装置是否灵活,触点接触是否良好,起动设备的金属处壳是否可靠接地或接零。 2.1.6检查三相电源电压是否正常,电压是否过高过低或三相电压不对称等。 2.1.7上述任何一项有问题,都必须彻底解决,在确认准备工作无误时方可起动。 2.2起动时的注意事项

中国总代理合同范本

中国总代理合同范本 篇一:产品总代理合同 产品总代理合同 甲方: 乙方: 为保护甲乙双方的合法利益,根据国家有关法律、法规的规定,本着友好合作,诚实信用,互利互惠,长期共赢的原则,经双方协商决定,签署本经销协议。 一、甲方授权乙方为系列产品在中国的总经销商,在本区域享受甲方产品独家总经销商资格,在本区域市场全权开展销售甲方产品的合法商业活动。 二、甲乙双方的所有商业活动必须依法经营,对客户做好诚信服务工作,双方各自的经营风险和法律行为自行负责。 三、在乙方成为区域总经销期间,甲方有义务保护乙方的合法权益,严防串货,杀价,多头销售行为,在本区域不再发展授权经销商。 四、乙方必须遵守甲方的统一商务政策,严格执行甲方规定的产品价格体系和区域管理制度,保护甲方自主知识产权和无形资产不受侵犯。 五、甲方不得再将“产品”售予、让予或以其他方式使 “地区”内乙方以外的任何个人、公司或其他主体取得“产品”。亦不得委托“地区”

内乙方以外的其他个人、公司或其他主体作为其经销 商,以进口和销售“产品”。甲方收到“地区”内任何客户有关“产品”的询购,均应交给乙方。甲方应采取适当措施防止他人在“地区”内出售“产品”,并不得将“产品”卖给甲方知道的或有理由相信拟在“地区”内再进口或出售“产品”的第三者。 六、价格 1、甲方给予乙方的价格和条件,应随时由甲方和乙方商定,此项价格和条件的确定并应考虑到正常贸易惯例及经常存在的市场竞争情况,使双方从销售中获得相当利润。 2、甲方给予乙方一个较稳定的市场价格,如有变动, 也是每年年初发给的年度价格表。 3、如有产品价格变动,甲方应在改变价格和折扣的30 天前书面通知乙方,所有改变价格期限之前双方签定的合同一律保证价格,并按正常交货期交货。 4、乙方所享受的代理折扣由双方另行商定,但甲方应当保证乙方应获得不低于的折扣。 七、甲方的责任 甲方同意在下列方面承担义务: 1、甲方将向乙方免费提供一定数量的产品资料。大批 量的资料在必要的情况下可由乙方申请甲方提供。 2、应及时向乙方提供其产品在国际市场上最新的行业动态信息,经常提供有利于推销产品的意见,以便乙方能采取多元化的市场

《Y系列三相异步电动机》型号选择表.doc

1 Y系列三相异步电动机 Y系列电动机(摘自JB/T8680.1—1998)为全封闭自扇冷式笼型三相异步电动机,是按照国际电工委员会(IEC)标准设计的,具有国际互换性的特点。用于空气中不含易燃、易炸或腐蚀性气体的场所。适用于电源电压为380V无特殊要求的机械上,如机床、泵、风机、运输机、搅拌机、农业机械等。也用于某些需要高起动转矩的机器上,如压缩机。 表Y系列三相异步电动机的技术数据

2 Y100L-6 1.5 940 2.0 2.0 Y132M-8 3 710 2.0 2.0 Y112M-6 2.2 940 2.0 2.0 Y160M1-8 4 720 2.0 2.0 Y132S-6 3 960 2.0 2.0 Y160M2-8 5.5 720 2.0 2.0 Y132M1-6 4 960 2.0 2.0 Y160L-8 7.5 720 2.0 2.0 Y132M2-6 5.5 960 2.0 2.0 Y180L-8 11 730 1.7 2.0 Y160M-6 7.5 970 2.0 2.0 Y200L-8 15 730 1.8 2.0 Y160L-6 11 970 2.0 2.0 Y225S-8 18.5 730 1.7 2.0 Y180L-6 15 970 1.8 2.0 Y225M-8 22 730 1.8 2.0 Y200L1-6 18.5 970 1.8 2.0 Y250M-8 30 730 1.8 2.0 Y200L2-6 22 970 1.8 2.0 Y225M-6 30 980 1.7 2.0 注:电动机型号意义:以Y132S2-2-B3为例,Y表示系列代号,132表示机座中心高,S2表示短机座和第二种铁心长度(M表示中机座,L表示长机座),2表示电动机的极数,B3表示安装形式。 表机座带底脚、端盖无凸缘Y系列电动机的安装及外形尺寸mm

中国地区总代理合同

中国地区总代理合同 甲方: 乙方: 甲方与乙方在互惠平等的原则上,经过友好协商,双方为其事业的发展,甲方出口的商品进入中国市场而签订以下合同。 第一条(总代理商) 甲方认可乙方为核心合作伙伴;甲方应协助乙方同时并分别与品牌持有方及实际生产厂方签署代理合同及供销合同,有关的订货合同应由乙方与实际生产厂方直接签订。订货合同货款由乙方直接支付给实际生产厂方。 甲方授权乙方为甲方自有品牌在中国(香港、台湾、澳门地区除外)独家经销商。本合同所指“甲方自有品牌”为含有 ____________________ 商标的系列婴幼儿配方奶粉。 第二条(合同期限) 本合同有效期为自签订合同之日起10年 第三条(续签合同) 1、合同的续签在合同期满2个月前,甲乙双方协商后决定是否续签; 2、本合同按照第十一条规定,在合同期满前,乙方在完成当初目标的进口销量下,合同将自动续签10年。 第四条(知识产权)1、甲方自有品牌的商标权,设计权等所有知识产权属于甲方;在合同有效期内, 甲方自有品牌在中国大陆的使用权属于乙方。

2、合同到期后或解约时,乙方未经甲方认可不得使用的商标设计、包装设计等知识产权。 第五条(双方权利及义务) 1、乙方权利及义务 1)乙方作为甲方自有品牌产品的中国总代理商,为了提高销量需积极努力;按约定完成年度销售任务。 2)乙方作为甲方的总代理商,拥有该品牌在中国的招商权、广告权、销售权等全部商务活动权利。 2、甲方权利及义务 1)甲方认可乙方在中国地区内的独家代理商; 2)甲方在中国不得在任何情况下,将甲方自有品牌产品流通给乙方以外的人,甲方不得以类似品牌或形象在中国境内流通; 3)甲方积极配合乙方开拓市场,并提供其所需的物品及资料; 4)甲方支援乙方销售活动费用,支援金额和支援内容双方协商后决定。详见补充协议; 5)甲方在合同期限内未经过乙方同意,不能直接或间接在合同地区内销售产品; 6)由于双方组织机构的变更或解散、甲方自身的工作职责与内容的变更或转移,有责任向对方出具正式的书面材料说明,但不得对本合同的内容及法律效力有所改变。 第六条(产品上市)

地区总代理合同

地区总代理合同 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

中国地区总代理合同 甲方: 乙方: 甲方与乙方在互惠平等的原则上,经过友好协商,双方为其事业的发展,甲方出口的商品进入中国市场而签订以下合同。 第一条(总代理商) 甲方认可乙方为核心合作伙伴;甲方应协助乙方同时并分别与品牌持有方及实际生产厂方签署代理合同及供销合同,有关的订货合同应由乙方与实际生产厂方直接签订。订货合同货款由乙方直接支付给实际生产厂方。 甲方授权乙方为甲方自有品牌在中国(香港、台湾、澳门地区除外)独家经销商。本合同所指“甲方自有品牌”为含有商标的系列婴幼儿配方奶粉。 第二条(合同期限) 本合同有效期为自签订合同之日起10年。 第三条(续签合同) 1、合同的续签在合同期满2个月前,甲乙双方协商后决定是否续签; 2、本合同按照第十一条规定,在合同期满前,乙方在完成当初目标的进口销量下,合同将自动续签10年。 第四条(知识产权) 1、甲方自有品牌的商标权,设计权等所有知识产权属于甲方;在合同有效期内,甲方自有品牌在中国大陆的使用权属于乙方。

2、合同到期后或解约时,乙方未经甲方认可不得使用的商标设计、包装设计等知识产权。 第五条(双方权利及义务) 1、乙方权利及义务 1)乙方作为甲方自有品牌产品的中国总代理商,为了提高销量需积极努力;按约定完成年度销售任务。 2)乙方作为甲方的总代理商,拥有该品牌在中国的招商权、广告权、销售权等全部商务活动权利。 2、甲方权利及义务 1)甲方认可乙方在中国地区内的独家代理商; 2)甲方在中国不得在任何情况下,将甲方自有品牌产品流通给乙方以外的人,甲方不得以类似品牌或形象在中国境内流通; 3)甲方积极配合乙方开拓市场,并提供其所需的物品及资料; 4)甲方支援乙方销售活动费用,支援金额和支援内容双方协商后决定。详见补充协议; 5)甲方在合同期限内未经过乙方同意,不能直接或间接在合同地区内销售产品; 6)由于双方组织机构的变更或解散、甲方自身的工作职责与内容的变更或转移,有责任向对方出具正式的书面材料说明,但不得对本合同的内容及法律效力有所改变。 第六条(产品上市) 甲方和乙方相互协商,在中国内持续销售相关商品,销售商品名为“宝

中国总代理合同范本

中国总代理合同范本 中国总代理合同范本1 甲方:福州创美装饰材料有限公司 乙方:福州鑫融华建材有限公司 甲、乙双方本着友好合作,诚实信用,互利互惠,长期共赢的原则,经双方协商决定,签署本全国独家总经销协议书。 一、在本协议约定的授权期限内,甲方授权乙方为甲方现有及今后所生产的全部产品在全国范围内的独家总经销商,在全国市场全权开展销售甲方产品的合法商业活动。 二、乙方作为甲方的全国独家总经销商,甲方有义务保护乙方的合法权益,在本协议履行期限内不再另行发展授权经销商,也不再向除乙方之外的其他客户自行销售。 四、本协议的有效履行期限即授权期限为十年,至十年期满的12月31日止,即自本协议签订之日起至2019年12月31日止。协议期满,双方如有意继续合作的,可以续签。 五、在协议履行期内,甲方将所生产的全部产品交由乙方全国独家总经销,甲方确保按照产品的出厂成本价(已含甲方合理的生产利润)向乙方供货,各项产品的出厂成本价由双方确定后作为本协议附件。在协议期限内,甲方新开发产品的价格由双方另行确定。在确定成本价时,甲方应向乙方明确具体成本的构成。在协议期限内,如因原材料、税费、人力资源成本等发生重大变动需要调整成本价的,双方可根据情况另行协商确定。

六、根据甲方产品的现有市场销售情况并考虑到市场的培育期限等因素,双方确定按照以下标准确定乙方每年从甲方完成的产品采购指标: 乙方完成每一年度采购目标的,按进货总量的2%年终返利,超额部分按4%年终返利。返利由甲方以等价产品方式于次年一月份支付给乙方。 七、双方之间的货款每两个月结算一次,由甲方先发货后结算。结算时间点位双月的最后一日,甲方于次月5日前将截止上月最后一日的货款清单与乙方对账确认,并向乙方提供增值税专用发票,乙方确认后于10日前将货款支付给甲方。 八、为确保销售的正常进行,甲方应根据乙方订单按时、保质保量的完成供货义务,包括按照乙方的通知直接向最终用户履行交货义务。 乙方每次向甲方进货时,须提前5个工作日向甲方传真订单。由甲方通过公路运输或铁路运输两种方式免费发货,到站由乙方或乙方的客户自提,如有其它运输要求则由乙方支付运费。 九、双方权利与义务: 1.甲方在广告发布时应刊登乙方为全国独家授权独家经销商的内容,并体现乙方的名称,地址,电话。 2.乙方有义务将甲方产品的市场发展,产品情况,客户需求等信息及时反馈甲方。 3.产品市场销售价格由乙方自行确定和调整,甲方可根据市场

中国国内代理商合作协议书

中国国内代理商合作协议书 为在平等互利的基础上共同开拓发展市场,有关方按下列条件签订本协议:一订约人 供货人(以下称甲方):深圳市金三佳电子有限公司 代理商(以下称乙方): 二甲方委托乙方为销售代理人,销售下列商品: SKY系列嵌入式硬盘录像机、SKY系列视频采集卡、SKY系列摄像机。 三代理条件要求: 1、具有独立法人资格的企业。 2、具有相关产品销售经验或特定销售渠道。 3、具有建立和管理销售渠道的经验以及提供售后服务的能力。 4、具有制定市场拓展计划并实施计划的能力。 5、配合我公司开展市场推广活动。 6、月销售量不低于我公司最低要求。 四代理政策(分为普通代理与市级代理) (一)普通代理政策 1、代理商需要签订一年合同; 2、代理期限最少一年,甲方给予代理证书。普通代理月最低销售金额必须达到2万 人民币; 3、普通代理只能够在本市范围内发展客户,并接受本市总代理的管理(如暂时没有 则由甲方直接管理); 4、只能够按甲方价格体系进行销售与服务;只能够以SKYBEST(三佳电子)品牌和形

象进行销售与推广; 5、享受升级为本市总代理的优先权利;享受甲方的代理价格。 (二)市级代理政策 1、甲方给予总代理证书和金字匾; 2、需签约,月最低销售金额必须达到5万元人民币(如果增加代理区域的数量,则 按比例增加销售金额);最低5000元保证金;撤消代理后三个月内退还乙方保证金;市级代理最多可以同时申请五个城市的代理权,但要完成相应的任务; 3、直接申请市级代理第一个月首次拿货的金额不得少于人民币一万元,以后拿货不 限制;一个月拿货达不到人民币五万元的,第二个月将享受不到市级代理商的价格,甲方可按普通代理商供货。甲方给市代理提供一年半(18个月)免费维修(不包括:人为损坏私自拆装外观损伤附件不全),保修期过后只收取零件费。长期维护; 4、只能够在本市范围内发展客户,并对本市的代理商进行的管理; 5、只能够按甲方价格体系进行销售和服务; 6、只能够以SKYBEST(三佳电子)的品牌和形象进行销售和推广; 7、有优先享受升级为其他市总代理的优先权利; 8、享受甲方的总代理商价格; 9、享受甲方针对总代理的返点政策,按季度返点,返点比例最低为销售金额的千分 之一; 10、享受甲方全方位的广告支持; 11、享受甲方免费的售后服务人员的培训和支持(年度培训1人次); 12、属于本省年度销售冠军且年销售量超过100万元的总代理,可申请下一年度本省

Y系列电动机样本

Y 系列电动机 简介 Y 系列电动机是全封闭自扇冷式鼠笼型三相异步电动机,是最新设计的基本系列。符合IEC标准的有关规定。具有高效、节能,起动转矩大,噪声低,振动小,可靠性高,使用维修方便等特点。广泛应用于不含易燃、易爆或腐蚀性气体的一般场合和无特殊要求的机械设备上,如金属切削机床、泵、风机、农业机械、搅拌机、运输机械和食品机械等。 使用条件 环境温度: -15oC <40oC 海拔:不超过1000m 额定电压:380V、可选220-760V之间任何电压值 额定频率:50Hz、60Hz 防护等级:IP44、IP54、IP55 绝缘等级:B、F 冷却方式 : ICO141 工作方式:S1 接法:3kW及以下Y接法,4kW及以上为△接法。 技术参数 (380V 50Hz)

0M-4 55 75 102.5 0.88 92.6 1480 2 7 2.2 Y250M-6 37 50 72 0.86 90.8 980 1.7 6.5 2 Y250M-8 30 40 63 0.8 90.5 740 1.8 6 2 外形及安装尺寸 安装尺寸 (mm) 外形尺寸(mm) 机座号 A B C D E F G H K M N P R S T AB AC AD HD HF L Y80 125 100 50 19 40 6 15.5 80 10 165 130 200 0 12 3.5 165 175 150 175 185 290 Y90S 140 100 56 24 50 8 20 90 10 165 130 200 0 12 3.5 180 195 160 195 195 315 Y90L 140 125 56 24 50 8 20 90 10 165 130 200 0 12 3.5 180 195 160 195 195 340 Y100L 160 140 70 28 60 8 24 100 12 215 180 250 0 15 4.0 205 215 180 245 245 380 Y112M 190 140 70 28 60 8 24 112 12 215 180 250 0 15 4.0 245 240 190 265 265 400 Y132S 216 140 89 38 80 10 33 132 12 265 230 300 0 15 4.0 280 275 210 315 315 475 Y132M 216 178 89 38 80 10 33 132 12 265 230 300 0 15 4.0 280 275 210 315 315 515 Y160M 245 210 108 42 110 12 37 160 15 300 250 350 0 19 5.0 325 325 255 385 385 600 Y160L 245 254 108 42 110 12 37 160 15 300 250 350 0 19 5.00 325 325 255 385 385 645 Y180M 279 241 121 48 110 14 42 180 15 300 250 350 0 19 5.0 355 360 285 430 430 670 Y180L 279 279 121 48 110 14 42 180 15 300 250 350 0 19 5.0 355 360 285 430 430 710 Y200L 318 305 133 55 110 16 49 200 19 350 300 400 0 19 5.0 395 400 310 475 475 775 Y225S 356 286 149 60 110 16 49 225 19 400 350 450 0 19 5.0 435 435 345 520 520 820 Y225M 356 311 149 55 110 16 49 225 19 400 350 450 0 19 5.0 435 435 345 520 520 815

相关主题