搜档网
当前位置:搜档网 › 实验六 电子探针结构原理及分析方法

实验六 电子探针结构原理及分析方法

实验六  电子探针结构原理及分析方法
实验六  电子探针结构原理及分析方法

实验六电子探针结构原理及分析方法

一、实验内容及实验目的

1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。

2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。

二、电子探针的结构特点及原理

电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。

三、电子探针的分析方法

电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。

1.实验条件

(1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。

(2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。

(3) 电子束流:特征X射线的强度与入射电子束流成线性关系。为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。在分析过程中要保持束流稳定,在定量分析同一组样品时应控制束流条件完全相同,以获取准确的分析结果。

(4) 分光晶体:实验时应根据样品中待分析元素及X射线线系等具体情况,选用合适的分光晶体。常用的分光晶体及其检测波长的范围见有关表。这些分光晶体配合使用,检测X

射线信号的波长范围为0.1~11.4nm。波长分散谱仪的波长分辨率很高,可以将波长十分接近(相差约0.0005nm)的谱线清晰地分开。

2.定点分析

(1) 全谱定性分析:驱动分光谱仪的晶体连续改变衍射角θ,记录X射线信号强度随波长的变化曲线。检测谱线强度峰值位置的波长,即可获得样品微区内所含元素的定性结果。电子探针分析的元素范围可从铍(序数4)到铀(序数92)检测的最低浓度(灵敏度)大致为100ppm,空间分辨率约在微米数量级。全谱定性分析往往需要花费很长时间。

(2) 半定量分析:在分析精度要求不高的情况下,可以进行半定量计算。根据是元素的特征X射线强度与元素在样品中的浓度成正比的假设条件,忽略了原子序数效应、吸收效应和荧光效应对特征X射线强度的影响。实际上,只有样品是由原子序数相邻的两种元素组成的情况下,这种线性关系才能近似成立。在一般情况下,半定量分析可能存在较大的误差,因此其应用范围受到限制。

(3) 定量分析:在此仅介绍一些有关定量分析的概念,而不涉及计算公式。

样品原子对入射电子的背散射,使能激发X射线信号的电子减少;此外入射电子在样品内要受到非弹性散射,使能量逐渐损失,这两种情况均与样品的原子序数有关,这种修正称为原子序数修正。由入射电子激发产生的X射线,在射出样品表面的路程中与样品原子相互作用而被吸收,使实际接收到的X射线信号强度降低,这种修正称为吸收修正。在样品中由入射电子激发产生的某元素的X射线,当其能量高于另一元素特征X射线的临界激发能量时,将激发另一元素产生特征X射线,结果使得两种元素的特征X射线信号的强度发生变化。这种由X射线间接地激发产生的元素特征X射线称为二次X射线或荧光X射线,故称此修正为荧光修正。

在定量分析计算时,对接收到的特征X射线信号强度必须要进行原子序数修正(Z)、吸收修正(A)和荧光修正(F),这种修正方法称为ZAF修正。采用ZAF修正法进行定量分析所获得的结果,相对精度一般可达1%~2%,这在大多数情况下是足够的。但是,对于轻元素(O、C、N、B等)的定量分新结果还不能令人满意,在ZAF修正计算中往往存在相当大的误差,分析时应该引起注意。

3.线分析使入射电子束在样品表面沿选定的直线扫描,谱仪固定接收某一元素的特征X 射线信号,其强度在这一直线上的变化曲线,可以反映被测元素在此直线上的浓度分布,线分析法较适合于分析各类界面附近的成分分布和元素扩散。

实验时,首先在样品上选定的区域拍照一张背散射电子像(或二次电子像),再把线分析的位置和线分析结果照在同一张底片上,也可将线分析结果照在另一张底片上,见图6-1。图6-la是Al-4.0%Cu(wt.%)合金的背散射电子像,被选定的直线通过胞状α-Al晶粒,图6-1b 是CuKα X射线信号强度在此直线上的变化曲线。由图6-1a和6-1b可见,在较高的X射线

强度所对应的位置是富Cu的A12Cu相;在α-Al晶粒内部X射线的强度较低,说明其固溶的Cu含量较少;在胞状α-A1晶粒界面内侧存在一个约10μm宽的Cu贫化带。

图6-l A1-4.0%Cu合金的线扫描分析

a) 背散射电子像b) Cu Kα线扫描曲线

4.面分析使入射电子束在样品表面选定的微区内作光栅扫描,谱仪固定接收某一元素的特征X射线信号,并以此调制荧光屏的亮度,可获得样品微区内被测元素的分布状态。元素的面分布图像可以清晰地显示与基体成分存在差别的第二相和夹杂物,能够定性地显示微区内某元素的偏析情况。在显示元素特征X射线强度的面分布图像中,较亮的区域对应于样品的位置该元素含量较高(富集),暗的区域对应的样品位置该元素含量较低(贫化)。

图6-2是与图6-1相同的样品区域所拍照的面扫描图像。图6-2b可以清晰地显示Cu元素在样品微区的分布。

图6-2 A1-4.0%Cu合金的面扫描分析

a) 背散射电子像b) Cu Kα面扫描像

四、实验报告要求

1.简述电子探针的分析原理。

2.为什么电子探针应使用抛光样品?

3.举例说明电子探针在材料研究中的应用。

操作系统原理-进程调度实验报告

一、实验目的 通过对进程调度算法的设计,深入理解进程调度的原理。 进程是程序在一个数据集合上运行的过程,它是系统进行资源分配和调度的一个独立单位。 进程调度分配处理机,是控制协调进程对CPU的竞争,即按一定的调度算法从就绪队列中选中一个进程,把CPU的使用权交给被选中的进程。 进程通过定义一个进程控制块的数据结构(PCB)来表示;每个进程需要赋予进程ID、进程到达时间、进程需要运行的总时间的属性;在RR中,以1为时间片单位;运行时,输入若干个进程序列,按照时间片输出其执行序列。 二、实验环境 VC++6.0 三、实验内容 实现短进程优先调度算法(SPF)和时间片轮转调度算法(RR) [提示]: (1) 先来先服务(FCFS)调度算法 原理:每次调度是从就绪队列中,选择一个最先进入就绪队列的进程,把处理器分配给该进程,使之得到执行。该进程一旦占有了处理器,它就一直运行下去,直到该进程完成或因发生事件而阻塞,才退出处理器。 将用户作业和就绪进程按提交顺序或变为就绪状态的先后排成队列,并按照先来先服务的方式进行调度处理,是一种最普遍和最简单的方法。它优先考虑在系统中等待时间最长的作业,而不管要求运行时间的长短。 按照就绪进程进入就绪队列的先后次序进行调度,简单易实现,利于长进程,CPU繁忙型作业,不利于短进程,排队时间相对过长。 (2) 时间片轮转调度算法RR

原理:时间片轮转法主要用于进程调度。采用此算法的系统,其程序就绪队列往往按进程到达的时间来排序。进程调度按一定时间片(q)轮番运行各个进程. 进程按到达时间在就绪队列中排队,调度程序每次把CPU分配给就绪队列首进程使用一个时间片,运行完一个时间片释放CPU,排到就绪队列末尾参加下一轮调度,CPU分配给就绪队列的首进程。 固定时间片轮转法: 1 所有就绪进程按 FCFS 规则排队。 2 处理机总是分配给就绪队列的队首进程。 3 如果运行的进程用完时间片,则系统就把该进程送回就绪队列的队尾,重新排队。 4 因等待某事件而阻塞的进程送到阻塞队列。 5 系统把被唤醒的进程送到就绪队列的队尾。 可变时间片轮转法: 1 进程状态的转换方法同固定时间片轮转法。 2 响应时间固定,时间片的长短依据进程数量的多少由T = N × ( q + t )给出的关系调整。 3 根据进程优先级的高低进一步调整时间片,优先级越高的进程,分配的时间片越长。 多就绪队列轮转法: (3) 算法类型 (4)模拟程序可由两部分组成,先来先服务(FCFS)调度算法,时间片轮转。流程图如下:

计算机组成原理实验

计算机组成原理 一、8 位算术逻辑运算 8 位算术逻辑运算实验目的 1、掌握简单运算器的数据传送通路组成原理。 2、验证算术逻辑运算功能发生器74LS181的组合功能。 8 位算术逻辑运算实验内容 1、实验原理 实验中所用的运算器数据通路如图3-1所示。其中运算器由两片74LS181以并/串形成8位字长的ALU构成。运算器的输出经过一个三态门74LS245(U33)到ALUO1插座,实验时用8芯排线和内部数据总线BUSD0~D7插座BUS1~6中的任一个相连,内部数据总线通过LZD0~LZD7显示灯显示;运算器的两个数据输入端分别由二个锁存器74LS273(U29、U30)锁存,两个锁存器的输入并联后连至插座ALUBUS,实验时通过8芯排线连至外部数据总线EXD0~D7插座EXJ1~EXJ3中的任一个;参与运算的数据来自于8位数据开并KD0~KD7,并经过一三态门74LS245(U51)直接连至外部数据总线EXD0~EXD7,通过数据开关输入的数据由LD0~LD7显示。 图中算术逻辑运算功能发生器74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M并行相连后连至SJ2插座,实验时通过6芯排线连至6位功能开关插座UJ2,以手动方式用二进制开关S3、S2、S1、S0、CN、M来模拟74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M;其它电平控制信号LDDR1、LDDR2、ALUB`、SWB`以手动方式用二进制开关LDDR1、LDDR2、ALUB、SWB来模拟,这几个信号有自动和手动两种方式产生,通过跳线器切换,其中ALUB`、SWB`为低电平有效,LDDR1、LDDR2为高电平有效。 另有信号T4为脉冲信号,在手动方式下进行实验时,只需将跳线器J23上T4与手动脉冲发生开关的输出端SD相连,按动手动脉冲开关,即可获得实验所需的单脉冲。 2、实验接线 本实验用到4个主要模块:⑴低8位运算器模块,⑵数据输入并显示模块,⑶数据总线显示模块,⑷功能开关模块(借用微地址输入模块)。

操作系统原理实验-系统内存使用统计5

上海电力学院 计算机操作系统原理 实验报告 题目:动态链接库的建立与调用 院系:计算机科学与技术学院 专业年级:信息安全2010级 学生姓名:李鑫学号:20103277 同组姓名:无 2012年11 月28 日上海电力学院

实验报告 课程名称计算机操作系统原理实验项目线程的同步 姓名李鑫学号20103277 班级2010251班专业信息安全 同组人姓名无指导教师姓名徐曼实验日期2012/11/28 实验目的和要求: (l)了解Windows内存管理机制,理解页式存储管理技术。 (2)熟悉Windows内存管理基本数据结构。 (3)掌握Windows内存管理基本API的使用。 实验原理与内容 使用Windows系统提供的函数和数据结构显示系统存储空间的使用情况,当内存和虚拟存储空间变化时,观察系统显示变化情况。 实验平台与要求 能正确使用系统函数GlobalMemoryStatus()和数据结构MEMORYSTATUS了解系统内存和虚拟空间使用情况,会使用VirtualAlloc()函数和VirtualFree()函数分配和释放虚拟存储空间。 操作系统:Windows 2000或Windows XP 实验平台:Visual Studio C++ 6.0 实验步骤与记录 1、启动安装好的Visual C++ 6.0。 2、选择File->New,新建Win32 Console Application程序, 由于内存分配、释放及系统存储 空间使用情况均是Microsoft Windows操作系统的系统调用,因此选择An application that support MFC。单击确定按钮,完成本次创建。 3、创建一个支持MFC的工程,单击完成。

计算机组成原理实验

实验一基础汇编语言程序设计 一、实验目的: 1、学习和了解TEC-XP16教学实验系统监控命令的用法。 2、学习和了解TEC-XP16教学实验系统的指令系统。 3、学习简单的TEC-XP16教学实验系统汇编程序设计。 二、预习要求: 1、学习TEC-XP16机监控命令的用法。 2、学习TEC-XP16机的指令系统、汇编程序设计及监控程序中子程序调用。 3、学习TEC-XP16机的使用,包括开关、指示灯、按键等。 4、了解实验内容、实验步骤和要求。 三、实验步骤: 在教学计算机硬件系统上建立与调试汇编程序有几种操作办法。 第一种办法,是使用监控程序的A命令,逐行输入并直接汇编单条的汇编语句,之后使用G命令运行这个程序。缺点是不支持汇编伪指令,修改已有程序源代码相对麻烦一些,适用于建立与运行短小的汇编程序。 第二种办法,是使用增强型的监控程序中的W命令建立完整的汇编程序,然后用M命令对建立起来的汇编程序执行汇编操作,接下来用G命令运行这个程序。适用于比较短小的程序。此时可以支持汇编伪指令,修改已经在内存中的汇编程序源代码的操作更方便一些。 第三种办法,是使用交叉汇编程序ASEC,首先在PC机上,用PC机的编辑程序建立完整的汇编程序,然后用ASEC对建立起来的汇编程序执行汇编操作,接下来把汇编操作产生的二进制的机器指令代码文件内容传送到教学机的内存中,就可以运行这个程序了。适用于规模任意大小的程序。

在这里我们只采用第一种方法。 在TEC-XP16机终端上调试汇编程序要经过以下几步: 1、使教学计算机处于正常运行状态(具体步骤见附录联机通讯指南)。 2、使用监控命令输入程序并调试。 ⑴用监控命令A输入汇编程序 >A 或>A 主存地址 如:在命令行提示符状态下输入: A 2000↙;表示该程序从2000H(内存RAM区的起始地址)地址开始 屏幕将显示: 2000: 输入如下形式的程序: 2000: MVRD R0,AAAA ;MVRD 与R0 之间有且只有一个空格,其他指令相同 2002: MVRD R1,5555 2004: ADD R0,R1 2005: AND R0,R1 2006: RET ;程序的最后一个语句,必须为RET 指令 2007:(直接敲回车键,结束A 命令输入程序的操作过程) 若输入有误,系统会给出提示并显示出错地址,用户只需在该地址重新输入正确的指令即可。 ⑵用监控命令U调出输入过的程序并显示在屏幕上 >U 或>U 主存地址

操作系统原理实验四

实验4 进程控制 1、实验目的 (1)通过对WindowsXP进行编程,来熟悉和了解系统。 (2)通过分析程序,来了解进程的创建、终止。 2、实验工具 (1)一台WindowsXP操作系统的计算机。 (2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。 3、预备知识 (3)·CreateProcess()调用:创建一个进程。 (4)·ExitProcess()调用:终止一个进程。 4、实验编程 (1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。阅读该程序,完成实验任务。源程序如下: # include < stdio.h > # include < windows.h > int main(VOID) ﹛STARTUPINFO si; PROCESS INFORMA TION pi; ZeroMemory(&si,sizeof(si)); Si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, “c: \ WINDOWS\system32\ mspaint.exe”, NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) ﹛fprintf(stderr,”Creat Process Failed”); return—1; ﹜ WaitForSingleObject(pi.hProcess,INFINITE); Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜

计算机组成原理实验完整版

河南农业大学 计算机组成原理实验报告 题目简单机模型实验 学院信息与管理科学学院 专业班级计算机科学与技术2010级1班 学生姓名张子坡(1010101029) 指导教师郭玉峰 撰写日期:二○一二年六月五日

一、实验目的: 1.在掌握各部件的功能基础上,组成一个简单的计算机系统模型机; 2.了解微程序控制器是如何控制模型机运行的,掌握整机动态工作过程; 3定义五条机器指令,编写相应微程序并具体上机调试。 二、实验要求: 1.复习计算机组成的基本原理; 2.预习本实验的相关知识和内容 三、实验设备: EL-JY-II型计算机组成原理试验系统一套,排线若干。 四、模型机结构及工作原理: 模型机结构框图见实验书56页图6-1. 输出设备由底板上上的四个LED数码管及其译码、驱动电路构成,当D-G和W/R均为低电平时将数据结构的数据送入数据管显示注:本系统的数据总线为16位,指令、地址和程序计数器均为8位。当数据总线上的数据打入指令寄存器、地址寄存器和程序寄存器时,只有低8位有效。 在本实验我们学习读、写机器指令和运行机器指令的完整过程。在机器指令的执行过程中,CPU从内存中取出一条机器指令到执行结束为一个指令周期,指令由微指令组成的序列来完成,一条机器指令对应一段微程序。另外,读、写机器指令分别由相应的微程序段来完成。

为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,必须设计三个控制操作微程序。 存储器读操作(MRD):拨动清零开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“00”时,按“单步”键,可对RAM连续读操作。 存储器写操作(MWE):拨动清零开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“10”时,按“单步”键,可对RAM连续写操作。 启动程序(RUN):拨动开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“11”时,按“单步”键,即可转入第01号“取指”微指令,启动程序运行。 注:CA1、CA2由控制总线的E4、E5给出。键盘操作方式有监控程序直接对E4、E5赋值,无需接线。开关方式时可将E4、E5接至控制开关CA1、CA2,由开关控制。 五、实验内容、分析及参考代码: 生成的下一条微地址 UA5 UA0 MS5 MS0 微地址

计算机组成原理实验报告

实验报告书 实验名称:计算机组成原理实验 专业班级:113030701 学号:113030701 姓名: 联系电话: 指导老师:张光建 实验时间:2015.4.30-2015.6.25

实验二基本运算器实验 一、实验内容 1、根据原理图连接实验电路

3、比较实验结果与手工运算结果,如有错误,分析原因。 二、实验原理 运算器可以完成算术,逻辑,移位运算,数据来自暂存器A和B,运算方式由S3-S0以及CN来控制。运算器由一片CPLD来实现。ALU的输入和输出通过三态门74LS245连接到CPU内总线上。另外还有指示灯进位标志位FC和零标志位FZ。 运算器原理图: 运算器原理图 暂存器A和暂存器B的数据能在LED灯上实时显示。进位进位标志FC、零标志FZ 和数据总线D7…D0 的显示原理也是如此。 ALU和外围电路连接原理图:

ALU和外围电路连接原理图运算器逻辑功能表:

三、实验步骤 1、按照下图的接线图,连接电路。 2、将时序与操作台单元的开关KK2 置为‘单拍’档,开关KK1、KK3 置为‘运行’档。 3、打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。然后按动CON 单元的CLR 按钮,将运算器的A、B 和FC、FZ 清零。 4、用输入开关向暂存器A 置数。 ①拨动CON 单元的SD27…SD20 数据开关,形成二进制数01100101 (或其它数值),数据显示亮为‘1’,灭为‘0’。 ②置LDA=1,LDB=0,连续按动时序单元的ST 按钮,产生一个T4 上沿,则将二进制数01100101 置入暂存器A 中,暂存器A 的值通过ALU 单元的 A7…A0 八位LED 灯显示。 5、用输入开关向暂存器B 置数。 ①拨动CON 单元的SD27…SD20 数据开关,形成二进制数10100111 (或其它数值)。 ②置LDA=0,LDB=1,连续按动时序单元的ST 按钮,产生一个T4 上沿,则将二进制数10100111 置入暂存器B 中,暂存器B 的值通过ALU 单元的 B7…B0 八位LED 灯显示。 6、改变运算器的功能设置,观察运算器的输出。置ALU_B=0 、LDA=0、LDB=0,然后按表2-2-1 置S3、S2、S1、S0 和Cn的数值,并观察数据总线LED 显示灯显示的结果。如置S3、S2、S1、S0 为0010 ,运算器作逻辑与运算,置S3、S2、

操作系统原理实验报告(终版)

操作系统原理实验报告(终版)

————————————————————————————————作者:————————————————————————————————日期:

[键入文字] XX学校 实验报告 课程名称: 学院: 专业班: 姓名: 学号: 指导教师: 2011 年3 月

目录 实验1 进程管理 (3) 一、实验目的 (3) 二、实验内容 (3) 三、实验要求 (3) 四、程序说明和程序流程图 (4) 五、程序代码 (5) 六、程序运行结果及分析 (7) 七.指导教师评议 (8) 实验2 进程通信 (9) 一、实验目的 (9) 二、实验内容 (9) 三、实验要求 (9) 四、程序说明和程序流程图 (9) 五、程序代码 (11) 七.指导教师评议 (14) 实验3 存储管理 (15) 一、实验目的 (15) 二、实验内容 (15) 三、实验要求 (15) 四、程序说明和程序流程图 (16) 六、程序运行结果及分析 (23)

七.指导教师评议 (23) 实验4 文件系统 (24) 一、实验目的 (24) 二、实验内容 (24) 三、实验要求 (24) 四、程序说明和程序流程图 (24) 五、程序代码 (26) 六、程序运行结果及分析 (26) 七.指导教师评议 (27)

实验1 进程管理 一、实验目的 1. 弄清进程和程序的区别,加深对进程概念的理解。 2. 了解并发进程的执行过程,进一步认识并发执行的实质。 3. 掌握解决进程互斥使用资源的方法。 二、实验内容 1. 管道通信 使用系统调用pipe( )建立一个管道,然后使用系统调用fork( )创建2个子进程p1和p2。这2个子进程分别向管道中写入字符串:“Child process p1 is sending message!”和“Child process p2 is sending message!”,而父进程则从管道中读出来自两个子进程的信息,并显示在屏幕上。 2. 软中断通信 使用系统调用fork( )创建2个子进程p1和p2,在父进程中使用系统调用signal( )捕捉来自键盘上的软中断信号SIGINT(即按Ctrl-C),当捕捉到软中断信号SIGINT后,父进程使用系统调用kill( )分别向2个子进程发出软中断信号SIGUSR1和SIGUSR2,子进程捕捉到信号后分别输出信息“Child process p1 is killed by parent!”和“Child process p2 is killed by parent!”后终止。而父进程等待2个子进程终止后,输出信息“Parent process is killed!”后终止。 三、实验要求 1. 根据实验内容编写C程序。 2. 上机调试程序。 3. 记录并分析程序运行结果。

操作系统原理实验五

实验五线程的同步 1、实验目的 (1)进一步掌握Windows系统环境下线程的创建与撤销。 (2)熟悉Windows系统提供的线程同步API。 (3)使用Windows系统提供的线程同步API解决实际问题。 2、实验准备知识:相关API函数介绍 ①等待对象 等待对象(wait functions)函数包括等待一个对象(WaitForSingleObject ())和等待多个对象(WaitForMultipleObject())两个API函数。 1)等待一个对象 WaitForSingleObject()用于等待一个对象。它等待的对象可以为以下对象 之一。 ·Change ontification:变化通知。 ·Console input: 控制台输入。 ·Event:事件。 ·Job:作业。 ·Mutex:互斥信号量。 ·Process:进程。 ·Semaphore:计数信号量。 ·Thread:线程。 ·Waitable timer:定时器。 原型: DWORD WaitForSingleObject( HANDLE hHandle, // 对象句柄 DWORD dwMilliseconds // 等待时间 ); 参数说明: (1)hHandle:等待对象的对象句柄。该对象句柄必须为SYNCHRONIZE访问。 (2)dwMilliseconds:等待时间,单位为ms。若该值为0,函数在测试对象的状态后立即返回,若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒,如表2-1所示。 返回值: 如果成功返回,其返回值说明是何种事件导致函数返回。

Static HANDLE hHandlel = NULL; DWORD dRes; dRes = WaitForSingleObject(hHandlel,10); //等待对象的句柄为hHandlel,等待时间为10ms 2)等待对个对象 WaitForMultiple()bject()在指定时间内等待多个对象,它等待的对象与 WaitForSingleObject()相同。 原型: DWORD WaitForMultipleObjects( DWORD nCount, //句柄数组中的句柄数 CONST HANDLE * lpHandles, //指向对象句柄数组的指针 BOOL fWaitAll, //等待类型 DWORD dwMilliseconds //等待时间 ); 参数说明: (1)nCount:由指针 * lpHandles指定的句柄数组中的句柄数,最大数是MAXIMUM WAIT OBJECTS。 (2)* lpHandles:指向对象句柄数组的指针。 (3)fWaitAll:等待类型。若为TRUE,当由lpHandles数组指定的所有对象被唤醒时函数返回;若为FALSE,当由lpHandles数组指定的某一个 对象被唤醒时函数返回,且由返回值说明是由于哪个对象引起的函数 返回。 (4)dwMilliseconds:等待时间,单位为ms。若该值为0,函数测试对象的状态后立即返回;若为INFINITE,函数一直等待下去,直到接收到 一个信号将其唤醒。 返回值:、 如果成功返回,其返回值说明是何种事件导致函数返回。 各参数的描述如表2-2所示。

计算机组成原理实验实验报告

计算机组成原理实验报告 学院信息与管理科学学院 专业班级计算机科学与技术2010级2班学生姓名毛世均 1010101046 指导教师郭玉峰 撰写日期:二○一二年六月四日

SA4=1 1.根据上边的逻辑表达式,分析58页图6-2的P1测试和P4测试两条指令的微地址转移方向。 P1测试:进行P1测试时,P1为0,其他的都为1, 因此SA4=1, SA3=I7,SA2=I6,SA1=,SA0=I4 微地址011001,下址字段为001000下址字段001000译码后,高两位不变,仍然为00,低四位受到机器指令的高四位I7-I4的影响。 机器指令的高四位为0000时,下一条微指令地址为001000,转到IN 操作。机器指令高四位0010时,下一条微指令地址为001010,转到MOV 操作。机器指令高四位为0001时,下一条微指令地址为001001,转到ADD 操作。机器指令高四位为0011时,下一条微指令地址为001011,转到OUT 操作。机器指令高四位为0100时,下一条微指令地址001100,转到JMP 操作 P4测试:进行P4测试时,P4为0,其他的都为1. 因此SA4=SA3=SA2=1,SA1=CA2,SA0=CA1 微地址000000,下址字段为010000. 010000被译码之后,高四位不变,0100低两位由CA2和CA1控制。CA2和CA1的值是由单片机的键盘填入控制的。 当实验选择CtL2=1时,CA2和CA1被填入0和1,这时低两位被译码电路翻译成01,所以下一条微地址就是010001,然后进入写机器指令的状态。当实验选择CtL2=2时,CA2和CA1被填入1和0,这时低两位被译码电路翻译成10,所以下一条微地址就是010010,然后进入读机器指令的状态。当实验选择CtL2=2时,CA2和CA1被填入1和1,这时低两位被译码电路翻译成 11,所以下一条微地址就是010011,然后进入运行机器指令的状态。 2.分析实验六中五条机器指令的执行过程。

计算机组成原理实验报告

计算机组成原理实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

计算机组成原理实验报告 ——微程序控制器实验一.实验目的: 1.能看懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及 执行流程。并可以自己设计几条指令,并理解其功能,格式及执行流程,在教学计算机上实现。 2.深入理解计算机微程序控制器的功能与组成原理 3.深入学习计算机各类典型指令的执行流程 4.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念 5.学习微程序控制器的设计过程和相关技术 二.实验原理: 微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三大部分组成。 其工作原理分为: 1、将程序和数据通过输入设备送入存储器; 2、启动运行后从存储器中取出程序指令送到控制器去识别,分析该指令要求什么事; 3、控制器根据指令的含义发出相应的命令(如加法、减法),将存储单元中存放的操作数据取出送往运算器进行运算,再把运算结果送回存储器指定的单元中; 4、运算任务完成后,就可以根据指令将结果通过输出设备输出 三.微指令格式: 微指令由下地址字段及控制字段组成.TH—UNION教学机的微指令格式如下: 其中高八位为下地址字段.其余各位为控制字段. 1)微地址形成逻辑 TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址. 下地址的形成由下地址字段及控制字段中的CI3—SCC控制.当为顺序执行时,下地址字段不起作用.下地址为当前微指令地址加1;当为转移指令(CI3— 0=0011)时,由控制信号SCC提供转移条件,由下地址字段提供转移地址. 2)控制字段

《操作系统原理实验》试卷A及答案

《中山大学授予学士学位工作细则》第六条 考试作弊不授予学士学位 计算机科学系2012第二学期 《操作系统原理实验》期末考试试题(A) 任课教师:李才伟考试形式:开卷考试时间:2小时年级:11 班别:3 专业:计科姓名:________ 学号:___ _ 成绩___ _ 注意:答案一定要写在答卷中,写在本试题卷中不给分。本试卷要和答卷一起交回。 一.填空题(每小题2分,共30分) 1.在我们的操作系统实验中,C与汇编语言混合编程的操作系统环境为___,其所用的虚拟机为___。2.测试用软盘映像文件的大小为___MB,使用的文件系统格式为___。 3.Intel 80386新增加的两个段寄存器分别为___和___。 4.Intel处理器实模式下的中断向量表包含___个中断向量,每个中断向量有___位。 5.Linux中挂载磁盘映像的命令为___,C语言的编译器为___。 6.将程序的入口安排在指定位置的汇编操作符为___、LD的链接选项为___。 7.ELF的英文原文是___,中文译文为___。 8.在FAT的文件条目中,普通文件和子目录的文件属性值分别为___和___。 9.在IA-32的保护模式下,分段用于___,分页用于___。 10.IA-32处理器的4个系统地址寄存器分别为___。 11.IA-32中的描述符和选择符大小分别为___位和___位。 12.TSS的主要功用为___,TSS描述符只能位于___描述符表中。 13.控制保护模式的寄存器为___,激活保护标志位于其___位。 14.IA-32的三种特权级类型分别为___、___和___。 15.在Make文件中,$@ 和$< 分别表示___和___。 二.问答题(每小题5分,共30分) 1.在实模式下的进程调度中是如何实现堆栈切换的? 2.IA-32的保护模式相比实模式的主要优点有哪些? 3.给出IA-32保护模式下的段寄存器的内容、组成和功用。 4.给出GDT和LDT的英文原文和中文译文,它们有哪些主要功用和区别? 5.启动分页机制的主要步骤有哪些? 6.给出IA-32段页式保护模式下(采用4KB页面大小与两级分页方式的)逻辑地址和线性地址的构成及转 换成物理地址的方法。

操作系统原理实验2+岳青山+0907052247

《操作系统原理》实验报告 实验序号:2 实验项目名称: Windows 基本进程管理 1、实验目的 通过观察任务管理器,来观察各个进程的动态信息。 2、实验工具 (1)一台WindowsXP操作系统的计算机。 (2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。 3、预备知识 ·任务管理器,了解用户计算机上正在运行的程序和进程的相关信息。 ·Windows环境中的编程。 相关内容参见本次实验参考资料部分。 4、基本实验 1)观察任务管理器 步骤一:进入WindowsXP。 步骤二:按Ctrl+Alt+Delete(或按Ctrl+Shift+Esc)键都可以调出任务管理器。 步骤三:单击“查看”→“选择列”选项,可以看到一些选项, 这里,可以查看每个进程的PID,CPU使用时间,内存的使用情况,当前的进程是系统的还是用户的,每个句柄的数量,每个进程的优先级,等等。 步骤四:单击“性能”标签,在所示的“性能”选项卡中可以看到CPU的使用情况、内存的使用情况。 2)通过命令观察进程情况、 步骤一:单击“开始”→“运行”选项,输入cmd“命令提示符”下。 步骤二:输入tasklist。 步骤三:继续输入tasklist/?来寻找帮助,里面有更详细的解释。 3)通过命令来关闭一个进程 步骤一:单击“开始”→“运行”选项,输入cmd“命令提示符”下。 步骤二:输入tasklist后回车执行。 步骤三:继续输入taskkill/PID 208/T 5、实验编程 进行一个简单的Windows的图形用户接口(GUI)编程。 步骤一:进入WindowsXP。 步骤二:进入Microsoft Visual Studio C++6.0。 步骤三:在菜单栏中单击“文件”→“新建”→“文件”→C++Source File,选择路径(如D:\1.cpp),并命名为1.cpp。 步骤四:将下面的程序源代码输入。 步骤五:单击Windows系统的“开始”→“运行”选项,输入cmd。

计算机组成原理实验6

第六节 CPU组成与机器指令执行实验 一、实验目的 (1)将微程序控制器同执行部件(整个数据通路)联机,组成一台模型计算机; (2)用微程序控制器控制模型机数据通路; (3)通过CPU运行九条机器指令(排除中断指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念。 二、实验电路 本次实验用到前面四个实验中的所有电路,包括运算器、存储器、通用寄存器堆、程序计数器、指令寄存器、微程序控制器等,将几个模块组合成为一台简单计算机。因此,在基本实验中,这是最复杂的一个实验,也是最能得到收获的一个实验。 在前面的实验中,实验者本身作为“控制器”,完成数据通路的控制。而在本次实验中,数据通路的控制将由微程序控制器来完成。CPU从内存取出一条机器指令到执行指令结束的一个机器指令周期,是由微指令组成的序列来完成的,即一条机器指令对应一个微程序。 三、实验设备 (1)TEC-9计算机组成原理实验系统一台 (2)双踪示波器一台 (3)直流万用表一只 (4)逻辑测试笔一支 四、实验任务 (1)对机器指令系统组成的简单程序进行译码。 (2)按照下面框图,参考前面实验的电路图完成连线,控制器是控制部件,数据通路(包括上面各模块)是执行部件,时序产生器是时序部件。连线包括控制台、时序部分、数据通路和微程序控制器之间的连接。其中,为把操作数传送给通用寄存器组RF,数据通路上的RS1、RS0、RD1、RD0应分别与IR3至IR0连接,WR1、WR0也应接到IR1、IR0上。 开关控制 控制台时序发生器 时序信号 开关控制指示灯信号控制信号时序信号 控制信号 微程序控制器数据通路 指令代码、条件信号

计算机组成原理实验1.

计算机组成原理实验1 运算器(脱机)实验 通过开关、按键控制教学机的运算器执行指定的运算功能,并通过指示灯观察运算结果。实验原理: 为了控制Am2901运算器能够按照我们的意图完成预期的操作功能,就必须向其提供相应的控制信号和数据。 控制信号包括 1、选择送入ALU的两路操作数据R和S的组合关系(实际来源)。 2、选择ALU的八种运算功能中我们所要求的一种。这可通过提供三位功能选择码I5、 I4、I3实现。 3、选择运算结果或有关数据以什么方式送往何处的处理方案,这主要通过通用寄存器 组合和Q寄存器执不执行接收操作或位移操作,以及向芯片输出信息Y提供的是 什么内容。这是通过I8、I7、I6三位结果选择码来控制三组选择门电路实现的。 外部数据包括 1、通过D接收外部送来的数据 2、应正确给出芯片的最低位进位输入信号C n 3、关于左右移位操作过程中的RAM3、RAM0、Q3和Q0的处理。 4、当执行通用寄存器组的读操作时,由外部送入的A地址选中的通用寄存器的内容送 往A端口,由B地址选中的通用寄存器的内容送往B端口,B地址还用作通用寄 存器的写汝控制。 对于芯片的具体线路,需说明如下几点: 1、芯片结果输出信号的有无还受一个/OE(片选)信号的控制。 2、标志位F=0000为集电极开路输出,容易实现“线与”逻辑,此管脚需经过一个电阻 接到+5V。 3、RAM3、RAM0、Q3和Q0均为双向三态逻辑,一定要与外部电路正确连接。 4、通用寄存器组通过A端口、B端口读出内容的输出处均有锁存器线路支持。 5、该芯片还有两个用于芯片间完成高速进位的输出信号/G和/P。 6、Am2901芯片要用一个CLK(CP)时钟信号作为芯片内通用寄存器、锁存器和Q寄 存器的打入信号。 实验步骤如下: (1)选择运算器要完成的一项运算功能,包括数据来源,运算功能,结果保存等;(2)需要时,通过数据开关向运算器提供原始数据; (3)通过24位的微型开关向运算器提供为完成指定运算功能所需要的控制信号; (4)通过查看指示灯或用电表量测,观察运算器的运行结果(包括计算结果和特征标志)。实验准备 12为微型开关的具体控制功能分配如下: A口和B口地址:送给Am2901器件用于选择源与目的操作数的寄存器编号; I8~I0:选择操作数来源、运算操作功能、选择操作数处理结果和运算器输出内容的3组3位控制码; Sci,SSH和SST:用于确定运算器最低位的进位输入、移位信号的入/出和怎样处理Am2901产生的状态标志位的结果。

操作系统原理实验十一

实验十一银行家算法模拟实现 1实验类型 设计型(4学时)。 2实验目的 1)理解死锁避免相关内容; 2)掌握银行家算法主要流程; 3)掌握安全性检查流程。 3实验描述 本实验主要对操作系统中的死锁预防部分的理论进行实验。要求实验者设计一个程序,该程序可对每一次资源申请采用银行家算法进行分配。 4实验内容 1)设计多个资源(≥3); 2)设计多个进程(≥3); 3)设计银行家算法相关的数据结构; 4)动态进行资源申请、分配、安全性检测并给出分配结果。 5实验要求 1)编写程序完成实验内容; 2)画出安全性检测函数流程图; 3)小组派1人上台用PPT演讲实现过程; 4)撰写实验报告。

6测试要求 1)进行Request请求,输入参数为进程号、资源号和资源数; 2)进行3次以上的Request请求; 3)至少进行1次资源数目少于可用资源数,但不安全的请求。 7相关知识 7.1银行家算法的数据结构 1)可利用资源向量Available。其中每个元素代表每类资源的数目。 2)最大需求矩阵Max。其中每个元素代表每个进程对于每类资源的最大需求量。 Max[i,j]=K表示i进程对于j类资源的最大需求量为K。 3)分配矩阵Allocation。其中每个元素代表每个进程已得到的每类资源的数目。 4)需求矩阵Need。其中每个元素代表每个进程还需要的每类资源的数目。 7.2银行家算法 Request i [j]=K表示进程Pi需要K个j类资源。 1)如果Request i [j]≤Need[i , j],便转向步骤2,否则认为出错。 2)如果Request i [j]≤Available[j],便转向步骤3,否则表示无足够资源,Pi需等待; 3)系统尝试分配资源给Pi; 4)系统进行安全性检查,检查此次资源分配后,系统是否安全。如果安全,则正式分配资源,否则撤销此次分配。 7.3安全性算法 1)设置两个向量:工作向量Work和Finish。算法开始时Work=Available;Finish 表示系统是否有足够的资源分配给进程,使之运行完成,开始时,令 Finish[i]=False;如果有足够的资源分配给进程,则令Finish[i]=True。 2)从进程集合中找到一个能满足下列条件的进程:Finish[i]=False;Need[i,j] ≤Work[j],若找到,执行步骤3),否则,执行步骤4); 3)Pi获得所需资源后,可顺利执行指导完成,并释放它占有的资源。并执行:Work[j]=Work[j]+Allocation[i , j]; Finish[i] = True; 到第2)步。

11级操作系统原理实验试卷a及答案

警示 《中山大学授予学士学位工作细则》第六条 考试作弊不授予学士学位 计算机科学系2012第二学期 《操作系统原理实验》期末考试试题(A) 任课教师:李才伟考试形式:开卷考试时间:2小时年级:11 班别:3 专业:计科姓名:________ 学号:___ _ 成绩___ _ 注意:答案一定要写在答卷中,写在本试题卷中不给分。本试卷要和答卷一起交回。 一.填空题(每小题2分,共30分) 1.在我们的操作系统实验中,C与汇编语言混合编程的操作系统环境为___,其所用的虚拟机为___。2.测试用软盘映像文件的大小为___MB,使用的文件系统格式为___。 3.Intel 80386新增加的两个段寄存器分别为___和___。 4.Intel处理器实模式下的中断向量表包含___个中断向量,每个中断向量有___位。 5.Linux中挂载磁盘映像的命令为___,C语言的编译器为___。 6.将程序的入口安排在指定位置的汇编操作符为___、LD的链接选项为___。 7.ELF的英文原文是___,中文译文为___。 8.在FAT的文件条目中,普通文件和子目录的文件属性值分别为___和___。 9.在IA-32的保护模式下,分段用于___,分页用于___。 10.IA-32处理器的4个系统地址寄存器分别为___。 11.IA-32中的描述符和选择符大小分别为___位和___位。 12.TSS的主要功用为___,TSS描述符只能位于___描述符表中。 13.控制保护模式的寄存器为___,激活保护标志位于其___位。 14.IA-32的三种特权级类型分别为___、___和___。 15.在Make文件中,$@ 和$< 分别表示___和___。 二.问答题(每小题5分,共30分) 1.在实模式下的进程调度中是如何实现堆栈切换的? 2.IA-32的保护模式相比实模式的主要优点有哪些? 3.给出IA-32保护模式下的段寄存器的内容、组成和功用。 4.给出GDT和LDT的英文原文和中文译文,它们有哪些主要功用和区别? 5.启动分页机制的主要步骤有哪些? 6.给出IA-32段页式保护模式下(采用4KB页面大小与两级分页方式的)逻辑地址和线性地址的构成及转换成物理地址的方法。

计算机组成原理实验

计算机组成原理 实验报告 学院(系):软件学院 专业:软件设计 班级:软件设计一班 学号:1415925365 姓名:沈烨 2016年11月24日

实验1 Cache模拟器的实现 一.实验目的 (1)加深对Cache的基本概念、基本组织结构以及基本工作原理的理解。 (2)掌握Cache容量、相联度、块大小对Cache性能的影响。 (3)掌握降低Cache不命中率的各种方法以及这些方法对提高Cache性能的好处。 (4)理解LRU与随机法的基本思想以及它们对Cache性能的影响。 二、实验内容和步骤 1、启动CacheSim。 2、根据课本上的相关知识,进一步熟悉Cache的概念和工作机制。 3、依次输入以下参数:Cache容量、块容量、映射方式、替换策略和写策略。 4、读取cache-traces.zip中的trace文件。 5、运行程序,观察cache的访问次数、读/写次数、平均命中率、读/写命中率。思考:1、Cache的命中率与其容量大小有何关系? Cache 的容量与块长是影响cache效率的重要因素; Cache 容量越大,其CPU命中率就越高,当然容量过大,增加成本,而且cache 容量达到一定值时,命中率已不因容量的增加而又明显的提高; 2、Cache块大小对不命中率有何影响? Cache 当块由小到大,在已被访问字的附近,近期也可能访问,增大块长,可将更多有用字存入缓存,提高命中率;但是继续增大块长,命中率可能下降,因为所装入缓存的有用数据反而少于被替换掉的有用数据,由于块长增大,块数减少,装入新的块要覆盖旧块,很可能出现少数块刚装入就被覆盖,故命中率可能下降; 3、替换算法和相联度大小对不命中率有何影响? 替换算法中:LRU算法的平均命中率比FIFO的高 LRU算法比较好地利用访存局部性原理,替换出近期用得最少的字块,它需要随时记录cache 各个字块使用情况。FIFO不需要记录各个字块的使用情况,比较容易实现开销小,但是没有根据访存的局部性原理,最早调入的信息可能以后还要用到,或经常用到例如循环程序; Cache 容量一定时,随着相联度的不断增加,不命中率渐渐减小,但是当相连度增加到一定程度时,不命中率保持不变;

计算机组成原理实验报告6-存储器EM实验

2.6 存储器EM实验 姓名:孙坚学号:134173733 班级:13计算机日期:2015.5.29 一.实验要求:利用CPTH 实验仪上的K16..K23 开关做为DBUS 的数据,其它开关做为控制信号,实现程序存储器EM 的读写操作。 二.实验目的:了解模型机中程序存储器EM 的工作原理及控制方法。 三.实验电路: 存储器EM 由一片6116RAM 构成,是用户存放程序和数据的地方。存储器EM 通过一片74HC245 与数据总线相连。存储器EM 的地址可选择由PC或MAR 提供。 存储器EM 的数据输出直接接到指令总线IBUS,指令总线IBUS 的数据还可以来自一片74HC245。当ICOE 为0 时,这片74HC245 输出中断指令B8。 EM原理图

连接线表 四.实验数据及步骤: 实验1:PC/MAR 输出地址选择 置控制信号为: 以下存贮器EM实验均由MAR提供地址 实验2:存储器EM 写实验 将地址0 写入MAR 二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据00H

置控制信号为: 按STEP键, 将地址0 写入MAR 将数据11H写入EM[0] 二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据11H 置控制信号为: 按STEP键, 将数据11H写入EM[0] 将地址1 写入MAR 二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据01H 置控制信号为: 按STEP键, 将地址1 写入MAR 将数据22H写入EM[1] 二进制开关K23-K16用于DBUS[7:0]的数据输入,置数据22H

相关主题